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Abstract—Existing approaches to automatic data transforma-
tion are insufficient to meet the requirements in many real-
world scenarios, such as the building sector. First, there is
no convenient interface for domain experts to provide domain
knowledge easily. Second, they require significant training data
collection overheads. Third, the accuracy suffers from compli-
cated schema changes. To address these shortcomings, we present
a novel approach that leverages the unique capabilities of large
language models (LLMs) in coding, complex reasoning, and zero-
shot learning to generate SQL code that transforms the source
datasets into the target datasets. We demonstrate the viability of
this approach by designing an LLM-based framework, termed
SQLMorpher, which comprises a prompt generator that integrates
the initial prompt with optional domain knowledge and historical
patterns in external databases. It also implements an iterative
prompt optimization mechanism that automatically improves
the prompt based on flaw detection. The key contributions
of this work include (1) pioneering an end-to-end LLM-based
solution for data transformation, (2) developing a benchmark
dataset of 105 real-world building energy data transformation
problems, and (3) conducting an extensive empirical evaluation
where our approach achieved 96% accuracy in all 105 problems.
SQLMorpher demonstrates the effectiveness of utilizing LLMs in
complex, domain-specific challenges, highlighting the potential of
their potential to drive sustainable solutions.

Index Terms—large language model, data transformation,
smart building, ChatGPT, Text2SQL

I. INTRODUCTION

A recent study [1] showed that in 2022, the end-use energy
consumption by the building sector accounted for 40% of
total US energy consumption. It indicates that the energy
management of buildings plays an important role in meeting
the goals of energy sustainability [2]. Automatic building en-
ergy management, including design, certification, compliance,
real-time control, operation, and policy-making, requires the
integration of data from diverse sources in both the private and
public sectors. Harmonizing these data, as illustrated in Fig. 1,
remains a manual process. Extensive labor and expertise are
thus required throughout the data lifecycle in the building
sector. However, the state-of-the-art data transformation tools,
such as Auto-Transform [3], Auto-Pipeline [4], and Auto-
Tables [5], are not effective due to the following gaps:

* These authors made equal contributions; †Jia Zou is the corresponding
author; ‡Liang Zhang is the contact for the datasets and use cases.

• These tools are not publicly available and are based on super-
vised learning approaches, requiring non-trivial data labeling
and training overheads.
• The data transformation logic in the building sector in-
volves multiple combinations of aggregation, attribute flatten-
ing, merging, pivoting, and renaming relationships between
the source and the target. They are more complicated than
existing data transformation benchmarks [4], [5]. In addition,
the accuracy achieved by the state-of-art tools on these simpler
benchmarks is below 80% [4], [5], indicating it still requires
human efforts to fix a significant portion of the cases.
• Converting a building dataset to a target schema requires
domain knowledge about both source/target schemas, which
are available in domain-specific knowledge as illustrated in
Fig. 4 and Fig. 6. However, there is no easy way to directly
supply such knowledge in existing data transformation tools.

To close the gaps, we once considered fine-tuning a pre-
trained transformer model like BERT [6] to directly transform
source data to target data [7]. However, we identified many
shortcomings of this approach. First, it is hard to formulate one
unified predictive problem to transform data for all types of
schema changes. Second, the transformation process is slow to
handle large-scale data. Third, preparing a fine-tuning dataset
for each task could also be challenging.

This work proposes a novel and better approach, termed
SQLMorpher, which solves the problem in two steps. The
first step is formulated as a Text2SQL problem [8]–[11]. We
apply the LLM model to generate Structured Query Language
(SQL) code that converts a source dataset into a target dataset.
This step focuses on schema mapping, so we do not need to
upload the entire source datasets. The second step applies the
generated SQL code to efficiently transform the entire dataset
in relational databases.

Our approach is motivated by several key observations:
(1) LLMs demonstrate superior performance in complex
reasoning tasks. In the building sector, domain experts of-
ten document the semantics of the source and the target
tables in natural language. LLMs can better understand such
descriptions and reason about the relationships between the
source and target than smaller pre-trained models. (2) LLMs
have demonstrated strong coding and code explanation
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datetime cerc_logger_1
2/22/2018 0:30 22.875
2/22/2018 0:40 22.937
2/22/2018 0:50 22.937
2/22/2018 1:00 22.937
2/22/2018 1:10 23
2/22/2018 1:20 23.062
2/22/2018 1:30 23.062
2/22/2018 1:40 23
2/22/2018 1:50 23.062

… …

Source

(a) Transformation based on Group-By, Aggregation, and Pivoting 

Target

CST 1:00 2:00 … 24:00
02/22/2018 138.123 … … …

24 hours

SUM

(b) Transformation based on Attribute Group and Merge

Source Target

time heating cooling
interior_
_lighting

exterior_
lighting …

15:00.0 170365.32 10173.74 39205.14 7653.41 …
30:00.0 160103.29 9711.17 39205.14 7653.41 …
45:00.0 149229.62 9061.37 39205.14 7653.41 …
00:00.0 139390.49 8148.23 39205.14 7653.41 …
15:00.0 116364.94 7864.62 23523.08 4592.04 …
30:00.0 116371.65 6634.81 23523.08 4592.04 …
45:00.0 115341.15 6496.82 23523.08 4592.04 …
00:00.0 114717.11 6457.23 23523.08 4592.04 …

… … … … … …

index HVAC lighting …
0 180539.06 46858.54
1 169814.46 46858.54
2 158290.99 46858.54
3 147538.72 46858.54
4 124229.56 28115.13
5 123006.46 28115.13
6 121837.97 28115.13
7 121174.34 28115.13

.. … … …

SUM
SUM

(c) Transformation based on Attribute Merge and Attribute Name Change

DT_STRATA DOW PCT_HOURLY_0100 PCT_HOURLY_0200 … PCT_HOURLY_2400
1/1/16 H .001222017108240 .001274017836250 … .001222017108240
1/2/16 7 .001313018382257 .001248017472245 … .001196016744234
1/3/16 1 .001157016198227 .001092015288214 … .001040014560204
1/4/16 2 .001105015470217 .001053014742206 … .000975013650191

... … … … … ….

CST 1:00 2:00 … 24:00
Sat 1/1/16 .001222017108240 .001274017836250 … .001222017108240
Sun 1/2/16 .001313018382257 .001248017472245 … .001196016744234
Mon 1/3/16 .001157016198227 .001092015288214 … .001040014560204
Tue 1/4/16 .001105015470217 .001053014742206 … .000975013650191

… … … … …

Merge
Source Target

Fig. 1. Building electricity usage profiles are captured in a variety of data formats and need to be converted in order to be used together.
This figure provides three simplified examples.

capability [12]. In addition, SQL’s declarative nature makes
it easier to map data transformation queries in natural language
to SQL queries. (3) LLMs have outstanding capabilities
in zero-shot and few-shot adaptation and generalization.
Therefore, none or only a few training examples are needed.

Existing Text2SQL works [8]–[11] focus on read-only tasks,
but cannot handle creation and modification tasks. To effec-
tively handle the data transformation tasks with LLM, we need
to add a number of challenges:
• Schema Change Challenge: Different from existing
Text2SQL works, SQLMorpher needs to generate the query
that maps data from the source schema to the target schema.
• Prompt Engineering Challenge: Designing a unified
prompt to handle different types of schema changes and data
transformation contexts is boring and tedious.
• Accuracy Challenge: Most importantly, the code generated
by LLMs could be error-prone and even dangerous (e.g.,
leading to security concerns such as SQL injection attacks).

To address these challenges, the proposed system, as illus-
trated in Fig. 2, consists of the following unique components:

First, a prompt generator is designed to provide a unified
prompt template. It allows external tools to be easily plugged
into the component, such as domain-specific databases, vector
databases that index historical successful prompts, and ex-
isting schema change detection tools [13]–[15] to retrieve
various optional information. The prompt generator reduces
the prompt size by using a few sample data records to replace
the source datasets for generating the SQL code applicable to
transforming the entire source datasets.

Second, an automatic and iterative prompt optimization
component executes the SQL code extracted from the LLM
response in a sandbox database that is separated from user
data. It also automatically detects flaws in the last prompt
and adds a request to fix the flaws in the new prompt.
Examples of the flaws include errors appearing in the last

LLM response, the errors that occurred when executing the
SQL query generated by the LLM, as well as insights extracted
from these errors based on rules.
Our Key Contributions are summarized as follows:
• We are the first to apply LLMs to generate SQL code
for data transformation. Our system, termed SQLMorpher,
includes a prompt generator that can be easily integrated
with domain-specific knowledge, high-level schema-change
hints, and historical prompts. It also includes an iterative
prompt optimization tool that identifies flaws in the prompt
for enhancement. We implemented an evaluation framework
based on SQLMorpher. (See details in Sec. III)
• We set up a benchmark that consists of 105 real-world
data transformation cases in 15 groups in the smart building
domain. We document each case using the source schema, the
source data examples, the target schema, available domain-
specific knowledge, the schema hints, and a working trans-
formation SQL query for users to validate the solutions. We
have made the benchmark publicly available to benefit mul-
tiple communities including smart building, Text2SQL, and
automatic data transformation 1 2. (See details in Sec. IV-B)
• We have conducted a detailed empirical evaluation with
ablation studies. SQLMorpher using ChatGPT-3.5-turbo-16K
achieved up to 96% accuracy in 105 real-world cases in the
smart building domain. We verified that our approach can
generalize to scenarios beyond building energy data, such as
COVID-19 data and existing data transformation benchmarks.
We also managed to compare SQLMorpher to state-of-the-art
data transformation tools such as Auto-Pipeline (though these
tools are not publicly available) on their commercial bench-
mark. The results showed that SQLMorpher can achieve 81%
without using any domain knowledge, and 94% accuracy using
domain knowledge, both of which outperform Auto-Pipeline’s

1https://github.com/asu-cactus/Data Transformation Benchmark
2https://github.com/asu-cactus/ChatGPTwithSQLscript

https://github.com/asu-cactus/Data_Transformation_Benchmark
https://github.com/asu-cactus/ChatGPTwithSQLscript


accuracy on this benchmark. We also summarized a list of
insights and observations that are helpful to communities. (See
details in Sec. IV)

II. RELATED WORKS

Existing Text2SQL tools [8]–[11] automatically generate
SQL code to answer text-based questions on relations. How-
ever, existing Text2SQL tools focus on generating selection
queries. According to our knowledge, there do not exist
any Text2SQL tools that support modification queries (e.g.,
insertions) that are required by data transformation. In addi-
tion, we surveyed multiple Text2SQL benchmarks including
Spider [16], SQUALL [17], Criteria2SQL [18], KaggleD-
BQA [19], and so on. However, we didn’t find any data
transformation use cases in these benchmarks, which also
indicates that data transformation problems are not the focus
of today’s Text2SQL research.

Existing automatic data transformation [3]–[5], [20]–[28]
fall in two categories: (1) Transform-by-Example (TBE) [20]–
[27] infers transformation programs based on user-provided
input/output examples, which have been incorporated into
popular software such as Microsoft Excel, Power BI [29], and
Trifacta [30]. However, these works require users to provide
examples of the transformed tuples, which is challenging
for complicated data transformations. (2) To address the is-
sue, Transform-by-Target (TBT) [3]–[5] is recently proposed.
Works in this category, such as Auto-Transform [3], Auto-
Pipeline [4], and Auto-Tables [5], transform data based only on
input/output data schemas and optionally output data patterns.
As mentioned, they learn a pipeline of data transformation
operators using deep learning. They cannot easily integrate
domain-specific knowledge represented in natural language or
other formats. Although those tools are not publicly available,
we conducted a comparison by running our approach on their
benchmark, as detailed in Sec. IV-F.

III. SQLMorpher SYSTEM DESIGN

As illustrated in Fig. 2, the SQLMorpher system consists
of a prompt generator, a large language model (LLM), a
SQL execution engine, and a component for iterative prompt
optimization. In this section, we describe each component
in detail. Although SQLMorpher is primarily engineered to
evaluate the LLM in our target use scenarios, it is a first-of-a-
kind design that has research values in defining the workflows
and the interfaces between LLM and external tooling for the
unique data transformation problem.

A. Prompt Generation

We designed a prompt template as illustrated in Fig. 3.
The naive user must provide minimal information, such as
the source and target table schemas and examples of the
tuples in the source dataset. Although a source table could
contain many tuples, SQLMorpher only demonstrates to the
LLM a few examples, which are sufficient to generate code for
correctly transforming the whole table. Despite the sampling
techniques that can be applied here, we chose to randomly

sample 5 source tuples in the evaluation. If source tuples are
not available, we asked the LLM to generate 5 source tuples.

All other information is optional but is helpful for compli-
cated transformation cases. We designed the prompt generator
to retrieve additional information from external databases
easily. Such information includes:
(1) Domain-specific information, which explains the seman-
tics of each attribute in the source table and the target table.
Given LLMs’ diverse and ocean-volume training corpus, such
explanations are not required for many domains, and so it is
marked as optional. However, we found that using domain
knowledge to enhance the prompt could be critical for many
smart building data transformation cases. This information can
be retrieved from a domain-specific database, as illustrated in
Fig. 4. In this example, basic information plus the domain-
specific information that explains only the target table is
sufficient to address the first example, as shown in Fig. 1a.
(2) Schema change hints suggests how the source schema
is mapped to the target schema. Given the strong semantic
reasoning capability of LLMs, hints are also optional. We
found that some high-level hints, such as “use aggregation”,
are sufficient for LLMs to generate correct Group-By clause
and aggregation functions in most scenarios. As illustrated in
the brown box in Fig. 5, such information can be provided
by (a) a rule engine that analyzes domain-specific databases
as illustrated in Fig. 6, (b) a schema mapping tool such
as Starmie [13], or (c) even an LLM itself (e.g., using a
separate LLM prompt that asks the LLM to identify schema
changes between the source and the target). Fig. 6 illustrates
the example information that is available in a domain-specific
database for smart buildings that can be leveraged to generate
schema change hints. In this experimental study, most schema
change hints are derived from the domain-specific databases
as illustrated in Fig. 4 and Fig. 6.
(3) Demonstrations add a few examples of historical prompt-
response pairs to the prompt to perform few-shot learning. It
is critical that the demonstrating prompts need to be similar
to the current prompt. For SQLMorpher design, we choose to
store the embedding vectors of historically successful prompts
in a vector database, such as Faiss for top-k nearest-neighbor
search, as illustrated in Fig. 5. In this example, the prompt
will fail unless it includes both the schema change hints (in
the brown box) and the demonstration (in the purple box). We
used the ChatGPT 3.5-turbo-16k model API in August 2023
to generate all examples in this section.

To retrieve the various types of information to augment the
prompt, the SQLMorpher design includes a callback system.
Each type of information corresponds to an event, and the user
can register one or more callback functions with an event.
Each callback function is expected to return a JSON object
that specifies the retrieved information as well as a status
code and error message that specifies connection or execution
errors, if any. When generating a prompt, SQLMorpher will
go through all types of information, and invoke all callback
functions associated with each information type.



Prompt Generation
Response Generation
Large Language Model

e.g., ChatGPT

SQL Execution
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e.g., PostgreSQL
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target schema

Validation at 
Experiment Time
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Deployment Time
e.g., unit test cases

self-consistency 

prompt response
transformed
target dataset

If passed validation, 
return the target dataset

If failed to pass the validation, return 
the errors for augmenting the prompt

Domain-
Specific 

Database

Historical 
Prompt 

Database

Schema 
change 
Tooling

Source
Database

Testing
Database

Fig. 2. SQLMorpher: Automatic Data Transformation based on LLM

You are a SQL developer. Please generate a Postgres SQL script to 
convert the first table to be consistent with the format of the 
second table. 

First, you must create the first table named $SourceTable with the 
given attribute names: {$source_data_schema} and Insert $k rows 
into the source table.

{k rows of data to be inserted into the source table.}

Second, you must create a second table named $TargetTable with 
the given attributes: {$target_data_schema}

Finally, insert all rows from the first table into the second table.

{explanation for the source table schema}

{explanation for the target table schema}

{hints about schema changes from the source to target}

{demonstrations}

{flaws in last round’s response}

Optional (If not provided, 
ChatGPT will generate the 
data to be inserted )

This step generates 
the query that 
converts the first 
table to the schema 
of the second table,  
called the target 
transformation 
query

Optional

Optional

Optional

Optional

Not needed for the initial round

Fig. 3. Prompt Template for single-table transformation.

B. SQL Execution

Compared to existing Text2SQL that focuses on selection
queries that are read-only, leveraging LLM to generate modifi-
cation queries is more complicated, partially because running
the generated query may raise security concerns. In the initial
iteration for a given user request, the system automatically du-
plicates the source dataset in a separate PostgreSQL database
that serves as a sandbox environment to isolate the errors,
if the duplicate does not exist. This is to ensure that the
generated code will not corrupt the source dataset. Then, the
script creates the target table. Finally, it runs the generated
query to transform the entire source dataset into the target
format and insert all transformed tuples into the target table.
If another iteration is needed, e.g., the response cannot pass the
validation tests, the target table will be removed or archived
before running the next iteration.

C. Validation

The validation in the production environment could be chal-
lenging due to the lack of ground truth. It needs an automatic
quality measurement (e.g., unit test cases, self-consistency, or
accuracy of downstream tasks) for the transformed data, which
we leave for future work to address.

In this work, we manually prepare the ground truth trans-
formation queries for each transformation case in the experi-
mental environment. At the validation stage, the ground truth

transformation query will be executed against the source table,
resulting in the target table, which is called the ground truth
target table. At the same time, by executing the target trans-
formation query contained in the LLM response, as described
in Sec. III-B, we can also obtain a target table, which is called
the generated target table.

We designed a validation script, which compares the gen-
erated target table to the ground truth target table. The
comparison first validates whether two tables have the same
number of attributes and tuples. Then, it performs attribute-
reordering and tuple-sorting to ensure two tables share the
same column-wise and row-wise orderings. Furthermore, the
script will compare the similarity of the values for each
attribute in the two tables. We use the ratio of the number
of equivalent values (difference should be less than e−10)
to the total number of values to measure the similarity of
numerical attributes. We use the Jaccard similarity to measure
the similarity of categorical and text attributes. We average
the similarity for each attribute to derive an overall similarity
score. If the similarity score is below 1, the validation fails.

D. Iterative Prompt Optimization

This component is incorporated to evaluate the LLM’s po-
tential self-optimization capability for the data transformation
problem. If the validation fails, the prompt will be automat-
ically augmented by identifying errors in the prompt: (1)
errors mentioned in the LLM response or met when executing
the generated transformation query; (2) errors detected in the
transformed dataset, e.g., reporting the difference between the
schema of the transformed dataset and the target schema;
(3) inconsistency between the schema change hint and the
response query, e.g., reporting if the hint specifies to use
aggregation, but no Group-By or aggregation functions have
been used. Then, these errors will be appended to the prompt,
and the new prompt will be sent back to the LLM, and it will
repeat this process until it passes the validation, the maximum
number of iterations has been reached, or the new prompt has
no difference with the last prompt.

An example of useful prompt flaws that we observed in
those cases is “ERROR: INSERT has more expressions than
target columns LINE 100: PCT HOURLY 2500”. Before
adding this error to the prompt, ChatGPT cannot correctly
handle an attribute that exists in the source table but not in
the target table, PCT HOURLY 2500. Adding the error to the
prompt will resolve the problem.



Basic Prompt

-- Insert data from source1 into target1
INSERT INTO target1 (CST, 1:00, 2:00, 3:00, 4:00, 5:00, 6:00, 7:00, 8:00, 9:00, 
10:00, 11:00, 12:00, 13:00, 14:00, 15:00, 16:00, 17:00, 18:00, 19:00, 
20:00, 21:00, 22:00, 23:00, 24:00)
SELECT
    DATE_TRUNC('day', datetime) AS CST,
    MAX(CASE WHEN EXTRACT(HOUR FROM datetime) = 1 THEN cerc_logger_1 END) AS 1:00,
    MAX(CASE WHEN EXTRACT(HOUR FROM datetime) = 2 THEN cerc_logger_1 END) AS 2:00,
    MAX(CASE WHEN EXTRACT(HOUR FROM datetime) = 3 THEN cerc_logger_1 END) AS 3:00,
    MAX(CASE WHEN EXTRACT(HOUR FROM datetime) = 4 THEN cerc_logger_1 END) AS 4:00,
    MAX(CASE WHEN EXTRACT(HOUR FROM datetime) = 5 THEN cerc_logger_1 END) AS 5:00,
    MAX(CASE WHEN EXTRACT(HOUR FROM datetime) = 6 THEN cerc_logger_1 END) AS 6:00,
    MAX(CASE WHEN EXTRACT(HOUR FROM datetime) = 7 THEN cerc_logger_1 END) AS 7:00,
    MAX(CASE WHEN EXTRACT(HOUR FROM datetime) = 8 THEN cerc_logger_1 END) AS 8:00,
    MAX(CASE WHEN EXTRACT(HOUR FROM datetime) = 9 THEN cerc_logger_1 END) AS 9:00,
    MAX(CASE WHEN EXTRACT(HOUR FROM datetime) = 10 THEN cerc_logger_1 END) AS 10:00,
    MAX(CASE WHEN EXTRACT(HOUR FROM datetime) = 11 THEN cerc_logger_1 END) AS 11:00,
    MAX(CASE WHEN EXTRACT(HOUR FROM datetime) = 12 THEN cerc_logger_1 END) AS 12:00,
    MAX(CASE WHEN EXTRACT(HOUR FROM datetime) = 13 THEN cerc_logger_1 END) AS 13:00,
    MAX(CASE WHEN EXTRACT(HOUR FROM datetime) = 14 THEN cerc_logger_1 END) AS 14:00,
    MAX(CASE WHEN EXTRACT(HOUR FROM datetime) = 15 THEN cerc_logger_1 END) AS 15:00,
    MAX(CASE WHEN EXTRACT(HOUR FROM datetime) = 16 THEN cerc_logger_1 END) AS 16:00,
    MAX(CASE WHEN EXTRACT(HOUR FROM datetime) = 17 THEN cerc_logger_1 END) AS 17:00,
    MAX(CASE WHEN EXTRACT(HOUR FROM datetime) = 18 THEN cerc_logger_1 END) AS 18:00,
    MAX(CASE WHEN EXTRACT(HOUR FROM datetime) = 19 THEN cerc_logger_1 END) AS 19:00,
    MAX(CASE WHEN EXTRACT(HOUR FROM datetime) = 20 THEN cerc_logger_1 END) AS 20:00,
    MAX(CASE WHEN EXTRACT(HOUR FROM datetime) = 21 THEN cerc_logger_1 END) AS 21:00,
    MAX(CASE WHEN EXTRACT(HOUR FROM datetime) = 22 THEN cerc_logger_1 END) AS 22:00,
    MAX(CASE WHEN EXTRACT(HOUR FROM datetime) = 23 THEN cerc_logger_1 END) AS 23:00,
    MAX(CASE WHEN EXTRACT(HOUR FROM datetime) = 0 THEN cerc_logger_1 END) AS 24:00
FROM source1
GROUP BY DATE_TRUNC('day', datetime);

You are a SQL developer. Please generate a Postgres SQL script to convert the first table to be 
consistent with the format of the second table.
First, you must create the first table named source1 with the given attributes: (datetime, 
cerc_logger_1), and insert 10 rows into the first table:
2/22/2018 0:30, 22.875
2/22/2018 0:40, 22.937
2/22/2018 0:50, 22.937
2/22/2018 1:00, 22.937
2/22/2018 1:10, 23
2/22/2018 1:20, 23.062
2/22/2018 1:30, 23.062
2/22/2018 1:40, 23
2/22/2018 1:50, 23.062
Second, you must create a second table named target1 with only the given attributes: (CST, 1:00, 
2:00, 3:00, 4:00, 5:00, 6:00, 7:00, 8:00, 9:00, 10:00, 11:00, 12:00, 13:00, 14:00, 15:00, 16:00, 
17:00, 18:00, 19:00, 20:00, 21:00, 22:00, 23:00, 24:00)
Finally, insert all rows from the first table to the second table.

Response to the Basic Prompt

(a) Basic Prompt and its response has only one error in the aggregation 
function, which should be SUM rather than MAX

We append the below 
domain-specific 
explanation to the 
basic prompt:

Note that the second 
table records the total 
load in each hour each 
day.

Response to the  Prompt with Domain Knowledge

-- Insert data from source1 into target1
INSERT INTO target1 (CST, 1:00, 2:00, 3:00, 4:00, 5:00, 6:00, 7:00, 8:00, 9:00, 10:00, 11:00, 12:00, 13:00, 14:00, 
15:00, 16:00, 17:00, 18:00, 19:00, 20:00, 21:00, 22:00, 23:00, 24:00)
SELECT
    DATE_TRUNC('day', datetime) AS CST,
    COALESCE(SUM(CASE WHEN EXTRACT(HOUR FROM datetime) = 1 THEN cerc_logger_1 END), 0) AS 1:00,
    COALESCE(SUM(CASE WHEN EXTRACT(HOUR FROM datetime) = 2 THEN cerc_logger_1 END), 0) AS 2:00,
    COALESCE(SUM(CASE WHEN EXTRACT(HOUR FROM datetime) = 3 THEN cerc_logger_1 END), 0) AS 3:00,
    COALESCE(SUM(CASE WHEN EXTRACT(HOUR FROM datetime) = 4 THEN cerc_logger_1 END), 0) AS 4:00,
    COALESCE(SUM(CASE WHEN EXTRACT(HOUR FROM datetime) = 5 THEN cerc_logger_1 END), 0) AS 5:00,
    COALESCE(SUM(CASE WHEN EXTRACT(HOUR FROM datetime) = 6 THEN cerc_logger_1 END), 0) AS 6:00,
    COALESCE(SUM(CASE WHEN EXTRACT(HOUR FROM datetime) = 7 THEN cerc_logger_1 END), 0) AS 7:00,
    COALESCE(SUM(CASE WHEN EXTRACT(HOUR FROM datetime) = 8 THEN cerc_logger_1 END), 0) AS 8:00,
    COALESCE(SUM(CASE WHEN EXTRACT(HOUR FROM datetime) = 9 THEN cerc_logger_1 END), 0) AS 9:00,
    COALESCE(SUM(CASE WHEN EXTRACT(HOUR FROM datetime) = 10 THEN cerc_logger_1 END), 0) AS 10:00,
    COALESCE(SUM(CASE WHEN EXTRACT(HOUR FROM datetime) = 11 THEN cerc_logger_1 END), 0) AS 11:00,
    COALESCE(SUM(CASE WHEN EXTRACT(HOUR FROM datetime) = 12 THEN cerc_logger_1 END), 0) AS 12:00,
    COALESCE(SUM(CASE WHEN EXTRACT(HOUR FROM datetime) = 13 THEN cerc_logger_1 END), 0) AS 13:00,
    COALESCE(SUM(CASE WHEN EXTRACT(HOUR FROM datetime) = 14 THEN cerc_logger_1 END), 0) AS 14:00,
    COALESCE(SUM(CASE WHEN EXTRACT(HOUR FROM datetime) = 15 THEN cerc_logger_1 END), 0) AS 15:00,
    COALESCE(SUM(CASE WHEN EXTRACT(HOUR FROM datetime) = 16 THEN cerc_logger_1 END), 0) AS 16:00,
    COALESCE(SUM(CASE WHEN EXTRACT(HOUR FROM datetime) = 17 THEN cerc_logger_1 END), 0) AS 17:00,
    COALESCE(SUM(CASE WHEN EXTRACT(HOUR FROM datetime) = 18 THEN cerc_logger_1 END), 0) AS 18:00,
    COALESCE(SUM(CASE WHEN EXTRACT(HOUR FROM datetime) = 19 THEN cerc_logger_1 END), 0) AS 19:00,
    COALESCE(SUM(CASE WHEN EXTRACT(HOUR FROM datetime) = 20 THEN cerc_logger_1 END), 0) AS 20:00,
    COALESCE(SUM(CASE WHEN EXTRACT(HOUR FROM datetime) = 21 THEN cerc_logger_1 END), 0) AS 21:00,
    COALESCE(SUM(CASE WHEN EXTRACT(HOUR FROM datetime) = 22 THEN cerc_logger_1 END), 0) AS 22:00,
    COALESCE(SUM(CASE WHEN EXTRACT(HOUR FROM datetime) = 23 THEN cerc_logger_1 END), 0) AS 23:00,
    COALESCE(SUM(CASE WHEN EXTRACT(HOUR FROM datetime) = 0 THEN cerc_logger_1 END), 0) AS 24:00
FROM source1
GROUP BY DATE_TRUNC('day', datetime);

This script follows the structure of the previous scripts but adjusts the aggregation function to calculate the 
total load for each hour of the day. It sums up the cerc_logger_1 values within each hour and day to populate 
the corresponding columns in the target1 table. The COALESCE function is used to handle cases where there's 
no data for a particular hour.

(b) Basic Prompt with domain-specific explanation for the  target table returns 
the correct target transformation query

Prompt with Domain  Knowledge

19 Clothes Dryer - Natural Gas Laundry 
20 Dehumidifier Miscellaneous 
21 Pool Pump Miscellaneous 
22 Other Pump Miscellaneous 
23 Primary TV and Peripherals Miscellaneous 
24 Primary Desktop Computer Miscellaneous 
25 Misc Metered Miscellaneous 
26 Lighting Lighting 
27 Remaining Load Remaining Load 

 

o Appendix E: FSEC (red font means enduses not used for comparison; green font means 

enduses used for comparison; 

No Enduse Code Description 
1 BLDPWR TOTAL BLDG WHS [emon ch1,2] 
2 CMPPWR AC COMPRESSOR WHS [emon ch3,4] 
3 AHUPWR AIR HANDLER WHS [emon ch5,6] 
4 DWHPWR WATER HEATER WHS [emon ch7,8] 
5 DRY1CT DRYER WHS (1-CT) [emon ch9] 
6 RNG1CT RANGE WHS (1-CT) [emon ch10] 
7 DSHWSR DISH WASHER WHS [emon ch11] 
8 FRIDG1 Primary Fridge WHS [emon ch12] 
9 FRIDG2 2nd Fridge WHS [emon ch13] 
10 SPARE1 SPARE1 WHS (1-CT) [emon ch14] 
11 SPARE2 SPARE2 WHS (1-CT) [xpod chA-1] 
12 SPARE3 SPARE3 WHS (1-CT) [xpod chA-2] 
13 POOLPW POOL PUMP WHS (2-CTs) [xpod chA-3,4] 
14 SPARE4 SPARE4 WHS (2-CTs) [xpod chA-5,6] 
15 MSPLIT Minisplit WHS (2-CTs) [xpod chA-7,8] 
16 DRY2CT Dryer WHS (2-CTs) [xpod chA-9,10] 
17 OTHPWR Calculated Unmeasured loads (Whr) 
18 BLDPWC Calculated Energy Use (Whr) 
19 EXTRA1 Future use- WHS (2-CTs)[xpod chB-3,4] 
20 EXTRA2 Future use- WHS (2-CTs)[xpod chB-5,6] 
21 EMTEMP eMonitor Temp (deg. F) 
22 WUPCUM Wattsup Cumulative Ent.Ctr (WHS) 
23 WUPWHR Wattsup Energy Ent.Ctr (WHS) 
24 WUCUMW Wattsup Cumulative Washer (WHS) 
25 WUWASH Wattsup Energy Washer (WHS) 
26 LCTMP1 LaCrosse Device Temp (deg. F) 
27 P6TEMP PointSix Temp (deg. F) 
28 P6HUMI PointSix Humidity (%) 
29 HBTEMP HOBO LOGGER TEMP (deg. F) 
30 HBRHUM HOBO LOGGER RH (%) 

 

 

 

 

Company Table ID Description 

C1 C1_RHH Residential high summer use; high winter use 

C1 C1_RHL Residential high summer use; low winter use 

C1 C1_RHT Residential-with heat, each hour each month 

C1 C1_L Total Load each hour each day 

Domain-
Specific 

Database

Fig. 4. Prompt-Response for the example illustrated in Fig. 1a.

IV. EXPERIMENTAL EVALUATION

In this section, we first describe the goal of the comparison
study and all baselines that were used. Then, we present a
benchmark, which is the first benchmark for smart building
data standardization problems. We further describe the setup of
the experiments and the evaluation metrics. Ultimately, we will
present and analyze the results and summarize key findings.

A. Comparison and Baselines

In this work, we mainly compare the effectiveness of six
different types of initial prompt templates:

• Prompt-1: Basic prompt with domain-specific description
for the target schema.

• Prompt-2: Prompt-1 with a domain-specific description
for the source schema.

• Prompt-3: Prompt-2 with schema change hints.
• Prompt-1+Demo: Prompt-1 with one demonstration.
• Prompt-2+Demo: Prompt-2 with one demonstration.
• Prompt-3+Demo: Prompt-3 with one demonstration.

The first three prompt templates are designed for zero-shot
learning when there does not exist a database of abundant
historical working prompts. The last three prompt templates
are designed for one-shot learning.

We also considered comparing our approach to Auto-
Pipeline [4], which is a state-of-the-art automatic data trans-
formation tool that only requires schema and tuple examples
of the source and target tables and applies deep reinforcement
learning to synthesize the transformation pipeline.

B. Benchmark Design

1) Building Energy Data Transformation: We collected 105
data transformation examples in the smart building domain
from 21 energy companies in the United States. These exam-
ples are divided into 15 groups so that each group has one
target dataset and multiple source datasets of different types.
Each source needs to be converted to the target format in the
group. The groups are described in Tab. I. In Tab. II, we further
show more statistics of the 105 test cases by groups: (1) the



Source14_3(site,timestamp,TOTAL BLDG WHS [emon ch1,2],AC COMPRESSOR WHS [emon 
ch3,4],AIR HANDLER WHS [emon ch5,6],WATER HEATER WHS [emon ch7,8], DRYER WHS (1-CT) 
[emon ch9] , RANGE WHS (1-CT) [emon ch10] , DISH WASHER WHS [emon ch11] , Primary Fridge 
WHS [emon ch12] , 2nd Fridge WHS [emon ch13] , SPARE1 WHS (1-CT) [emon ch14] , SPARE2 
WHS (1-CT) [xpod chA-1] , SPARE3 WHS (1-CT) [xpod chA-2] ,POOL PUMP WHS (2-CTs) [xpod chA-
3,4],SPARE4 WHS (2-CTs) [xpod chA-5,6],Minisplit WHS (2-CTs) [xpod chA-7,8],Dryer WHS (2-CTs) 
[xpod chA-9,10], Calculated Unmeasured loads (Whr) , Calculated Energy Use (Whr) ,Future use- 
WHS (2-CTs)[xpod chB-3,4],Future use- WHS (2-CTs)[xpod chB-5,6], eMonitor Temp (deg. F) , 
Wattsup Cumulative Ent.Ctr (WHS) , Wattsup Energy Ent.Ctr (WHS) , Wattsup Cumulative Washer 
(WHS) , Wattsup Energy Washer (WHS) , LaCrosse Device Temp (deg. F) , PointSix Temp (deg. F) , 
PointSix Humidity (%) , HOBO LOGGER TEMP (deg. F) , HOBO LOGGER RH (%) )

Source Schema

Target_14(month, hour, HVAC, domestic,_water_heating major_appliances,  lighting, miscellaneous, Total)
Target Schema

A Real-world Test Case (Case 100, Group 14)

Schema Change Hint

Hints obtained from a Domain-Specific Database:

You are a SQL developer. Please generate a Postgres SQL script to 

convert the first table to be consistent with the format of the 

second table. 

First, you must create the first table named $SourceTable with the 

given attribute names: {$source_data_schema} and Insert $k rows 

into the first table.

{k rows of data to be inserted into the source table.}

Second, you must create a second table named $TargetTable with 

only the given attributes: {$target_data_schema}

Finally, insert all rows from the first table into the second table.

{explanation for the source table schema}

{explanation for the target table schema}

{hints about schema changes from the source to target}

{demonstrations}

36 "8/22/12 16:00" 322.0 323.0 324.0 325.0 326.0 327.0 328.0 329.0 330.0 331.0 332.0 333.0 
334.0 335.0 336.0 337.0 74.9 319.0 320.0 321.0 322.0 323.0 324.0 325.0 326.0 327.0 75.9 
53.0 327.0 327.0
36 "8/22/12 17:00" 322.0 323.0 324.0 325.0 326.0 327.0 328.0 329.0 330.0 331.0 332.0 333.0 
334.0 335.0 336.0 337.0 74.9 319.0 320.0 321.0 322.0 323.0 324.0 325.0 326.0 327.0 75.9 
53.0 327.0 327.0
…

Samples in the Source Table

Smart Building

Domain-Specific Database

A Similar Real-world Test Case (Case 98, Group 14) which has a successful prompt

Prompt

Source14_1(eiaid, time, raw_count, scaled_unit_count, net_site_electricity_kwh, 
electricity_heating_kwh, electricity_entral_system_heating_kwh, electricity_cooling_kwh 
electricity_central_system_cooling_kwh electricity_interior_lighting_kwh , 
electricity_exterior_lighting_kwh, electricity_fans_heating_kwh, electricity_fans_cooling_kwh, 
electricity_pumps_heating_kwh, electricity_central_system_pumps_heating_kwh, 
electricity_pumps_cooling_kwh, electricity_central_system_pumps_cooling_kwh, 
electricity_water_systems_kwh, electricity_refrigerator_kwh, electricity_clothes_washer_kwh, 
electricity_clothes_dryer_kwh, electricity_cooking_range_kwh, electricity_dishwasher_kwh, 
electricity_plug_loads_kwh, electricity_house_fan_kwh, electricity_range_fan_kwh, 
electricity_bath_fan_kwh, electricity_ceiling_fan_kwh, electricity_pool_heater_kwh, 
electricity_pool_pump_kwh, electricity_hot_tub_heater_kwh, electricity_hot_tub_pump_kwh)

Source Schema

Target_14(month, hour, HVAC, domestic,_water_heating major_appliances,  lighting, miscellaneous_plug_loads, Total)
Target Schema

A successful prompt-Response Pair  for the above case
You are a SQL developer. Please generate a Postgres SQL script to convert the first table to be 
consistent with the format of the second table. 
First, you must create the first table named $SourceTable with the given attribute names: 
{$source_data_schema} and Insert $k rows into the first table.
{k rows of data to be inserted into the source table.}
Second, you must create a second table named $TargetTable with only the given attributes: 
{$target_data_schema}
Finally, insert all rows from the first table into the second table.
{explanation for the source table schema}
{explanation for the target table schema}
{hints about schema changes from the source to target}

The correct response is:
SELECT EXTRACT(MONTH FROM time) AS month, EXTRACT(HOUR FROM time) AS 
hour, … FROM Source14_1 GROUP BY month, hour; (Partial of the query omitted due to 
space limitation)

+Hints obtained from a simple rule-based tool

Use row aggregation group by  month, hour.

Use column aggregation for total

month and hour information can be extracted from 
‘timestamp’. 
‘HVAC’ should map to the sum of ’AC 
COMPRESSOR WHS [emon ch3,4]’, ‘AIR HANDLER 
WHS [emon ch5,6]’, and ‘Minisplit WHS (2-CTs) 
[xpod chA-7,8]’ domestic_water_heating should map 
to ‘WATER HEATER WHS [emon ch7,8]’. 
major_appliances should be mapped to the sum of 
‘Primary Fridge WHS [emon ch12]’, ‘DRYER WHS (1-
CT) [emon ch9]’, ‘Dryer WHS (2-CTs) [xpod chA-
9,10]’, ‘DISH WASHER WHS [emon ch11]’, ‘RANGE 
WHS (1-CT) [emon ch10]’, and ‘POOL PUMP WHS 
(2-CTs) [xpod chA-3,4]’.’ lighting’ is missing. 
‘Miscellaneous’ should map to the sum of ‘Wattsup 
Energy Ent.Ctr (WHS)’ and ‘2nd Fridge WHS [emon 
ch13]’. Total should map to ‘TOTAL BLDG WHS 
[emon ch1,2]’.

Domain-specific rule-based

Schema change hints

generator

Example Rule:

If source tuple is at hour level

and target tuple is at month-

hour level, use aggregation 

group by month, hour. 

The tool  can also be replaced by 

a human expert.

Vector

Database

(Faiss)

Historical Successful 

Prompts

Embedding 

Layer

Embedding 

vector
Nearest 

neighbor 

retrieving

Fig. 5. A Working Prompt for a Real-World Case (Case 100 in Group 14 in Tab. I).

number of distinct SQL keywords used in the ground truth
query and (2) the length (i.e., number of characters) of the
ground truth query. For each group, we compute the average
of the above metrics for all cases in the group.

We document the following information in the benchmark:
(1) target schema and domain-specific explanations for at-
tributes; (2) for each source dataset, its schema, domain-
specific explanation of attributes, examples of instances,
schema change hints for transforming the source table to the
target format, and the ground truth query that transforms the
source to the target. The benchmark dataset is open-sourced
in a GitHub repository 1.

2) Other Benchmarks Used: We also used two other bench-
marks that go beyond the transformation of smart building

data for different purposes. A commercial benchmark consists
of 16 cases used by the Auto-Pipeline baseline. Since Auto-
Pipeline code is not publicly available, we apply our proposed
approach (without and with domain-specific knowledge) to the
benchmark and compare the results.

Another benchmark consists of four COVID-19 data trans-
formation cases, which we used to further validate how
well our methodology can generalize to other data transfor-
mation scenarios. It includes all four transformation cases
observed in the Github commit history of a widely used
real-world COVID-19 data repository maintained by John
Hopkins University [31]. The attributes in the target data
are (Province/State, Country/Region, Last Update, Confirmed,
Deaths, Recovered), which represent the state-level COVID-



TABLE I
DESCRIPTIONS OF BENCHMARK GROUPS

ID Group Description Target Schema Target Description #Sources Source Descriptions

1
Daily
Hour-Level
Load Profile
Transformation

Date 1:00 2:00 ... 24:00 Date is of the format DOW MM/DD/YY,
such as ’Fri 01/01/2016’

10 Sources include load profiles captured
per minute, per 5-minute, per
10-minute and per hour with different
schemas and column names. Some
example source schemas are as follows:
Ex1. (DateTime LoadValue), where
DateTime is a timestamp such as
’2/22/2018 0:30’. Ex2. (Segment Date
1:00 2:00 ... 24:00:00), where Date is
in the format of DOW MM/DD/YY
such as ’Wed 01/01/2003’, and
Segment is an attribute that should be
discarded from the relation.

2 DT DOW HOURLY 0100
HOURLY 0200 ...
HOURLY 2400 HOURLY 2500

DT is in the MM/DD/YY format. DOW has
values from 1-7 corresponding to Mon-Sun.
Hourly 2500 is used for leap second.

10

3 Date Hour1 Hour2 ... Hour24 Date is of the format of MM/DD/YYYY 10
4 Date 1:00AM 2:00AM ... 12:00PM Date is of the format of MM/DD/YYYY 10
5 Date Value1 Value2 ... Value24 Date is of the format of MM/DD/YYYY 10
6 Date Hr1 Hr2 ... Hr24 Date is of the format of MM/DD/YYYY 10
7 Monthly

Hour-Level
Load Profile
Transformation

Month DayType HR1 HR2 ...
HR24

Month has values such as January, Feburary,
etc. DayType can be weekday or weekend.

10

8 Hour January February ... Decem-
ber

Hour has values from 1 to 24. January records
the average load in the corresponding hour in
January. Other columns are similar.

10

9 Seasonal Temperature
Range Transformation

Season DayType Hour Temper-
ature Range Constant Coefficient
Low End High End

Season has values such as SPRING, SUM-
MER, FALL, and WINTER. Datatype can be
either WEEKDAY or WEEKEND. Low End
is the lowest temperature. High End is the
highest temperature.

3 Source 1 and 2 are hourly temperature
data grouped in four ranges and five
ranges, respectively. Source 3 is sea-
sonal temperature data grouped in three
ranges.

10 Daily Hour-Level Load
Transformation by De-
tailed Enduse

Datetime HVAC water heating
Refrigerator Clothes washer
Clothes dryer Dishwasher
Cooking range Pool spa pumps
Interior lighting Exterior lighting
Lighting Plug Pool spa heater

The Datetime attribute has values in the for-
mat of YYYY-MM-DD HH:00:00.

3 The three sources are hourly datasets
with 34, 151, and 32 attributes, re-
spectively, mapped to 13 detailed end-
uses. For example, the sum of elec-
tricity pool pump kwh’ and ’electric-
ity hot tub pump kwh in source-1 is
mapped to Pool spa pumps in the tar-
get.

11 Monthly Hour-Level
Load Transformation by
Detailed Enduse

Month Hour HVAC water heating
Refrigerator Clothes washer
Clothes dryer Dishwasher
Cooking range Pool spa pumps
Interior lighting Exterior lighting
Lighting Plug Pool spa heater

Month is an integer number from 1 to 12.
Hour is an integer number from 0 to 24.

4 Similar to Group 10, with one additional
seasonal source dataset with an End Use
Category attribute of which the values
map to the 13 detailed end uses.

12 Seasonal Hour-Level
Load Transformation by
Detailed Enduse

Season Hour HVAC water heating
Refrigerator Clothes washer
Clothes dryer Dishwasher
Cooking range Pool spa pumps
Interior lighting Exterior lighting
Lighting Plug Pool spa heater

Season has values such as Spring, Summer,
Fall, and Winter. Hour” is an integer number
from 0 to 24.

4 Similar to Group 11.

13 Daily Hour-Level Load
Transformation by High-
Level Enduse

Datetime HVAC Do-
mestic water heating
Major appliances Lighting
Miscellaneous plug loads Total

Similar to Group 10, except that this target
has fewer (higher-level) end-uses.

3 Similar to Group 10.

14 Monthly Hour-Level
Load Transformation by
High-Level Enduse

Month Hour HVAC
Domestic water heating
Major appliances Lighting
Miscellaneous plug loads Total

Similar to Group 11, except that this target
has fewer (higher-level) end-uses.

4 Similar to Group 11.

15 Seasonal Hour-Level
Load Transformation by
High-Level Enduse

Season Hour HVAC
Domestic water heating
Major appliances Lighting
Miscellaneous plug loads Total

Similar to Group 12, except that this target
has fewer (higher-level) end-uses.

4 Similar to Group 12.

19 statistics. The source schemas of the first two cases involve
county-level data with different numbers of columns, and the
latter two cases involve state-level data with different column
names and different numbers of columns.

Overall, we have tested 125 cases in three benchmarks,
among which, 27 cases involve attribute merging, 89 cases
involve attribute name changes, 32 cases involve pivoting, 5
cases involve attribute flattening, 50 cases involve group-by
and aggregation, 8 cases involve join.

C. Evaluation Metrics

We report the following metrics in the experimental study:

• Execution Accuracy: This metric is defined as the ratio of
the number of correctly transformed cases to the total number
of transformation cases. For each case, if the LLM can return
the correct transformation query that passes the experimental
validation tests as described in Sec. III-C within 5 iterations,
it is considered a correctly transformed case.

• Column Similarity: We compute the similarity score for each
column in the transformed dataset and its corresponding col-
umn in the ground truth target dataset (defined in Sec. III-C).
As detailed in Sec. III-C, we compute a similarity score for
each column. We further define the column similarity per case
as the average similarity scores of all the target attributes



 

No Enduse Code Description 
1 BLDPWR TOTAL BLDG WHS [emon ch1,2] 
2 CMPPWR AC COMPRESSOR WHS [emon ch3,4] 
3 AHUPWR AIR HANDLER WHS [emon ch5,6] 
4 DWHPWR WATER HEATER WHS [emon ch7,8] 
5 DRY1CT DRYER WHS (1-CT) [emon ch9] 
6 RNG1CT RANGE WHS (1-CT) [emon ch10] 
7 DSHWSR DISH WASHER WHS [emon ch11] 
8 FRIDG1 Primary Fridge WHS [emon ch12] 
9 FRIDG2 2nd Fridge WHS [emon ch13] 
10 SPARE1 SPARE1 WHS (1-CT) [emon ch14] 
11 SPARE2 SPARE2 WHS (1-CT) [xpod chA-1] 
12 SPARE3 SPARE3 WHS (1-CT) [xpod chA-2] 
13 POOLPW POOL PUMP WHS (2-CTs) [xpod chA-3,4] 
14 SPARE4 SPARE4 WHS (2-CTs) [xpod chA-5,6] 
15 MSPLIT Minisplit WHS (2-CTs) [xpod chA-7,8] 
16 DRY2CT Dryer WHS (2-CTs) [xpod chA-9,10] 
17 OTHPWR Calculated Unmeasured loads (Whr) 
18 BLDPWC Calculated Energy Use (Whr) 
19 EXTRA1 Future use- WHS (2-CTs)[xpod chB-3,4] 
20 EXTRA2 Future use- WHS (2-CTs)[xpod chB-5,6] 
21 EMTEMP eMonitor Temp (deg. F) 
22 WUPCUM Wattsup Cumulative Ent.Ctr (WHS) 
23 WUPWHR Wattsup Energy Ent.Ctr (WHS) 
24 WUCUMW Wattsup Cumulative Washer (WHS) 
25 WUWASH Wattsup Energy Washer (WHS) 
26 LCTMP1 LaCrosse Device Temp (deg. F) 
27 P6TEMP PointSix Temp (deg. F) 
28 P6HUMI PointSix Humidity (%) 
29 HBTEMP HOBO LOGGER TEMP (deg. F) 
30 HBRHUM HOBO LOGGER RH (%) 

 
o Appendix E: FSEC (red font means enduses not used for comparison; green font means enduses used for comparison; 

No Enduse Code Description 
1 BLDPWR TOTAL BLDG WHS [emon ch1,2] 
2 CMPPWR AC COMPRESSOR WHS [emon ch3,4] 
3 AHUPWR AIR HANDLER WHS [emon ch5,6] 

Table 1. Enduse Categorization 

End Uses Sub End Uses Source14_3 
HVAC Heating CMPPWR 

AHUPWR 
MSPLIT 

Cooling 
Furnace/AC 
fan 
Boiler pumps 
 
Kitchen range 
exhaust fan 

 

Bath exhaust 
fan 

 

Domestic 
water 
heating 

Domestic 
water heating 

DWHPWR 

Major 
appliances 

Refrigerator FRIDG1 
Clothes 
washer 

NA 

Clothes dryer DRY1CT 
DRY2CT 

Dishwasher DSHWSR 
Cooking 
range 

RNG1CT 

Pool/spa 
pumps 

POOLPW 

Pool/spa 
heaters 

NA 

Lighting Interior NA 
Exterior 

Miscellaneo
us plug 
loads 

Miscellaneous 
plug loads 

WUPWHR 
 

Other 
refrigerators 

FRIDG2 

Car NA 
Total BLDPWR 

Fig. 6. Example information from the smart building domain-specific
database specifies the mapping from source attributes to the target
attributes for the example in Fig. 5.

in the case, the column similarity per group as the average
similarity scores of all cases in the group, and the overall
column similarity as the average similarity scores of all the
cases in all groups. The similarity score is set to zero for cases
that fail to generate output data for similarity comparison.

• Number of Iterations to Success: For each case, we record
the number of iterations used to achieve the correct response
for the case. We record the average number of iterations
to success for all successful cases that achieved a column
similarity score of 1.0 within 5 iterations in each group, and
in all groups. The latter is termed as the overall number of
iterations to success.

D. Experimental Setups

We implemented the end-to-end workflow as illustrated
in Fig. 2 in a Python script that uses the ChatGPT-3.5-
turbor-16K model. We did not present results on ChatGPT-
4, because the corresponding OpenAI API has a limit of
4K bytes for the total prompt-response size at this point,
while this size is insufficient for a significant portion of real-
world cases. For example, tables in Group 10 to Group 15
have up to 152 attributes, leading to a large prompt size. We
set the temperature to zero to avoid randomness for several
reasons. First, a primary goal of this work is to evaluate
the effectiveness of LLMs on data transformation tasks by
using different types of initial prompts and the effectiveness
of iterative prompt optimization. Random responses require
additional methods (e.g., majority voting) for self-consistency,
which will complicate the comparison. Second, setting the
temperature to zero will achieve better quality results in most
cases, according to a recent OpenAI article [32]. All SQL
codes are run on the PostgreSQL database version 15.0 for
validation. All descriptions of the source and target attributes

are obtained from a domain-specific database3.

E. Smart Building Data Transformation Results

1) Overall Results.: The zero-shot learning results for
the smart building data transformation benchmark are illus-
trated in Tab. II. Using Prompt-3, our proposed SQLMorpher

methodology achieved an execution accuracy of 96%, which
is significantly higher than Prompt-1 and Prompt-2, which
achieved an execution accuracy of 28% and 36%, respectively.
It demonstrated the importance of supplying domain-specific
knowledge, particularly schema change hints, as part of the
prompt to the LLM. The observation justifies the integration
of the LLM with the domain-specific knowledge base and the
schema mapping tools for data transformation pipelines.

2) Effectiveness of One-shot Learning.: For the four cases
that failed with Prompt-3, we applied Prompt-4, Prompt-5,
and Prompt-6 to check whether providing one demonstration
example that involves a similar prompt and a correct response
can improve the LLM response. The results are illustrated
in Tab. III, which showed that using prompts that combine
domain-specific knowledge and demonstration is capable of
solving all four complicated cases that failed with Prompt-3.

3) Effectiveness of the Iterative Optimization Process.:
Compared to Prompt-1 and Prompt-2, we have found that
Prompt-3 can gain significantly more from iterative prompt
optimization. When using Prompt-1, five cases in three groups,
Group-1, Group-4, and Group-7, benefit from iterative prompt
optimization, the average number of iterations being 1.2,
1.3, and 2.0, respectively, as illustrated in Tab. II. Other
groups either have all cases passed in one iteration or have
all cases failed. When using Prompt-2, four cases in three
groups, Group-2, Group-3, and Group-7, require more than
one iteration to succeed, the average number of iterations being
1.4, 1.2, and 1.2, respectively. When using Prompt-3, 10 cases
in six groups, require more than one iteration to succeed.
It means that 9.5% of total cases can benefit from iterative
prompt optimization when using Prompt-3.

F. Results on Benchmarks Beyond Smart Building.

First, we tested our approach on the COVID-19 benchmark.
The results are illustrated in Tab. IV, which showed that our
proposed methodology resolves all four cases simply using the
basic prompt (Prompt-1).

Second, we also compared our proposed approach with the
Auto-Pipeline approach, using its commercial benchmark [4].
The results are illustrated in Tab. V. It showed that our
proposed methodology achieved perfect execution accuracy
on all 16 transformation problems in their benchmark only
using the basic prompt, without additional domain-specific
knowledge. The execution accuracy achieved by Auto-Pipeline
on this benchmark is below 70% [4]. The comparison implies
that our approach has great potential to outperform state-of-
the-art automatic data transformation tools.

3The domain-specific database is maintained by co-author Liang Zhang.
Some example information in the database is illustrated in Fig. 4 and Fig. 6.



TABLE II
COMPARISON OF EXECUTION ACCURACY USING DIFFERENT PROMPT TEMPLATES WITH ZERO-SHOT LEARNING (GRP STANDS FOR GROUP)

Grp-1 Grp-2 Grp-3 Grp-4 Grp-5 Grp-6 Grp-7 Grp-8 Grp-9 Grp-10 Grp-11 Grp-12 Grp-13 Grp-14 Grp-15

#keywords avg. 15.6 18.7 19.6 19.6 16.4 16.3 24.2 26.7 23.7 13.7 20.3 28.0 5.0 25.3 31.5
length avg. 1802 2826 1957 2023 1731 1713 1548 3239 1034 1712 2085 2365 1412 1732 1918

Prompt 1. Overall execution accuracy: 29/105 (28%); Overall column similarity scores: 0.4; Overall iteration to success: 1.3

exec auc 6/10 2/10 4/10 6/10 3/10 2/10 6/10 0/10 0/3 0/3 0/4 0/4 0/3 0/4 0/4
sim score avg. 0.7 0.5 0.6 0.6 0.3 0.3 0.8 0.0 0.0 0.6 0.3 0.0 0.3 0.0 0.0
iter-to-succ avg. 1.2 1.0 1.0 1.3 1.0 1.0 2.0 - - - - - - - -

Prompt 2. Overall execution accuracy: 38/105 (36%); Overall column similarity score: 0.5; Avg iteration to success: 1.1

exec auc 6/10 6/10 7/10 6/10 3/10 2/10 8/10 0/10 0/3 0/3 0/4 0/4 0/3 0/4 0/4
sim score avg. 0.7 0.6 0.7 0.6 0.4 0.3 0.9 0.0 0.4 0.8 0.7 0.2 0.3 0.1 0.0
iter-to-succ avg. 1.0 1.4 1.2 1.0 1.0 1.0 1.2 - - - - - - - -

Prompt 3. Overall execution accuracy: 101/105 (96%); Overall column similarity score: 0.96; Avg iteration to success: 1.2

exec auc 10/10 10/10 10/10 10/10 10/10 10/10 10/10 9/10 3/3 3/3 4/4 3/4 3/3 2/4 4/4
sim score avg. 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 1.0 1.0 1.0 0.8 1.0 0.5 1.0
iter-to-succ avg. 1.0 1.0 1.1 1.0 1.7 1.6 1.0 1.0 1.0 1.3 1.5 1.0 1.3 1.0 1.0

TABLE III
AVERAGE COLUMN SIMILARITY SCORE WITH ONE-SHOT LEARNING

Cases Failed with Prompt-3 Prompt-1
+Demo

Prompt-2
+Demo

Prompt-3
+Demo

Case 78 (in Group 8) 1.00 1.00 1.00
Case 92 (in Group 12) 0.00 0.27 1.00
Case 100 (in Group 14) 0.38 0.50 1.00
Case 101 (in Group 14) 0.50 0.50 1.00

TABLE IV
PROMPT COMPARISON FOR COVID-19 BENCHMARK

#KEYWORDS AVG.: 5, LENGTH AVG.: 277

Prompt-1 Prompt-2 Prompt-3

exec auc 4/4 4/4 4/4
sim score avg. 1.0 1.0 1.0
iter-to-succ avg. 1.0 1.0 1.0

G. Summary of Key Findings

• Large language models are promising to automatically
resolve complicated smart building data transformation cases if
domain-specific knowledge is available and easily retrievable.
We achieved 96% accuracy on our proposed benchmark, which
consists of 105 real-world smart building cases.

• Our SQLMorpher methodology is promising in generalizing
to other data transformation cases and outperforming state-
of-the-art automatic data transformation tools that do not rely
on LLMs. In particular, our methodology defines clean inter-
faces for integrating domain-specific knowledge into the data
transformation process through the prompt generation process.
This is a missing feature in state-of-the-art data transformation
tools. The evaluation results on the commercial benchmark
used by Auto-Pipeline showed that our approach, even without
using domain-specific knowledge, could achieve significantly
better execution accuracy than Auto-Pipeline (81% vs. 69%).
One observation is that while the LLM generates SQL code,
Auto-Pipeline attempts to learn a pipeline of data transfor-
mation operators. The latter has a more limited search space,

TABLE V
COMPARISON TO AUTO-PIPELINE ON THEIR COMMERCIAL BENCHMARK

#KEYWORDS AVG.: 8, LENGTH AVG.: 566

Prompt-1 Prompt-2 Prompt-3 Auto-Pipeline [4]

exec auc 13/16 16/16 16/16 11/16 [4]
sim score avg. 0.83 1.00 1.00 -
iter-to-succ avg. 1.00 1.00 1.00 -
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Fig. 7. The overall execution accuracy of cases in each schema
change category. (We considered all 125 cases in three benchmarks;
each case may involve multiple types of schema changes.)

which may affect execution accuracy.

• Compared to other domain-specific knowledge, a high-level
schema change hint, such as column mapping relationships or
instructions as simple as “use aggregation”, is critical to the
success of our proposed methodology.

• We further classify each of 125 cases from all three
benchmarks into one or more schema change types. We then
count the execution accuracy for each type of schema change,
as illustrated in Fig. 7. We observe that while Prompt-3 with
schema change hints can handle all schema change types
well, Prompt-1 and Prompt-2 without schema change hints
achieved relatively better accuracy (40% to 100%) for attribute
name change, attribute flattening, and join than other types
of changes, such as attribute merging, attribute pivoting, and
group-by/aggregation. This further verified the importance of
incorporating high-level schema change hints such as “use
aggregation” and “use pivoting”.



• Zero-shot learning is effective in resolving most data
transformation problems investigated in this work. Few-shot
learning can resolve the difficult cases that fail with zero-shot.

• The iterative optimization framework that simply enhances
the prompt using ChatGPT reported errors or SQL execution
errors for each iteration can benefit 9.5% of cases when using
Prompt-3 and 5% of cases when using Prompt-1 and 2.

• The examples in our proposed building energy data transfor-
mation benchmark are significantly more complicated than ex-
isting benchmarks in terms of the number of distinct keywords
and the length of the transformation query. They are used in
the real world, but are missing in existing data transformation
benchmarks [4], [5].

V. CONCLUSION AND FUTURE WORKS

In this work, we pioneered the experimental and feasibility
study about applying LLMs to data transformation problems.
We proposed a novel SQLMorpher approach using LLMs
to generate SQL modification queries for data transforma-
tion. SQLMorpher is designed to flexibly incorporate domain
knowledge and optimize prompts iteratively. We provided a
unique benchmark for building energy data transformation,
including 105 real-world cases collected from 21 energy
companies in the United States. The results are promising,
achieving up to 96% accuracy on the benchmark. In addition,
we have found our system can generalize to scenarios be-
yond building energy data. The commercial benchmark results
demonstrate that our approach is able to outperform exist-
ing automatic data transformation techniques significantly. In
summary, SQLMorpher is promising to enable the automatic
integration of diverse data sources for building energy man-
agement and may benefit other domains.

In the future, we will design automated quality control for
SQLMorpher further to reduce human validation involvement
in the production environment. We will integrate SQLMorpher

with downstream tasks, such as building energy management
simulation, and investigate more complicated data transforma-
tion cases in the building sector, such as energy measure/unit
transformation, timezone transformation, etc. At the same
time, our work can be used to enhance existing works. For
example, by applying our work, we can extend state-of-the-
art Text2SQL tools to support the insert statements and data
transformation scenarios. It can also automate PowerBI, and
other interactive transformation tools by generating detailed
data transformation instructions.
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