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Abstract 
Current practice in whole time series clustering of residential 
meter data focuses on aggregated or subsampled load data at 
the customer level, which ignores day-to-day differences 
within customers. This information is critical to determine 
each customer’s suitability to various demand side manage-
ment strategies that support intelligent power grids and smart 
energy management. Clustering daily load shapes provides 
fine-grained information on customer attributes and sources 
of variation for subsequent models and customer segmenta-
tion. In this paper, we apply 11 clustering methods to daily 
residential meter data. We evaluate their parameter settings 
and suitability based on 6 generic performance metrics and 
post-checking of resulting clusters. Finally, we recommend 
suitable techniques and parameters based on the goal of dis-
covering diverse daily load patterns among residential cus-
tomers. To the authors’ knowledge, this paper is the first ro-
bust comparative review of clustering techniques applied to 
daily residential load shape time series in the power systems’ 
literature. 

I. Background and Motivation e   
Cluster analysis is a commonly used unsupervised learning 
technique that can help identify different types of energy 
consumption behavior and has traditionally been applied to 
individual industrial and commercial customers or large ag-
gregation of residential customers (Chicco et al. 2006 and 
Chicco 2012). The fast growing stream of interval meter 
data has motivated more recent research to apply such tech-
niques to individual residential customers (e.g. Flath et al. 
2012; Haben et al. 2016; Cao et al. 2013; McLoughlin et al. 
2015; Rhodes et al. 2014).  
 Despite progress in clustering interval meter data for the 
residential sector, most aforementioned whole time series 
clustering was applied to customer-level data where each 
customer is associated with one selected or pre-aggregated 
load shape. In the context of demand response and effi-
ciency programs, however, such an approach ignores the 
day-to-day differences within customers which relate to 
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each customer’s suitability to various demand side manage-
ment strategies. For example, households with variable con-
sumption schedules may be more likely to respond to time 
of use pricing incentives, whereas those with regular de-
mand during the daytime are ideal for solar energy.  
 Clustering daily load profiles allows each customer to be 
represented by a number of representative load patterns and 
thus variability information can be derived. It can therefore 
serve as a valuable preprocessing step that provides fine-
grained information on customer attributes and sources of 
variation for subsequent modeling and customer segmenta-
tion. Limited studies have explored daily load patterns 
within and across customers. Kwac et al. (2014) clustered 
individual household-day load profiles and found that alt-
hough two homes might have the same average profiles, the 
“information entropy” or diversity of load patterns from one 
day to the next could vary significantly. McLoughlin et al 
(2015) differentiated customer profile classes by first clus-
tering their day-to-day usage patterns. 
 Clustering results are known to be highly sensitive to the 
nature of the data and choices of algorithm, parameter set-
tings, and data cleaning strategies (Jain 2010; Luxburg U 
2012). The validity of clustering algorithms needs to be as-
sessed for different types of data. Existing work in the area 
of clustering load profiles includes comparative studies of 
clustering techniques and the application of novel clustering 
methods, including Adaptive KMeans (Kwac et al. 2014), 
Spectral Clustering (Vercamer et al. 2015), Self-Organizing 
Maps (Verdu et al. 2006), and subspace clustering (Piao et 
al. 2014). Kim et al. (2011), McLoughlin et al. (2015), Hsu 
(2015), and Chicco et al. (2006; 2012) conducted compara-
tive studies to assess the performance of different clustering 
algorithms. However, most of these studies have based their 
assessment on small, non-residential dataset (<1000 load 
curves). Residential customers are characterized by highly 
volatile behavior, which challenges the application of clus-
tering methods to individual load curves (Chicco 2012). Be-
cause of the size of future Advanced Metering Infrastructure 

 



(AMI) datasets scalability is also a concern in the choice of 
clustering algorithm. In addition, Piao et al. (2014) observed 
that distance-based clustering is often ineffective in the high 
dimensions of time-series usage profiles, as most data points 
are equidistant and hence indistinguishable from one other. 
To address these concerns, our contributions are to: 1) assess 
clustering algorithms on a large number (10^5) of individual 
residential daily load curves; 2) compare 11 different algo-
rithms using 6 domain-specific and generic comparison 
metrics, 3) assess whether density-based and probabilistic 
methods perform better for this high-dimensional AMI da-
taset than distance-based methods.  
 The paper is structured as follows. Section II introduces 
the interval meter data we use, clustering algorithms we test, 
and performance metrics we consider. Section III explores 
the parameter space and recommends the optimal parameter 
choices. Section IV conducts a cross comparison among all 
clustering algorithms and discusses their strengths and 
weaknesses. Section V concludes and recommends direc-
tions for future work. 

II. Data and Methods 
We focus on clustering daily consumption patterns based on 
the timing and relative magnitude of individual households’ 
discretionary electricity usage instead of absolute consump-
tion. The clustering goal is not to forecast hourly consump-
tion load but rather to identify a set of typical consumption 
behaviors that differ in their timing throughout the day. The 
hourly metering data are obtained from a summer peaking 
utility in California, and consist of over 30 million daily load 
profiles from approximately 100,000 households, with a 
monitoring period spanning from June 1st 2011 to May 31st 
2012. To achieve robust results, we first clean the data and 
decide the format of the object to be clustered. Then we ap-
ply a suite of clustering techniques and explore the suitable 
choice of parameters for each technique based on cluster 
performance metrics for compactness and/or distinctness. 
Finally, we compare the clustering techniques and discuss 
strengths and weaknesses. 

Data Cleaning and Normalization 
Daily usage data with missing hours (0.3% of the data) or 
with very small power demand (<0.2 kW on average; 6% 
quantile) are ignored in populating our clusters. These days 
are either affected by blackouts, meter malfunction, or no 
occupancy of the household. After data cleaning, 
32,611,421 daily load shapes (94% of the dataset) remain 
for the full year period.  
 Our interest being primarily the temporal aspect of the 
daily profile rather than absolute usage, the load profiles are 
preprocessed with normalization. Most existing studies 

cluster based on normalizing the daily usage data by a refer-
ence power following standard methods reviewed in Milli-
gan and Cooper (1998), such as normalization by daily max-
imum (Chicco et al. 2006; Chicco 2012), min-max normali-
zation (Piao 2014; Han et al. 2012; Cao et al. 2013), and 
normalization by daily total (Kwac et al. 2014).  
 We propose and apply a new normalization scheme fol-
lowing Jin et al. (2016) that focuses on characterizing timing 
and relative magnitude of discretionary consumption. Spe-
cifically, daily minimum demand is subtracted from hourly 
usage (de-minning) and each hour is then divided by the de-
minned total. Daily minimum power demand serves as a 
proxy for “baseload;” after normalization, a load shape rep-
resents its hourly contribution to daily total discretionary us-
age and shape clusters can be interpreted in terms of timing 
of higher and lower discretionary demand.  

Clustering Algorithms 
A random subsample of 325 households (104673 daily load 
profiles) with data over the full year are used to evaluate a 
suite of clustering techniques in four categories. 
1. Centroid-based Methods are a class of algorithms that 
iteratively assign and update each observation to its closest 
centroid, which can be defined as the mean or median. This 
can be formulated as an expectation-maximization problem 
and the iteration terminates when the results converge (cen-
troids remain unchanged).  
 The KMeans (Anderberg 1973) algorithm seeks a good 
cluster by minimizing the within-cluster sum of squared re-
siduals. The KMedoids algorithm is similar to KMeans, ex-
cept KMedoids takes the cluster centroid as the medoid of 
the data points. Therefore, KMedoids guarantees that the 
cluster centroid itself is among the cluster members. The 
motivation for using medians as centroids over means is that 
medians are less skewed by outliers, so KMedoids has the 
potential to be more robust. 
 Adaptive Kmeans (AKmeans), developed by Kwac et al. 
(2014), combines partitioning and hierarchical algorithms. 
The algorithm first partitions the dataset into a large number 
of clusters such that the relative squared error (RSE) of any 
load shape assigned to a cluster is not greater than an error 
threshold θ. Then the clusters are hierarchically merged by 
sequentially combining the most similar clusters until their 
total count reaches a target number. The user can define the 
violation rate of clusters that exceed the error threshold θ to 
ensure the quality of the clusters. 
2. Hierarchical Clustering is a family of algorithms that 
takes an agglomerative or divisive approach to build a hier-
archy of clusters. It has been widely applied in load shape 
clustering as reviewed in Chicco et al. (2006; 2012). The al-
gorithm uses a linkage criterion to determine the distance 
between different sets, as well as a distance metric for com-
puting the similarity between pairs of data points. In Chicco 



(2012), findings suggest that a non-Euclidean distance met-
ric and certain linkage methods might perform better than 
the L2 norm. We explore a number of linkage criteria in this 
study (Ward’s, average, and complete linkage) along with 
two distance metrics (Chebyshev and Euclidean). 
3. Density-based Clustering was proposed by Ester et al. 
(1996) when they observed that distance-based clustering 
was often ineffective in large size datasets with high dimen-
sions, such as time-series usage data where each dimension 
was assigned with equal weights. DBSCAN (Ester et al. 
1996) is a density-based method that visits every data point 
and finds other data points that lie within some chosen epsi-
lon distance. After getting all points in the epsilon neighbor-
hood, if there is more than a user defined minimum number 
of data points in the neighborhood then this forms a core, if 
not then this data point is considered noise. The cores are 
then recursively merged into larger clusters. This density-
based approach often enables DBSCAN to find non-linear 
shaped clusters better than other algorithms, which can be 
good for load profile applications. 
4. Model-based Clustering is based on fitting a probability 
distribution over the clusters. Since they are a generative 
process, the clustering is independent of distance metrics 
which may be useful for our high dimensional dataset. This 
study applies Gaussian Mixture Model (GMM) to load 
shape clustering. GMM fits a number of Gaussians to the 
data. The algorithm is motivated by the observation that the 
products of many Gaussians are still Gaussians. Therefore, 
by increasing the number of components of Gaussians and 
finding suitable parameters (means and covariance), we can 
build a better representation of the data. 

Cluster Validity Metrics and Criteria  
The metrics used for comparing different model parameters 
are based on cluster geometry: a good cluster should be very 
“compact'” (its elements are very close to one another) and 
“distinct” (the center of a cluster should be far away from 
center of another cluster). The metrics are chosen such that 
ground truth labels are not required to compare the clustered 
values. While there are many variations of these indices in 
the literature, they are modified here for interpretability so 
that the lower the index the better the clustering. Euclidean 
distance is the metric we used for comparison. Two common 
measures of cluster geometry are infra-set distance of set S, 
which measures the pairwise distances between the points, 
and scatter with respect to the cluster centers. Many of these 
clustering indices were also used in (Dent 2012) except for 
the violation rate of a RSE threshold (VRSE). The VRSE 
(0.3 recommended in Jin et al. 2016) measures how close 
the data lie to the centroids. This metric was used in Kwac 
et al. (2014) to ensure the typical load shapes derived from 
cluster centroids are representative of their cluster members 
within a controllable error threshold. The clustering indices 

used in this study are detailed in Table 1.  
 Lastly, besides validity metrics, clustering techniques 
need to be compared by their suitability to segmentation 
goals using post-cluster checking. For example, Chicco 
(2012) found that clustering validity metrics tended to favor 
methods that resulted in highly uneven clusters and thus can 
only be used to isolate outliers. Our segmentation goal is to 
identify a diverse set of typical daily shapes that can be de-
scribed by the cluster centroids representing different pat-
terns in consumption schedules within and across custom-
ers. Criteria based on this goal will be proposed and dis-
cussed after cross comparison of the validity metrics.  

III. Application of Clustering Algorithm 
The performance of different types of clustering algorithms 
depends on the choice of their respective parameters and 
variants. An optimal choice can be revealed by examining 
the evolution of the performance of indices over the param-
eter space. Previous reviews of load shape clustering fo-
cused on deriving customer classes each represented by cer-
tain load shapes and therefore generally limited the number 
of clusters to 10-15 (Chicco et al. 2006; 2012; Cao et al. 
2013). This limited number of clusters is often not mathe-
matically adequate, but is practically necessary for tariff 
purposes. However, in this study, instead of identifying dif-
ferent types of customers, we focus on clustering daily load 
profiles to reveal diverse consumption behaviors within and 
cross customers and therefore relax the search of the optimal 
number of clusters to be well beyond 15. 

Centroid-based Methods 
Centroid-based clustering can yield non-deterministic re-
sults due to random initialization, therefore we have cited 
the results from running the algorithm over 3 random initial-
izations. The key parameter in Kmeans and Kmedoids algo-
rithms is the target cluster number. The optimal number of 
clusters is decided by examining the “elbow” location of 
clustering indices as a function of cluster numbers ranging 
from 10 to 500. We find the optimal number of clusters oc-
cur around 90 for Kmeans and 50 for Kmedoids.  
 AKmeans involves more iterations and therefore is com-
putationally more expensive. The resulting number of clus-
ters from the partitioning procedure depends on the error 
threshold (θ). We follow Jin et al. (2016), which found θ = 
0.3 was a good choice based the criteria that the number of 
clusters be not large (~5000) and the marginal gain in error 
improvement to explanatory power is small. By limiting the 
total violation rate to 5%, the hierarchical clustering merged 
the akmeans clusters to 2000 clusters. Following Kwac e al. 
(2014) we further truncate the cluster centers with lowest 
membership counts so that the violation rate is 30%, 40%, 



50%, 60% and 70%, which reduces the 2000 clusters to 96, 
52, 24, 13, and 5 respectively.  

Hierarchical Clustering 
Hierarchical clustering first computes a NxN similarity ma-
trix (called a linkage) that describes how far away data 
points are from each other. We employ a bottom-up, ag-
glomerative approach for merging the closest clusters and 
continue to do this until there is only one large cluster left.  
 The similarity matrix depends on choices of distance met-
rics and linkage methods. Chicco (2012) reviewed hierar-
chical methods applied to non-residential data and found 
non-Euclidean distance metrics and certain linkage methods 
might perform better than the L2 norm. To examine which 
distance and linkage method is best for our dataset, we per-
form an exploratory analysis based on the Cophenetic cor-
relation coefficient (CCC), which measures the linear corre-
lation between the pairwise distances and the dendrogram 
distances between two data points. 

 
(1) 

Where Yij is the pairwise distance matrix and Zij is the co-
phenetic distance between points i,j. The closer the CCC 
value is to 1 the better the dendrogram preserves the dis-
tances between the clustered and raw data points. With a 
range of different distance metrics and linkage methods, we 
find that complete and average linkages along with Cheby-
shev and variants of Euclidean distance yield the highest Co-
phenetic coefficient (Figure 1). Consequently, the subse-
quent analysis is based on Chebyshev and Euclidean dis-
tance metrics.  
 Linkage criterion is the strategy that the algorithm uses 
for merging the clusters. Ward's linkage agglomeratively 
adds in points to minimize the within-cluster sum of squared 
residuals. Average linkage criterion uses the average of all 
pairwise distances between all data points from two differ-
ent clusters as its objective function to merge the nearest 

clusters. Complete linkage merges the clusters based on the 
farthest distance between two clusters.  
 To get meaningful clusters out of the similarity matrix, 
we specify the number of clusters and go back to the merg-
ing history, to see which split levels resulted in the K clus-
ters. This could be thought of as making a cut through the 
dendrogram. The optimal number of clusters are generally 
found around 20 to 30 among all the hierarchical variants 
when a relatively clear “elbow” location can be identified in 
the index-to-cluster-number curve. 

 

Figure 1 Cophenetic coefficient computed by sampling on 20% of 
the data.  

Density-based Clustering 
DBSCAN is very sensitive to parameters epsilon and minPt, 
which determine how many clusters the data are segmented 
into. To estimate an epsilon, we use a Ball tree to find the 
distance from each point to its nearest neighbors. Next, to 
estimate minPts, we query the number of points within the 
epsilon neighborhood of every other point. From this heu-
ristic, we were only able to obtain an order of magnitude 
estimate that the minPts should be small (< 100). To further 
fine-tune the hyperparameters, we used these coarse range 
estimates to conduct several iterations of grid search that 

Table 1 List of clustering index used for comparison 

 



yielded a suitable number of clusters. The final ranges used 
for comparison in Figure 2 is epsilon 2-6 and MinPt 0.15-
0.21. The optimal number of clusters is determined by the 
elbow around 50 as a result of visual examination of Figure 
2. However, for DBSCAN the number of clusters we are 
able to tune depends on a two-dimensional parameter space 
and therefore is fairly limited compared to other clustering 
methods so the exact optimal number is not certain. In the 
end, the majority of the data are classified as noise (>90%), 
and the number of daily load shapes that get clustered are 
very small (<10%).  

 
Figure 2 Cluster number and clustering indices as a result of grid 

search with DBSCAN in epsilon and minPts. 

Model-based Clustering 
The Gaussian Mixture Model (GMM) we use employs an 
EM algorithm to find a suitable number of clusters based on 
the Bayesian Information Criterion (BIC). After the model-
fitting process, we can simply extract the cluster centroids 
as the mean of the Gaussian components. 
 The AIC (Akaike Information Criterion) and BIC for dif-
ferent numbers of components is plotted in Figure 3, reveal-
ing the optimal number is around 15 to 20. 

 
Figure 3 Information criterion for different numbers of compo-

nents in the GMM Model. 

IV. Method Cross Comparison  
The comparison presented in this section is based on clus-
tering results from different methods with numbers of clus-
ters varying from 10 to 150. The hierarchical methods are 
labeled after their respective linkage criterion (Ward, Aver-
age, or Complete) and distance metric (Euclidean or Cheby-
shev). Cluster validity metrics (defined previously in Table 
1) are computed and presented as a function of number of 
clusters in Figure 4. Among these metrics, MIA and VRSE 
measure the “compactness” of the resulting clusters; SMI 
measures the “distinctness”; and CDI, Silhouette, and DBI 
measure both. The lower the metric value the better the clus-
tering.  

 
Figure 4 Clustering index varying with number of clusters across 

algorithms. 



 Figure 4 indicates that the performance ranking of various 
methods is not consistent across the validity metrics and 
there is a trade-off between their ability to capture “com-
pactness” vs “distinctness.” In general, centroid methods 
and hierarchical methods with Ward linkage criteria tend to 
produce compact clusters as indicated by lower MIA and 
VRSE indices, while hierarchical methods with average or 
complete linkage criteria are better at producing clusters that 
are distinct from each other. The GMM method produces 
relatively compact clusters as indicated by a low MIA index, 
however, a high violation rate (>90%) of RSE suggests that 
its resulting centroids (i.e. cluster means) are not representa-
tive of their respective member load shapes. Validity met-
rics (CDI, DBI and Silhoutte index) that measure both com-
pactness and distinctness tend to favor methods that produce 
more distinct clusters. Also noted is that the performance of 
hierarchical clustering methods does not always improve 
with increasing numbers of clusters except for Ward linkage 
criteria. 
 Our findings are clearly different from Chicco (2012) 
where performances of various methods were found to be 
clearly differentiated by the cluster validity metrics. In 
Chicco (2012), centroid based methods were found to per-
form the worst while some variants of the hierarchical meth-
ods performed the best. This difference may be due to the 
data Chicco use; which were obtained from non-residential 
sectors that are less noisy and are much smaller in size (400 
load shapes instead of 10^5 used here). Additionally, the 
normalization method used in Chicco was min-max based, 
while we aim instead at deriving hourly contributions to dis-
cretionary usage. The min-max normalization test on our da-
taset, however, reveals significant amplification of noise in 
the load patterns and consistently worse performance across 
the validity metrics.    
 As an unsupervised learning problem, there may be dif-
ferent cluster methods for different purposes. When cluster-
ing performance exhibits a clear tradeoff between “com-
pactness” and “distinctness,” the choice of preferred cluster-
ing method needs to be examined based on suitability to seg-
mentation goals. As described earlier, clustering daily load 
shapes here is intended as a preprocessing and data reduc-
tion step as a basis for subsequent customer-level feature ex-
traction and segmentation. More specifically, the goal is to 
identify a diverse set of typical daily shapes that can be de-
scribed by the cluster centroids representing different pat-
terns in day-to-day and customer-to-customer consumption 
schedules. To satisfy this goal, two aspects of the clustering 
results are preferred:  

• High statistical affinity of cluster centroids to their 
member load shapes, and  

• Avoiding highly uneven cluster sizes.  
 The first aspect ensures that the resulting typical daily 
shapes are representative of actual consumption schedules 
and thus can be used to describe the time of use patterns of 

their respective cluster members. The second aspect ensures 
a diverse set of daily patterns are identified each with ade-
quate data coverage. 
 Post-cluster checking indicates that the above two aspects 
are highly correlated in the clustering results. Figure 5 
shows an example of the cluster size distribution resulting 
from various methods for a total cluster number (K) of 50. 
The clustering methods in Figure 5 (from top to bottom) are 
sorted by the Chi-square statistic (from low to high), against 
a uniform distribution. A lower Chi-square statistic indicates 
more evenly distributed cluster sizes. The centroid based 
methods and Ward hierarchical method tend to produce 
compact clusters (Figure 4) with more evenly distributed 
sizes (Figure 5). Consequently, these methods are clearly 
preferred. Other methods, despite better performance indi-
cated by distinctness and some validity measures, fail to pro-
duce compact clusters and the centroids are not representa-
tive of their load shape members (measured by VRSE). In 
fact, the “distinctness” is achieved at the expense of a result 
including a single large and noisy cluster that often account 
for >80% of the data. “Compactness” is therefore a more 
valuable quality of preferred clustering technique applied to 
our dataset. 
 For DBSCAN, 99% of the data are classified as noise and 
excluded from clustering. Appropriate application of den-
sity based methods may require further preprocessing (such 
as smoothing) of the highly variable residential data.  

 
Figure 5 Fraction of load shapes assigned to each cluster for 

K=50. Clustering methods are sorted by chi-square test statistic 
against uniform distribution. 

V. Conclusion and Outlook 
We have evaluated the performance of 11 clustering meth-
ods under 4 families of algorithms: centroid based, hierar-
chical, density based, and model based methods. Whole 
time series clustering is examined with more than 10^5 daily 
residential load shapes that are processed to focus on indi-
vidual households’ discretionary electricity usage patterns. 
The parameter settings are evaluated for individual algo-
rithms to determine best choices unique to the residential 
daily load shapes using six performance metrics. 
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 The performance ranking of various methods is not con-
sistent across the validity metrics and there is a trade-off pat-
tern between their ability to capture “compactness” vs “dis-
tinctness” in the resulting clusters of our dataset, which is 
then resolved by post-cluster checking guided by our seg-
mentation goal. The goal of identifying a diverse set of typ-
ical consumption schedules requires resulting clusters are 
compact and relatively evenly distributed. Post-cluster ex-
amination reveals that algorithms with heuristics minimiz-
ing the within cluster scatter, i.e. centroid based methods 
and Ward linkage hierarchical methods, perform better with 
respect to the segmentation goal. 
 Density based methods classify the majority of our resi-
dential dataset as noise with very little data being clustered. 
Future application of this type of method should include 
smoothing of the load data in the preprocessing step for 
noise reduction and/or dimension reduction such as cluster-
ing on a reduced number of features derived from the raw 
load data. 
 Model based methods generally perform in the middle 
among all the methods examined here in terms of producing 
compact and evenly distributed clusters. However, the cen-
troids as the mean of the Gaussian components fail to repre-
sent the temporal patterns in their respective member load 
shapes. 
 Our results highlight the limitations of using a single clus-
tering validity metric to guide the selection of clustering 
methods when there is a clear tradeoff between compactness 
and distinctness. When load shape clustering is intended as 
a preprocessing step for subsequent household-level seg-
mentation, the requirement for low numbers of resulting 
clusters, previously practical for tariff purposes, should be 
relaxed in order to capture the diverse time of use behavior 
in residential daily consumptions. In addition to the size dis-
tribution and visual examination conducted in the post-clus-
ter checking in this study, broader validation of the robust-
ness of the identified clusters needs to be evaluated with ad-
ditional data sources, such as household demographic and 
socio-economic information, rate structure, weather, etc. In 
particular, the sources of variability in the identified daily 
patterns need to be established and better understood to sup-
port more effective demand side management and behavior 
based programs.  
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