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ABSTRACT
Compression is essential to high bandwidth applications such as

scientific simulations and sensing applications to reduce resource

burden such as storage, network transmission, and more recently

I/O. Existing lossy compression methods attempt to minimize the

Euclidean distance between original data and reconstructed data,

which significantly limits either compression performance or recon-

struction quality since original and reconstructed data sequences

should be aligned. Substituting the Euclidean distance for a sta-

tistical similarity maximizes the compression performance while

retaining essential data features. By implementing this method-

ology, IDEALEM has recently demonstrated compression ratios

far exceeding 100:1, better than best-known compression methods,

while preserving reconstruction quality. This work optimizes one

of the key operation parameters known as block size, which de-

termines the number of samples in a data block. We propose an

online algorithm which takes account of generally concave trend

of compression ratio curve, and adapts the block size to the optimal

value which yields the maximum compression ratio.
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1 INTRODUCTION
High bandwidth applications such as scientific simulations and

sensing applications generate huge volumes of data. This poses

a challenge as to how we can handle and manage data at an un-

precedented scale. Data compression reduces the volume of data

at the cost of computational resources, which has found its usage

in reducing storage and transmission burden. More recently, data

compression attracts attention again due to streaming data appli-

cations and the increasing disparity between computational speed

and I/O rates.

Among many types of streaming data generated by various ap-

plications, floating-point data takes a significant portion due to

widespread usage of sensing applications such as power grid moni-

toring. However, floating-point data is known to be especially hard

to compress because of its random and noisy nature [6]. Notwith-

standing, there have been research efforts for the compression of

this seemingly incompressible data type [2, 5, 6, 12]. In order to ac-

commodate the randomness and noisiness in data, these techniques

are in general based on lossy compression which allows removing

less important information, including randomness and noisiness.

In particular, they allow slack in original data values in terms of the

Euclidean distance to simplify the representation of the original

data. In fact, the Euclidean distance is a popular measure for data

quality to this day, when we consider the trade-off between data

size and quality [7, 8].

However, relying on the Euclidean distance measure places

significant restrictions on the performance of data compression

techniques. To remove the randomness and noisiness inherent in

floating-point data more effectively, we recently proposed a new

class of lossy compression method based on statistical similarity,

dubbed IDEALEM (Implementation of Dynamic Extensible Adap-

tive Locally Exchangeable Measures) [9–11], which was shown to

be effective in capturing essential characteristics of data with very

high compression performance. In particular, IDEALEM showed its

https://doi.org/10.475/123_4
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capability of identifying representative examples of data a domain

expert would recognize and extract.

IDEALEM specializes in the compression of streaming floating-

point data, which further enables online data analysis thanks to

its simple encoded stream structure. Since IDEALEM is targeted

for streaming data, its impact on computational resources such

as CPU and memory is minimal, which enables IDEALEM to be

deployed on any resource-constrained devices. IDEALEM has a few

key parameters a user can control to optimize its compression per-

formance. However, one of these parameters, the block size which

determines the number of samples in a data block, still remains

unclear about its effect on the performance. This is because two

different forces act in opposite directions: increasing the block size

in theory should yield high compression performance, but it also

incurs difficulty in compression with the statistical similarity mea-

sure, Kolmogorov-Smirnov test (KS test). As a result, a user had to

find an optimal block size through trial and error.

This paper proposes an online algorithm which optimizes the

parameters of IDEALEM. Leveraging the generally concave trend

of compression ratio curve, this algorithm dynamically finds and

converges quickly on a block size which yields a near maximum

compression ratio.
1
This approach can be applicable to other online

parameter optimization problems such as data I/O performance

parameters or network data transfers for the number of concurrent

transfers, where the results show certain patterns such as a concave

or convex curve. Other online optimization problems may include

experimental testbeds to determine change point alerts for data

collection performance, or autonomous control of the sensor device

settings depending on the surrounding conditions.

2 STATISTICAL SIMILARITY BASED DATA
REDUCTION

Various application scenarios which generate floating-point values

can be explained by random number generations: devices such as

sensors might be measuring background noise during their oper-

ation time, and network monitoring devices would be observing

random traffic.

The main idea of IDEALEM is to find and store the data sequence

patterns which are distinct from previous data sequences in terms

of statistical similarity. To this end, IDEALEM breaks an incoming

data stream into blocks of a fixed size and represents statistically

similar blocks with a data block which appears earlier in the data

stream. If we assume each data block is an instantiation of a random

variable, we can consider an exchangeability of these random vari-

ables, where the exchangeability can be assumed if these random

variables share an identical distribution as their data source.
2

Fig. 1 represents a graphical model for a streaming data with 64

samples. IDEALEM groups statistically similar sample data blocks

together and represents them with a single random variable, which

leads to the compression of data [9]. In particular, IDEALEM keeps

the first occurrence of similar data blocks to store as a latent ran-

dom variable. During the encoding stage, IDEALEM learns these

1
The compression ratio is defined by the ratio of the original data size to the compressed

data size.

2
Note the term exchangeability here is used in somewhat wide sense. Rigorously

speaking, random variables having the identical distribution are not necessarily ex-

changeable, although the converse is true [1].

X0 X1 X3 X2

Θ0 Θ1

Figure 1: Input streaming data is divided into fixed-size
blocks, each of which can be treated as an instantiation
of a random variable Xi . IDEALEM compresses the input
data by learning common probability distributions behind
the group of random variables, which are represented by
latent random variables Θ0 and Θ1. These distributions are
non-parametric, allowing any shapes of distributions. Here,
three data blocks and corresponding random variables X0,
X1, and X3 can be governed by Θ0; but the data block corre-
sponding to X2 is dissimilar and can be governed by Θ1.

common probability distributions behind data blocks. Therefore

new data sequences should be generated from the learned distribu-

tions in the decoding stage, where it is impossible to reconstruct the

same data sequence as the original except the learned distribution

itself. However, relaxing the order of data sequence makes IDE-

ALEM very effective in terms of compression performance, without

compromising reconstruction quality much [9]. This is possible

because in many applications, if not all, an exact reproduction of a

random fluctuation such as background noise is unnecessary.

The idea of learning common probability distributions has been

recently extended to accommodate IDEALEM to non-stationary

data with certain trends [10, 11]. With transformation methods

such as residual transformation and delta transformation, we can

remove trends in data and allow resulting sequences to be compared

through the statistical similarity. The code of IDEALEM is available

at http://datagrid.lbl.gov/idealem.

2.1 Similarity Measure
IDEALEM adopts the well-known KS test as its statistical similarity

measure [13–15]. KS test, especially two-sample KS test, is a non-

parametric statistical hypothesis testing method which can test

whether two underlying one-dimensional probability distributions

of random variables differ or not.

Since the KS test is non-parametric, it can compare two random

variables from any arbitrary distributions without parameters. In

particular, the maximum distributional distance Dni ,nj between

two random variables Xi and X j is defined by

Dni ,nj B
sup

x |FXi ,ni (x) − FX j ,nj (x)|, (1)

where FXi ,ni (·) and FX j ,nj (·) are empirical (cumulative) distribution

functions ofXi andX j ; ni and nj are the numbers of samples forXi
and X j respectively; sup is the supremum. The distance (1) is also

called the test statistic, which is subsequently standardized with

http://datagrid.lbl.gov/idealem
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respect to ni and nj as follows:

D̃ni ,nj B Dni ,nj

√
ninj

ni + nj
. (2)

This standardized distance (2) converges to the inverse of the Kol-

mogorov distribution. As D̃ni ,nj grows, the value of the comple-

mentary cumulative distribution function (ccdf) for the Kolmogorov

distribution yields a smaller value, which is dubbed the p-value [16].
The p-value is interpreted as the probability of obtaining a re-

sult equal to or more extreme than what was actually observed,

assuming the null hypothesis, i.e., two random variables are from

the same distribution, is true. Therefore, a small p-value indicates

the null hypothesis is more likely to be wrong, which automatically

supports its logical complement, i.e., two random variables are not
from the same distribution.

In practice, a threshold α is specified by the user, which is also

called the significance level. If a p-value is less than or equal to

a chosen α , we reject the null hypothesis, supporting its logical

complement. IDEALEM interprets this α as a threshold for similar-

ity, so as to remove redundancy from original data. This does not

directly assert whether two random variables are from the same

distribution or not; rather, it is a way of identifying similar random

variables from the perspective of data compression.

2.2 A Key Parameter in Question
IDEALEM has three key parameters which affect its compression

performance. The number of buffers b controls how many learned

distributions Θj are simultaneously stored in memory for com-

parison, where each buffer holds a single Θj . It is apparent more

buffers promise higher compression ratios because there is a higher

chance of finding a similar distribution stored in buffers when we

encounter new Xi .
The similarity threshold α explained in Section 2.1 is used when

comparing new Xi to Θj stored in buffers via the KS test. Thus, a

lower α results in a higher compression ratio, allowing more Xi ’s
to be declared exchangeable. On the other hand, lowering the bar

for similarity impairs the reconstruction quality, as it would also

include not-so-similar sequences under the same Θj .

Finally, the block size n determines the number of samples in an

individual data block. An incoming time series is broken down into

blocks with each of them having n elements. However, its effect on

compression performance is obscure due to the characteristics of

the KS test and the design of IDEALEM [9].

We can observe the scaling factor

√
ninj/(ni + nj ) in the stan-

dardized distance (2) growswith increasing numbers of samples. For

instance, this factor is simply

√
n/2 when ni = nj = n. Therefore,

larger ni and nj can yield the same D̃ni ,nj with a smaller Dni ,nj .

In other words, we can be more confident about the identity of

two underlying probability distributions with a larger number of

samples.

Fig. 2 shows the plot of the p-value versus the test statistic (1)

with various n’s (ni = nj = n). Given a distance Dn,n , a larger n
leads to a smaller p-value. Thus even a small distance with a large

n could lead to a small p-value. In other words, the same p-value

may correspond to different test statistics depending on n.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10−3
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n=16
n=32
n=64
n=128
n=256

Figure 2: Effects of numbers of samples on the p-value and
corresponding test statistics (distances) Dn,n , where the y-
axis is drawn in log scale. Six numerical results are shown,
where each has n sample points for two random variables.
As n grows, it becomes more difficult to exchange random
variables due to lower p-values for a given distance.

On the other hand, the theoretical upper bound of achievable

compression ratio increases linearly with the block size n, which
is especially 8n when IDEALEM handles data in IEEE 754 double

precision floating-point format. (See Proposition 1 in [9].) This is

because we can represent each data block in 8n bytes with a pointer

in 1 byte in the ideal case where all data blocks have the same latent

distribution behind.

Considering these two aspects together, the effect of the block

size n on the compression performance is not straightforward. Al-

though the compression ratio should increase with n in principle,

it becomes also difficult to pass the KS test as n increases, as shown

in Fig. 2.

2.3 Concavity in Compression Ratio
The two different forces acting on the compression ratio with refer-

ence to the block size n result in a concave trend in the compression

ratio: as n increases, the compression ratio also increases thanks to

its linearly growing relationship with n; but after a certain point,

the difficulty of passing the KS test dominates and increasing n has

an adverse effect on the compression ratio.

Fig. 3 shows the concavity of compression ratio with varying

block sizes n, for three different similarity thresholds α . In order to

see how the number of buffers b affects the compression ratio, Fig. 4

displays the contour plot of compression ratio with varying n’s and
b’s, with α = 0.01. In Fig. 4, we see more buffers increase a compres-

sion ratio. More interestingly, with any given b, the compression

ratio always follows the concave trend with varying n.
In an ideal condition where an entire data stream can be repre-

sented by a single distribution, the compression ratio would follow

the theoretical upper bound 8n and b would be essentially irrever-

ent. On the other hand, for a data stream where every data block is

dissimilar from each other, the compression ratio would be less than

1 regardless of b, due to the index overhead in the encoded stream

structure as explained in Section 3. However, in practice, these two
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(a) α = 0.01
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(b) α = 0.05
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(c) α = 0.1

Figure 3: Compression ratio variations of IDEALEMwith power grid monitoring data when b = 255. Depending on the similar-
ity threshold α , maximum compression ratios and corresponding block sizes n vary; however, all of their trends are concave
within a certain block size range.
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Figure 4: Contour of compression ratio variations with
power grid monitoring data (100 MB) at α = 0.01 over
b ∈ [3, 255] and n ∈ [8, 255]. More buffers tend to increase
a compression ratio. With any given b, the compression ra-
tio tends to follow the concave trend with varying n.

extreme conditions do not typically occur. Thus, we assume the

trend of compression ratio is always concave in this work.

3 ENCODED STREAM STRUCTURE
Fig. 5 illustrates an example of the modified encoded stream struc-

ture from [9]. This example shows a single block size change from

n = 8 to n = 16, when there are three buffers (b = 3). Every encoded

stream starts with a starting block size n in 1 byte so the decoder

knows the initial block size. Thus, 0 ≤ n ≤ 255 with this design.

Next, the first data block in an input stream is outputted as is,
along with the corresponding index j in 1 byte which precedes

the block.
3
Note this data block is also stored in a buffer as the

distribution Θ0, where each buffer occupies 8n bytes. Then, the

3
Counting starts from 0.

second block is encountered and compared against the first block in

the buffer. In this example, it is not exchangeable, so the data block

itself is written on the encoded stream as well as the corresponding

index. It is also stored in a buffer as the distribution Θ1. The third

block is first compared with Θ0, but not exchangeable. It is next

compared with Θ1, and found to be exchangeable. So the index 1 is

solely outputted.

The fourth block is not exchangeable with any of two stored

distributions. So it is again written on the encoded stream as is

with the corresponding index. This data block also occupies the last

remaining buffer as the distribution Θ2. The fifth block is compared

with previous three buffers, but not exchangeable with any of them.

Therefore this distribution should be stored in a buffer, which is not

immediately possible since all three buffers are occupied. IDEALEM

discards an existing buffer in first-in-first-out (FIFO) manner. Thus

the fifth data block overwrites the oldest distribution Θ0. This over-

writing should be signaled on the encoded stream so the decoder

can recognize it. To this end, IDEALEM uses a marker 0xFF. This
marker is first outputted, and then the index and the data block

itself is written on the encoded stream.

So far, n = 8 for data blocks and distributions. But our online

algorithm dynamically changes the block size to reach to the maxi-

mum compression ratio. To signal the block size change, IDEALEM

uses a marker 0xFE, which is followed by another marker denoting

a new n = 16. At this point, IDEALEM flushes every buffer; thus

the next data block is outputted to the encoded stream with the

preceding index 0. This data block also occupies the new buffer as

the distribution Θ0. Note Θ0 was previously 64 bytes, but it is now

128 bytes.

This new encoded stream structure is designed in a backward-

compatible way the decoder can easily handle both the new struc-

ture and the original structure without the block size change. Due

to the usage of the signaling markers 0xFF and 0xFE, the number

of buffers b can increase up to 254.
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FF0 1Θ0 Θ1 1 2 Θ2 0 Θ0

index distribution

FE 16 0 Θ08

marker

Figure 5: An example of the modified encoded stream struc-
ture from original IDEALEM to incorporate dynamic block
size changes. The block size changes from n = 8 to n = 16
andb = 3. A solid box represents amarker in 1 byte; a dotted
box an index j in 1 byte; a solid boxwith gradation a distribu-
tion Θj in 8n bytes. The marker is used for signaling buffer
overwrite 0xFF, the block size change 0xFE, and a new n.

4 BLOCK SIZE OPTIMIZATION
The goal of our algorithm is to find the vertex of compression ratio

curve shown in Fig. 3, as quickly and accurately as possible, mini-

mizing exploration time and maximizing compression performance.

However, this is not straightforward due to the difficulty of learning

compression ratio at a given block size n. Note Fig. 3 and Fig. 4 show
the ground-truth results of compression ratios for different combi-

nations of parameters. Because they require the entire dataset to

derive, and are unique to each dataset, they cannot be used directly

for calculating some cost to optimize on.

4.1 Challenges in Measuring Performance
Due to the online nature of our algorithm, the performance of a

given n can be only evaluated by an approximation of compression

ratio, which is denoted by a running compression ratio ρ. To this

end, we employ the concept of Bernoulli process to compute ρ. When

the IDEALEM encoder encounters a new data block in an input data

stream as explained in Section 3, it tries to find an exchangeable

block by searching through existing buffers. If this succeeds, we

simply output an index j; otherwise we need to output the data

block itself to the encoded output stream. We model these success
and failure with a Bernoulli trial.

4

Specifically, we call the success of the trial hit and keep track

of a hit count h and a trial count r during the encoding process.

Therefore the hit ratio, i.e., the estimator for the success probability

of the Bernoulli trial, is denoted by p̂ = h/r . In practice, we are only

given a limited number of trial samples. Specifically, when r < 30,

it is common to utilize Student’s t-distribution to compute the

confidence interval of the populationmean. However, we empirically

found the running compression ratio ρ is extremely sensitive to

changes in p̂. Thus we only consider the case of r ≥ 30, where we

can represent the confidence interval of the true success probability

p assuming the central limit theorem as follows:

p̂ − z∗ s
√
r
≤ p ≤ p̂ + z∗

s
√
r
, (3)

4
When every buffer is empty, i.e., in the very beginning of the encoded stream or

right after the block size change, a new data block does not have a chance to test the

exchangeability; thus this case is not counted as a trial.

where z∗ is the critical value which can be found on the normal

distribution table according to the confidence level; s is the sample

standard deviation.

In (3), s is bounded at 0.5 when p̂ = 0.5; thus s ≤ 0.5 in any case.

In order to account for the uncertainty introduced when r is low,
we take the lower bound in (3) and substitute min(0.5, s) for s to
yield a guaranteed minimum pmin as follows:

pmin B p̂ − z∗min(0.5, s)
√
r

. (4)

Using (4), we are interested in a guaranteed minimum running

compression ratio ρmin, which is presented by the following propo-

sition.

Proposition 4.1. The guaranteed minimum running compression
ratio ρmin is 8n/(1 + 8n − 8npmin).

Proof. The hit ratio p̂ indicates how often we can represent a

data block with a 1 byte index. With r trials and the assumption of

IEEE 754 double precision floating-point data format, the original

data size (in bytes) can be represented by 8n + 8nr , where 8n is the

size of the first data block; 8nr is the size of the entire data stream
excluding the first data block. On the other hand, the compressed

data size is represented by 1+ (1+ 8n)+h + (1+ 8n)(r −h), where 1
is the size of the starting block size; (1 + 8n) is the size of the initial
index and Θ0; h is the size of index representations; (1 + 8n)(r − h)
is the size of index and data block representations.

If continuous streaming of data is assumed, the limiting com-

pression ratio is given by

lim

r→∞
8n + 8nr

1+(1+8n)+h+(1+8n)(r−h) =
8n

1+8n−8np̂ . (5)

If we plug pmin into p̂ in (5), then we have the guaranteed minimum

running compression ratio ρmin = 8n/(1 + 8n − 8npmin). □

Fig. 6 shows the growth of ρmin over r ∈ [1, 100] for n =
14, 46, 75, 80. In Fig. 6, ρmin grows continuously and the rank of

each n changes frequently in this range. Although the approxima-

tion accuracy of ρmin increases as r approaches infinity in principle,

more trials are required to stabilize ρmin, especially the ranks of

different block sizes n.
Moreover, the nature of IDEALEM is to accumulate buffers to

compare with incoming data blocks. Each time the block size n
changes, every buffer must be reset and IDEALEM starts from

scratch, which means we discard all the previously collected distri-

butions Θj , along with h and r . As shown in (3) and Fig. 6, when

the trial count r is low, much uncertainty exists in the success prob-

ability p and therefore ρmin increases both unstably and quickly as

we have more trials. In other words, resetting mature buffers is a

very expensive operation and should be carefully done in correct
timing, because it is irrevocable and repeating trials for the same n
is unreasonable.

Thus we should obtain a number of r for a given n to have a

relatively stable ρmin. On the other hand, too many trials impedes

the convergence of our online algorithm, which leads to degrada-

tion in overall compression performance. It is therefore important

to switch to another n not too early, but not too late. Once the

algorithm finds the optimal n, it stops and no longer changes the

block size.



SSDBM’18, July 1997, El Paso, Texas USA J. K. Gibson et al.

Figure 6: Growth of ρmin over r ∈ [1, 100] with b = 254, α =
0.01, andn = 14, 46, 75, 80. Here, ρmin grows continuously and
the rank of n changes frequently.

Figure 7: The guaranteed minimum running compression
ratio ρmin approximates the final compression ratio for n ∈
[8, 80] at r = 100, b = 254, and α = 0.01.

4.2 Multistage Random Sampling
Fig. 7 illustrates the relationship between n and ρmin, which shows

ρmin approximates the compression ratio with 100 trials. Although

100 trials may not be enough for ρmin to stabilize, we empirically

found the rank of n rarely changed at r = 100, which helps con-

siderably when modeling the concave trend. As shown in Fig. 7,

the small area of concavity within some window around the n with

a maximum ρmin is a consistent feature of the relationship across

different datasets. Our algorithm works to localize this known fea-

ture, rather than discover and model the relationship of the entire

range from scratch.

In particular, we employ multistage random sampling in our al-

gorithm to quickly find an area of apparent concavity. Random

sampling is a way to effectively capture inherently sparse informa-

tion with a relatively small number of samples [4, 7]. Compared

with uniform sampling, the random sampling requires a smaller

number of samples to capture the same amount of information. In

particular, it is shown one needs O(K logN ) samples to recover an

original data sequence, where K is the number of sparse compo-

nents in a known basis; N is the number of samples in the original

data sequence. In our scenario, we have prior knowledge of general

concavity and especially assume K = 1 in the last stage where we

model the concavity with a quadratic polynomial (second-degree

polynomial).

It is worth noting that the random sampling employed in our al-

gorithm has been also used in random sample consensus (RANSAC)

to estimate parameters of a curve when data are subject to noise [3].

However, RANSAC is not directly applicable to our work due to

two reasons. (1) It assumes observed data points are already given

prior to its operation, which is unsuitable for online performance

optimization. (2) Its voting mechanism to filter out outliers in data

points requires at least a few iterations over the same data points,

which is too expensive for an online algorithm.

Basically, random samples serve to locate the known concavity

in the relationship between n and ρmin with minimal exploration

time. Initially, we acquire random samples of n across all possible

block sizes. This initial sample serves to locate the range where the

concavity lies, but it does not describe it sufficiently for modeling

a concave curve. To this end, we use a small size for this initial

sample.

After the initial sampling, another is taken using a window of

sizewp around the n with the highest corresponding ρmin from the

previous stage. This process is repeated some predefined number

of times. Each stage further pinpoints the location of the vertex and

describes in more detail the concavity we are searching for. Finally

in the last stage, we have the area of apparent concavity amenable

to being modeled by a second-degree polynomial.

Algorithm 1 shows the procedure for deciding whether to select

a new n and if so, what its value should be. After a data block

Xi is processed (indexed if similar to a Θj in buffer, added to a

buffer if unique), it checks whether n should be switched. Each

time a new n is selected, a switch counter k is incremented. The

switch decision is made by checking if k is less than the maximum

number of switches kmax and if r is greater than or equal to the

minimum number of trials rmin. Initially block sizes n are selected

from random samples (without replacement), which are constructed

from a discrete uniform distribution across all possible values of n.
When there are no random values remaining in the initial sample,

it constructs the next samples within a window wp around the

best performing n from the previous samples. This selection and

sample construction process repeats a predefined number of times

l called stages. When all samples are exhausted, it models a curve

of n’s by ρmin’s within a window wc around n
best

which is the

best performing n with the largest ρmin from all samples we have

considered thus far. Here, the curve is a second-degree polynomial

through [n
best
−wc ,nbest+wc ] by ρmin’s, from least-squares fitting.

If the vertex of the curve is outside a small windowwn around the

previous n, the value is assigned to n; if within the window a new n
is not picked. The generally concave relationship between ρmin and

n within the n
best
±wc window allows a second-degree polynomial

to closely approximate it, which makes this method efficient and

effective.
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Algorithm 1 Block Size n Switch and Selection Procedure

1: # k is count of n switches

2: # r is count of trials
3: #wc is window size for curve

4: #wp is window size for sample

5: #wn is denial window size for new n from curve

6: while incoming data stream to process do
7: compare Xi to Θj ’s in buffer

8: r ← r + 1
9: if k < kmax and r ≥ rmin then
10: if k ≥ length(sample) · l then
11: curve← 2dPolynomial({nbest ±wc }, {ρmin})
12: nnew ← argmax (curve)
13: if nnew < n −wn or nnew > n +wn then
14: n ← nnew
15: reset buffer

16: end if
17: else if isempty(sample) then
18: sample← rand(n

best
±wp , size)

19: n ← pop(sample)

20: reset buffer

21: else
22: n ← pop(sample)

23: reset buffer

24: end if
25: k ← k + 1
26: end if
27: end while

5 RESULTS
For performance testing we use approximately two weeks of power

grid monitoring data collected by two different sensors (A6BUS1

and BANK514). Each sensor monitors three-phase voltages and

currents, collecting magnitude (MAG) and phase angle (ANG) mea-

surements. In this work, we demonstrate the performance of our

algorithm on phase 1 MAG data for both current (C) and voltage

(L).

To find the ground truth for the maximum compression ratio of

IDEALEM and the optimal block sizen for each dataset, we searched
the entire space of n’s by running IDEALEM with block sizes in

the range of 10 to 100, as shown in Fig. 8. We observe compression

ratios in Fig. 8 vary substantially across different n’s; even small

errors in n’s may lead to drastic deflation in the compression ratios.

We use true optimal n’s found in Fig. 8 to evaluate the effective-

ness of the optimization algorithm in Table 1. Here, Dataset is the

data used for testing, rmin is the minimum number of trials per n,
Model is the n predicted by the optimization algorithm, True is

the ground-truth n mentioned above, and n
diff
= |Model − True|

is the absolute error of predicted n. Model and True compression

ratios are also shown. All IDEALEM results use α = 0.01 and

b = 254. All IDEALEM with block size optimization results use

wc = wp = wn = 20, random sample size = 8, l = 3, nmin = 8,

nmax = 80, and kmax = length(sample) · l + 4.
Three factors contribute to deflating the compression ratio of

the optimizer here. (1) We use 100MB data for these tests, so higher

values of rmin reduce compression ratio due to the samples consum-

ing more data. For instance, where rmin = 2800 the sample tends to

consume ∼15MB data, so the selected n is only used for ∼ 85% of the

input data, as explained in Section 4.2. (2) The buffer with b = 254

is not being filled with only 100MB− random sample consumption

data available, as explained in Section 4.1 and illustrated by Fig. 4.

(3) While small, the addition of the block size index to the encoded

stream introduced in Section 3 also reduces the compression ratio.

Due to this compression ratio deflation, n
diff

is more telling than

the compression ratios when evaluating optimization performance.

We report tests where rmin = 100, 500 and 2800, showing gener-

ally closer to optimal outcomes as higher values allow ρmin to better

approximate the true compression ratio. rmin behaves similarly to

b, where increasing it generally increases compression ratio and

the accuracy of predicted n, therefore reducing n
diff

, as the input

size grows infinitely. n
diff

decreases 12% on average where rmin is

increased from 100 to 500, 23% where rmin is increased from 500

to 2800, and 47% where rmin is increased from 100 to 2800. These

changes represent a 0.03%, 0.01%, 0.02%, and average 0.02% per-unit

decrease in n
diff

for each unit increase in rmin. This has two implica-

tions: 1) ρmin generally becomes significantly more accurate as rmin

increases and 2) ρmin should not suffer from diminishing returns

as the relationship is generally linear. However, n
diff

increases for

A6BUS1L1MAG and BANK514C1MAG where rmin = 2800 and 500

compared to rmin = 500 and 100, respectively. These anomalies are

likely due to epistemic uncertainty in ρmin and the inherent stochas-

tic nature of the optimization algorithm. Interestingly, the optimizer

performed better on A6BUS1L1MAG and BANK514L1MAG, data

where the compression ratio of IDEALEM is comparatively lower,

than on A6BUS1C1MAG and BANK514C1MAG, where the com-

pression ratio of IDEALEM is comparatively higher. This suggests

ρmin may be an overly conservative approximation of compression

ratio. This is also supported by the optimizers bias toward smaller

n’s, where the KS-test is easier to pass and hit ratios are higher,

particularly as shown in the predicted n’s for A6BUS1C1MAG.

As wc increases more (ni , ρmini ) points outside the concavity
are included when curve fitting, which prevents the vertex of the

curve from approximating the optimal n. The converse is true as
wc decreases, and has similarly negative results. Aswn increases or

decreases it expands or contracts the algorithm’s ability to explore

new n’s. When wn is too large the first n selected by the curve is

the last, as all future selections are contained in the range [nnew −
wn ,nnew+wn ]; when too small predictedn jumps between adjacent

n’s frequently until hitting kmax, which prevents a mature buffer

from accumulating and ρmin from accurately approximating the

true compression ratio. Aswp increases the range of n’s available
to random sampling stages 2 through l approaches [nmin,nmax].
Aswp decreases the range of n’s available approaches [n

best
,n

best
].

Both extremes impede concavity localization and description, and

distort the modeled curve.

Concavity localization and description performance is hampered

as random sample size is reduced. Increasing random sample size

toward covering nmin to nmax improves performance, but increases

exploration time and data consumption. Empirically we found total

random sample size of 24 split evenly between three stages works

well for the n range used. We set nmin and nmax based on finding

the concavity in the relationship between n and ρmin is consistently
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Figure 8: Ground truth compression ratios of IDEALEM with power grid monitoring data collected by A6BUS1 and BANK514
whenα = 0.01 andb = 255. Overall, currentmagnitude data (C1MAG) show higher compression ratios than voltagemagnitude
data (L1MAG) do. Despite the generally concave trend of compression ratio curves, they are not smooth due to many peaks
and valleys around global maxima.

present where 8 ≤ n ≤ 80. As the range of possible n’s expands
stage one random sample size should be increased, as it serves

primarily to localize the concavity. Sample size for stages 2 . . . l
need little or no change, as they primarily serve to describe the

concavity. While shrinking the [nmin, nmax] range decreases the
samples needed to localize the concavity, it risks excluding the

optimal n from the search space.

We use a small kmax because the algorithm tends to select and

retain an n a few switches into curve fitting. Decreasing it further

prevents the small improvements which are made to this selection.

Increasing kmax allows the algorithm to retain an n for tens of

thousands of trials, then select a new one, resulting in loosing

mature buffers, which can severely negatively impact compression

ratio. The negative effects of reseting mature buffers were discussed

in Section 4.1.

6 CONCLUSIONS
In this paper we describe our design and implementation of an

online optimization algorithm for the statistical similarity based

stream compressor IDEALEM. IDEALEM breaks a data stream into

blocks of some size and uses the KS-test for similarity between

them. When found similar, blocks are index as a member of another

distribution. This work presents an algorithm for optimizing the

block size while minimizing trials. In theory, compression ratio

increases with block size. In practice, the difficulty of passing the

KS-test overwhelms large block sizes. This results in a concavity

in the relationship between block size and compression ratio. Our

algorithm is designed to localize and describe the concavity through

a series of increasingly accurate random block size sampling stages,

then model it as a two dimensional polynomial. The performance

of each block size is calculated as guaranteed minimum running

compression ratio, which approximates final compression ratio and

accounts for uncertainty fromminimized trials bymodeling hits and
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Table 1: Predicted vs. True Optimal n and Compression Ratio

Block Size Compression Ratio

Dataset rmin Model True n
diff

Model True

A6BUS1C1MAG 100 22 49 27 145.08 275.1

500 28 21 196.49

2800 39 10 178.79

A6BUS1L1MAG 100 18 23 5 90.81 140.02

500 21 2 97.19

2800 26 3 73.91

BANK514C1MAG 100 68 62 6 149.18 291.54

500 51 11 170.42

2800 67 5 90.44

BANK514L1MAG 100 17 23 6 100.56 154

500 20 3 102.07

2800 25 2 85.27

misses as Bernoulli trials. We find this strategy effectively approxi-

mates optimal block size, but is sensitive to aggressively minimizing

trials. Additionally, the initial stochasticity of this method gives

non-deterministic results.

In future work, we will explore methods for improving the ap-

proximation of guaranteed minimum running compression ratio

given limited trials; specifically to reduce epistemic uncertainty at

higher compression ratios. It would be interesting to include further

metaparameter optimization such as detecting optimalwc ,wn ,wp ,

random sample size, l , and rmin through statistical measures of ob-

served data. We also plan to explore similar optimization problem

for different applications with the same approach, as well as other

unsupervised optimization schemas which function with given

limited trials and potentially high uncertainty.
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