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ABSTRACT
This short paper reports our on-going work to study and identify
anomalous file transfers for a large scientific facility known as Linac
Coherent Light Source (LCLS). We identify the anomalies based
on the statistical models extracted from the recent observations of
the file transfer events. This data-driven approach could be used in
different use cases to identify unusual events. More specifically, we
propose two different identification strategies based on the different
properties of the observed file transfers. Because these methods
capture key aspects of the two different segments of the data trans-
fer pipeline, they are able to make accurate identifications for their
respective workflow components. The current anomaly detection
algorithms only make use of the file sizes as the primary feature.
We anticipate that integrating more information will improve the
prediction accuracy. Additional work is planned to validate the
identification algorithms on more data and in different use cases.

KEYWORDS
Network; Storage; File Transfer; Workflow Anomaly Detection;
Autonomic Management

1 INTRODUCTION
Many recent scientific discoveries such as Higgs boson and gravita-
tional waves are produced from analyzing a huge amount of data
collected from large scientific facilities. These scientific facilities
typically require a high-speed data network to support the effort to
distribute the data to the thousands of scientists around the world.
It is important for the infrastructure operators to be able to monitor
the health of the system and anticipate potential failure, so as to
avoid catastrophic interruption of the operations of the expensive
shared facility.

This short paper reports our exploration of the data transfer
performance of the LCLS files, and develops algorithms for iden-
tifying the unusually slow transfers. The key contribution of this
work is the development of the two algorithms for identifying the
unusually slow file transfers. Being able to identify abrupt changes
during file transfer process has been crucial to administrators be-
cause they can investigate on the cause of the issue in a timely
manner. We aimed to take statistical approaches to help identify
unusual behavior during the sequential data generative process in
an automated fashion. These algorithms take advantages of some
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basic characteristics of the network data transfers, and do not make
other assumptions about behavior of the data. We anticipate these
anomaly detection algorithms are useful in other cases involving
file transfers to help administrators monitor file transfer process,
even though in this work, we exercise these algorithms only with a
set of monitoring data from the LCLS system.

2 LCLS
The Linac Coherent Light Source (LCLS) [1] at the SLAC National
Accelerator Laboratory provides a X-ray source that enables the
study of fundamental processes of chemistry, physics, biology and
technology. LCLS has seven different instrumental stations each
with different detectors and X-ray beam characteristics allowing
for diverse types of experiments. An Experiment lasts typically for
five days split into five 12 hour shifts of beam time. During data
collection it is critical for the experimenters to process the data
quickly in order to check the quality and make decisions about
the ongoing collection process. Access to the data is facilitated
by two storage systems. The first one is the fast feedback storage
(FFB) which provides fast, low latency access to the collected data.
It is only used by the active experiments. The second system is
the analysis storage system (ANA). It is large in size (4PB), shared
between all experiments and holds the experimental data for many
month. It is used for data analysis after experiment finished but
also by active experiment for non time critical data processing.

Fig. 1 shows an overview of the data flow for the LCLS data.
The data acquisition (DAQ) distributes detector data to multiple
nodes (DSS) and writes them to files on these nodes. The data mover
copies the files from the DSS nodes to the FFB (FFB transfer) and in
a subsequent step from the FFB to the analysis file system (ANA
transfer). The DAQ writes to multiple files in parallel (one per DSS
nodes) and therefore the FFB and ANA transfers also copy files
in parallel. Typically 5-6 files are transferred in parallel. For the
FFB transfer the files are transferred while they are written to the
DSS and the transfer rate is limited by the data acquisition rate
(< 200MiB/s per file). The ANA transfer copies a file only after it
has been completely written to the FFB. The maximum rate for the
ANA transfer is limited to about 400-450 MB/s due to checksum
calculations.

The LCLS file transfer dataset contains 258,765 observations
with 10 variables. The variables used in our study are the start and
stop time of a file transfer (epoch time in seconds), file transfer rate
(MiB/sec), file size (gigabytes), a boolean variable of whether it is an
FFB or ANA transfer (ffbtrans). Variables that were ignored included
the name of a file, LCLS instrument the data was collected with,
file system the data were written to, and more. The FFB transfers
accounts for 131,274 observations and the ANA transfer for 127,491
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Figure 1: LCLS Data flow. The red (dss->ffb) and blue (ffb-
>ana) lines show the data transfers by the LCLS data system.

STATS size (gigabyte) transfer rate(MB/s)
median 4.0 47.9
mean 13.8 81.2

std 22.1 91.0
min 0 0
max 1304.14 498.2

(a)

STATS size (gigabyte) transfer time (MB/s)
median 4.0 342.7
mean 13.29 301.8

std 21.49 109.7
min 0 0
max 1304.14 522.2

(b)

Table 1: (a)DSS to FFB (b)FFB to ANA
observations. Table 1 shows the distribution of transfer rate and
file size for both FFB and ANA transfers.

These general descriptive statistics lead us to identify unusual
transfer behaviors; extremely large files, zero file size, and slow
transfer rate. It shows that both file sizes distribution from FFB and
ANA are extremely right skewed because the median file size is
considerably smaller than the mean file size. Based on our investi-
gation, the skewness is caused by 12 files (6 files in each dataset)
whose file size is much larger than the 100 GiB that is enforced by
the data acquisition control. These transfers happened within the
same day and are due to a configuration error. For our analysis, we
removed these files to have a more accurate analysis.

While exploring the file transfer records, we found 76 files with
zero file size and zero transfer rate. These files were likely produced
by some failure in the data acquisition system, but are likely not
useful for identifying other types of slow file transfers. Thus in the
latter discussions, we removed these data records.

For both the FFB or ANA transfers, the definition of the slow file
transfer rate in our project is the transfer rate that is lower than 1
percentile of all the transfer rates for files that is larger than 1GB in
the dataset of FFB or ANA respectively. We chose to focus on files
that are larger than 1 GB since large files usually transfer faster,
and the slow transfers would therefore be an indicator for unusual
system performance. The 1 percentile transfer rates for FFB and
ANA are 4.3MB/s and 45.7MB/s respectively. There are 912 and 872
observations of the very slow transfer rate data from FFB and ANA
respectively.

3 ANOMALY DETECTION ALGORITHM
In this section, we discuss the methods we proposed to detect the
slow data transfers. Our work relies heavily on the file transfer
rate reported by the data transfer engine, bbcp, as the indicator
of the system performance. Our algorithm is designed to detect
slow transfers in real time, which could be used to generate alerts
to administrators so that they can check if there is any problems
within the system. The threshold of the slow transfer rate threshold
is not constant. Many uncertainty element will influence the file
transfer rate in the future and change the threshold. Thus, instead
of setting a certain threshold, we hope to detect the anomaly in the
real time.

Section 3.1 and 3.2 introduce two methods we developed to
systematically and dynamically detect the slow transfers. Method 1
in Section 3.1 builds a model that predicts the minimum transfer
time based on file transfer size plus a stochastic model for the
congestion caused by interference from other programs that are
accessing some part of the storage, file system, CPU and networking
system that are serving the current file transfer. This model takes
advantage of the fact that congestion only increase the data transfer
time and is therefore specifically for predicting file transfer time.
Method 2 in 3.2 finds the unusual slow transfer rate based on the
past 5000 data transfers, but with some adjustments to keep the
historical data information. Both methods have its pros and cons
under different situation. The next section compares those results.

3.1 Model-Based Detection Method
We started with the idea of using the transfer size and transfer
time to detect slow transfers. If given a file size, the actual transfer
time takes much longer than the predicted transfer time, we would
consider this file transfer as an anomaly. Here the predicted transfer
time corresponds to the minimum transfer time (base time) and we
can use quantile regression with size as covariate to predict its base
time [2]. Then we can check whether the percentage of change
between predicted time and actual transfer time is above certain
threshold.

Since the sizes spread across many orders of magnitudes and
are highly skewed, we applied loд2 transformation of both size and
transfer time in an attempt to reduce the impact of large files. At
this initial stage, the algorithm worked as follows, we firstly used
the first a file as training points for the B-spline minimum quantile
regression with loд2 of size as covariate and loд2 of transfer time as
response. [3] We used the trained model to predict this a numbers
of files to get the first segment of base time. Then the difference
between the files’ actual transfer time and predicted base time will
be the error, and the error percentage is simply the error divided
by the predicted base time. We predicted the next segment with h
number of files. We appended the error percentage of this segment
to the initial error percentage and get the q percentile of error. Any
files with error percentage larger than q would be declare as anom-
aly points. We refitted the B-spline Quantile regression at every
segment with new data appended to the old. The choice of those
parameters varied by the data set being studied. For FFB transfers,
we set a to be 1000, which means we accumulated first 1000 points
as training points, h to be 200, which means each segment contains
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Algorithm 1Model-Based Detection

y{0j} ← log transfer time for file j for first a files
s{0j} ← log transfer size for file j for first a files
Apply BSpline quantile regression with s{0} as covariate and
y{0} as response to get ŷ0
e{0} ← (2y {0} − 2ŷ0 )/2ŷ0 j for first a files
for each segment i of length h do
y{ij} ← log transfer time for file j in Segment i
s{ij} ← log transfer size for files j in Segment i
Apply BSpline quantile regression to estimate to get
ŷ{ij}in Segment i
e{ij} ← 2y {i j } − 2ŷ{i j }/2ŷ{i j } j in Segment i
Append e{ij}toe{0}
threshold ← q percent quantile of e{0}
if e{ij} ≥ threshold then

State file i as an anomaly
end if

end for

200 files, and q to be 99, which means the threshold is set to be
above 99 percent quantiles of errors.

For ANA transfers, we set a to be 4000, which means we accumu-
lated first 4000 points as training points, h to be 200, which means
each segment contains 200 files, and q to be 99.95, which means
the threshold is set to be above 99.95 percent quantiles of errors.

3.2 Distribution-Based Detection Method
The computation cost of the prediction in method 1 is high, to
decrease the cost we developed method 2. Since the baseline in
method 1 is consistent we can interpret the slope of the base line as
the inverse of the maximum file transfer rate. Thus, the distribution
of the error percentage is highly correlated with the distribution
of the file transfer rate. Based on this interpretation, the method 2
directly uses the file transfer rate distribution of the past 5000 file
transfers and sets the 0.2 percentile as the threshold. Based on our
investigation, 5000 data will let the distribution of file transfer rate
become relatively stable. To avoid the loss of historical information
due to the influence of the large fluctuations of transfer rates, we
kept tracking the mean of the 5000 transfer rates. When adding
a new observation increases the new mean by more than the 75
percentile of the mean difference distribution, we set this observa-
tion’s rate as the mean of the all threshold . This way, we not only
keep tracking the changing of the file transfer rate, but also keep
the historical data information and make comparison.

As for parameters, we set m to be 5000, which means we use the
previous 4999 file transfer rate and the new transfer rate to find
the threshold of slow transfer. We set q = 0.2, which means the
threshold is the 0.2 percentile of the data_copy for both ANA and
FFB transfers.

4 RESULT DISCUSSION
We applied the two algorithm separately to the FFB and ANA trans-
fer. Since we do not want to send alert so frequently, we aggregated
the result by hour. In a given hour, if there is one or more than
one anomaly point detected, we will send an alert this hour. To

Algorithm 2 Distribution-Based Detection
data ← first m file transfer data
threshold{0} ← 0.1 percentile of first m points collected
mean{0} ← mean of the first m file transfer rate
data_copy ← first m file transfer rate data
for each new file record i do
mean{i} ← mean of file transfer rate from record i-m to i
dis{i} ← mean{i} - mean{i-1}
if dis{i} ≥ (75percentileo f alldis) then
threshold{i} ← mean of all previous threshold
data_copy{i} ← mean of all previous threshold

else
threshold{i} ← q percentile of data_copy from i-m to i
data_copy{i} ← new file transfer rate i

end if
if threshold{i} ≥ new f iletrans f errate{i} then

State file i as an anomaly
end if

end for

test whether the algorithms have predictive power, we checked
whether the hour we send alerts contain one percent slow trans-
fer rate. There are two metrics we used to evaluate the model
performance[4]: recall and precision. Recall is the proportion of
hours that actually contain slow transfer rates and were detected
by the model as an hour containing slow transfer rates. Precision is
the proportion of hours that were predicted as an hour containing
slow transfer rates and actually were containing slow transfer rates.

Files transfer to FFB:. Figure 2 is the comparison plots for files
transfer to FFB. The first plot shows the position of the actual slow-
est one percent rate. The second and third are the anomalies de-
tected from themodel-basedmethod and distribution-basedmethod
predicted respectively. Visually, the plots are almost identical.

There are 2526 hours in FFB transfers and 120 hours that con-
tain slow transfer rates. The model-based detection algorithm de-
tected 129 hours containing slow transfer rates and 109 hours were
matched with the hours actually containing slow transfer rates.
Thus, the precision for this algorithm is 84.5%. The recall is 90%.

The distribution-based detection algorithm detected 71 hours for
which an alert should be sent and there are 64 hours that contain
slow transfer rates. Thus the precision for this algorithm is 90.14%.
However, the recall is only 53.3%.

Files transfer to ANA:. Figure 3 is the comparison plots for the
ANA transfers. Visually, the plots are similar but not as identical as
the other dataset.

There are 2598 hours in total and 97 hours contain the slow
transfer rates. The model-based detection algorithm detected 20
hours with anomaly points and 18 hours matched with the slowest
one percent rate. Thus, the precision is 90%, The recall is 18.6%

The distribution-based detection algorithm detected 50 hours for
which an alert should be sent and 47 hours that actually contain
slow transfer rates. Thus, the precision is 94% and the recall is only
48.45%.
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(a)

(b)

(c)

Figure 2: (a)Slowest one percent rate in red with real data in
blue (b)Anomalies predicted in red with real data in blue for
model-basedmethod(c)Anomalies predicted in redwith real
data in blue for distribution-based method

Comparison: Model-based method performs better for the FFB
transfers and worse for the ANA transfers since this method works
better when the slowest transfer rate is stable and the transfer
behavior is unstable for consecutive transfers. Distribution-based
method performs better for files transfer to ANA since this dataset
has a stable consecutive transfer behavior but unstable lowest rate.
In addition this distribution-based method is computationally less
expensive.

5 SUMMARY
Our key objective is to identify unusual file transfers in the LCLS
data system. The initial data exploration helped us identify files with
zero size and extremely large files being transfered. We explored the
events involving slow file transfers as a symptom of failures that
might require the attention of system administrators. We proposed
two methods to detect slow transfers, one based on a performance
model and another based on the observed distribution of file transfer
rates. From the tests, we observed that model-based method works
better for transfers to FFB, while the distribution-based method
works better for transfers to ANA.

We plan to combine the two methods so that the detection algo-
rithm can be generalized and have a consistent behavior. Another
challenge is to incorporate other variables that can potentially influ-
ence the transfer rate. For example, the instrument the file transfer

(a)

(b)

(c)

Figure 3: (a)Slowest one percent rate in red with real data
in blue (b)Anomalies predicted in red with real data in blue
using model-based method (c)Anomaly points predicted in
red with real data in blue using distribution-based model

belonged to may influence the transfer rate. We also plan to add
new variables to the data set in particular performance parameters
of the file systems the transfers read from and write to. This will
require further statistical testing to determine that usefulness in
detecting anomalous events.
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