A Lightweight Network Anomaly Detection Technique
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Abstract—While the network anomaly detection is essen-
tial in network operations and management, it becomes
further challenging to perform the first line of detection
against the exponentially increasing volume of network
traffic. In this work, we develop a technique for the
first line of online anomaly detection with two important
considerations: (i) availability of traffic attributes during
the monitoring time, and (ii) computational scalability
for streaming data. The presented learning technique
is lightweight and highly scalable with the beauty of
approximation based on the grid partitioning of the given
dimensional space. With the public traffic traces of KDD
Cup 1999 and NSL-KDD, we show that our technique
yields 98.5% and 83 % of detection accuracy, respectively,
only with a couple of readily available traffic attributes
that can be obtained without the help of post-processing.
The results are at least comparable with the classical
learning methods including decision tree and random
forest, with approximately two orders of magnitude faster
learning performance.

1. Introduction

The world is highly interconnected with the greater
use of network-based applications. Accordingly the risk
of intrusions and cyber-attacks has been intensified
over the past decades. For instance, the distributed
denial of service attack (DDoS) is prevalent with the
rise of botnets and attack tools easily accessible. In
addition to DDoS attacks, there are several other types
of numerous anomalous activities that attempt to gain
unauthorized access to protected resources, discover
network services and resources, and destabilize the
network on the whole. To keep the network safe and
stable, identifying anomalous activities is a critical
problem in local and ISP networks [3], [5], [12].

A traditional approach to network anomaly detec-
tion is based on the examination of the content of pack-
ets with a pre-constructed signature table containing
common textual patterns [14]. While highly accurate,
the overhead of the payload inspection is very heavy,
and it is often not feasible to catch up the line rate
even with the expensive specialized hardware. Other
concerns with this approach is the increasing use of
encryption and the growing privacy regulations. An
alternative approach relies on machine learning tech-
niques, such as classification and clustering [7], [9],
[10], [15], with the statistical information to detect
anomalies. Since it does not assume to examine the
payload section, the cost of operation is relatively

cheap, and it also relaxes the concerns of privacy and
encryption. With these benefits, we take the learning-
based approach to develop a technique for the first line
of network anomaly detection in this work.

There are two considerations in our design. First,
the first line of detection is performed in an online com-
putation manner. Thus, the referenced traffic variables
considered in this phase should be readily available
without the need of post-processing. For instance, the
KDD Cup data set [2] that has been widely employed
for the anomaly detection study, consists of 41 at-
tributes categorized into three groups: the “basic” group
including the connection-related information, “content”
with the additional information to look for suspicious
activities, and “traffic” with the aggregated information
within a two-second time window. The attributes in the
basic group are readily available in the traffic collection
time, whereas the variables in the other two groups can
be obtained through post-processing with the domain-
specific knowlege. In this circumstance, the basic group
attributes are the only ones that can be considered for
online detection.

The second consideration in our design is scalabil-
ity since it is a key challenge in network monitoring
with the exponential increase of the network traffic [1],
[4]. Tt is much critical to online processing to keep up
the line rate with the limited computing resources. For
this reason, only a few selected variables are often ac-
counted for data streaming computation [8]. However,
the main focus of the past work for anomaly detection
was more on maximizing classification accuracy with
as many variables as possible [9], [15]. Unlike this,
we give a greater priority to scalability to promote
streaming processing and assume only a small set of the
readily available attributes for detection. Additionally,
we consider the complexity of the learning cost in
our design to facilitate future updates of the trained
model [6].

In this paper, we present a new technique for
the first line of network anomaly detection designed
with the above considerations. The proposed method is
lightweight with a grid-based approximation borrowed
from [11]. It recursively partitions the dimensional
space in question until it can label the subspaces, which
are then retrieved to distinguish anomalous connections
from the normal. Only with a couple of traffic variables
(“src_bytes” and “dst_bytes”) readily available for on-
line processing, we will show that the proposed tech-



Algorithm 1 Proposed learning method
1: procedure PARTITION(block b, level [)

2: if [ = L then

3: label(b') + *Not Sure’

4: return

5: B’ < partition b into 2¢ subblocks by cutting each axis by

half

6 for all ¥ € B’ do:

7: if all population in &’ have the same label ¢ then
8: label(V') « ¢

9: else

10: Partition(d’, 1+1)

11: procedure MAIN

12: S : D-dimensional space

13: L: the max level to stop

14: Place data points on S

15: level < 1

16: Partition(S, level)

nique yields 98.5% and 83% of detection accuracy with
the traditional KDD Cup data set [2] and NSL-KDD
(a modified version of the KDD Cup data set) [13], re-
spectively. The observed results are at least comparable
with the classical learning methods including decision
tree and random forest, with the significantly smaller
learning cost (two orders of magnitude faster).

2. The Proposed Learning Method

In this section, we present our proposed technique
based on the approximation using the grid-structured
partitioning. The main idea of the proposed technique
is to partition the D-dimensional space (S) in a top-
down manner, and Algorithm 1 illustrates the details.
In the algorithm, we first place all the data points on
S. Each axis from the first to the D-th dimension is
divided into two equal lengths at each level, from one
to L (= MAX_LEVEL). At each level [, the max number
of partitions is thus equal to 2'. For each sub-block after
partitioning, we test whether all the data points in the
given block have the same label (c); If true, we label
the block as ¢; otherwise, the procedure Partition()
is invoked in a recursive way until the current level [
reaches L. In case of D=2, the cell is represented as a
rectangle, while it is a cuboid if D=3, and so forth.

The complexity of data placement is proportional
to the number of data points N (i.e., O(N)). The
partitioning complexity is LProportional to the maximum
number of cells, i.e., O(2PL). Hence, the overall com-
plexity is max(O(N), O(2PF)). If we assume a large
number of data points (for scalable analysis), N would
be a dominant factor, and the algorithm complexity for
learning would be converged to O(N).

Algorithm 1 labels the pure cells only, which means
all the inhabitants in the cell belong to the identical
class. For flexibility, we can relax this condition with
a procedure named marginal_check(), by which we
label a non-pure cell if the fraction of the majority is
greater than (1-m), where m is a user-defined marginal
value. We assume that the marginal check takes place
after completing partitioning. The complexity of this
additional check is also proportional to the number of

(c) Max level =5

Figure 1. Partitioning with different max levels

cells. The procedure is straightforward and omitted to
illustrate.

Figure 1 represents the partitioning results with dif-
ferent max levels from L=3 to L=5 with margin m=0.3
in a 2-dimensional space. The data set used here is the
first quarter of ‘kddcup.‘data_10_percent_corrected” in
the KDD Cup data set. From Figure 1, the max number
of cells is 64 (=8 x 8) with L=3, while there can be
(32 x 32) cells at the max when L=5. The marginal
value indicates that if the majority population is greater
than 70% in the given block space, it is labeled as the
class of the majority. As shown from the figure, there
are six classes: “Secure”, “Marginal Secure”, “Marginal
Insecure”, “Insecure”, “Empty”, and “Not Sure”. Here,
“Secure” and “Insecure” refer to pure blocks with a
single class for 100% of the inhabitants. The two types
of marginal labels can be applied to non-pure blocks
based on m: If the fraction of the majority population
is greater than m, it is labelled as one of “Marginal Se-
cure” and “Marginal Insecure”. The partition is labelled
as “Not Sure” in case of no presence of the majority.
“Empty” is the unknown space with the given data to
learn.

Testing a connection is straightforward using the
map constructed in the learning phase: If the connection
resides in any of the secure cells, it is considered as a



normal connection; if it is in any of the insecure cells,
the connection is an anomalous one; otherwise, it is
impossible to determine and classified into “unknown”.
The testing complexity is O(log(L)) like typical tree-
based algorithms. With a simple optimization, the com-
plexity for testing can be down to O(1) with the storage
requirement of the max number of cells.

3. Evaluation

3.1. Description of data sets

We evaluate the proposed technique with KDD Cup
10% data (“kddcup.‘data_10_percent_corrected”) [2]
and NSL-KDD (a refined version of the KDD Cup data
by substantially removing redundant information) [13].
We refer to the data sets as KDD10 and NSL-KDD,
respectively, throughout the paper. The number of
records in KDD10 is 494K, each of which contains
the associated information with the connection. The
NSL-KDD data set in our experiment consists of four
files, two for training and the other two for testing, and
the default training and testing files (“KDDTrain+” and
“KDDTest+) consist of 126K and 22.5K connections,
respectively.

A data instance in the KDD data sets is a record of
a single connection, a sequence of packets with the
same source and destination IP addresses and TCP
port numbers, including the following three groups
of features: (i) TCP connection information (i.e., 9
features including the duration of the connection, the
number of data bytes from source to destination and
vice versa), (ii) content information obtained using
the domain knowledge (i.e., 13 features including the
number of failed login attempts and the number of
root accesses), and (iii) traffic information obtained
in every two-second time window (i.e., 9 features in-
cluding the number of connections to the same host
as the current connection in the past two seconds).
The individual record also contains a label of either
normal or a specific kind of attack, categorized into
denial of service (“DOS”), unauthorized access from
a remote host (“R2L”), unauthorized access to root
functions (““U2R”), and surveillance and other probing
for vulnerabilities (‘“Probe”).

Out of the provided 41 features from the data sets,
we employ the attributes in the first basic group only.
Again, the features within the non-basic groups can be
obtained through an additional post-processing and not
readily available during the traffic collection time. We
mainly considered two variables in the basic connection
group: “src_bytes” and “dst_bytes”: the former is the
number of bytes from the source to the destination
IP addresses, and the latter is the number of bytes
from the destination to source hosts. Among the five
continuous attributes (duration, src_bytes, dst_bytes,
wrong_segment and urgent) in the basic group, two
variables of wrong_segments and urgent are supportive
(non-primary) attributes and mostly zeros, and hence
these cannot work as discriminators. The variable, du-
ration, has also a lot of zeros due to the sampling unit
of seconds (rather than miliseconds). For this reason,
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Figure 2. Evaluation results with two connection attributes of
(src_bytes, dst_bytes) with the KDD data set

we chose the above two attributes as the primary dis-
criminators in our experiment.

We normalized the variables to relax the skewness.
For instance, the summary of src_bytes is: O (min), 45
(1st quartile), 520 (median), 3,026 (mean), 1,032 (3rd
quartile), and 693,400,000 (max), showing a highly
right-skewed distribution and the mean is three times
greater than the third quartile. We normalized the data
with log function and the summary after the process
is: 0.00 (min), 1.65 (1st quartile), 2.72 (median), 2.16
(mean), 3.01 (3rd quartile), and 8.84 (max). Apply-
ing the log function is reasonable in the following
sense: a ten-byte difference between two connections
with src_bytes=10 and src_bytes=20 would be signif-
icant, but the difference of src_bytes=1,000,000 and
src_bytes=1,000,010 are not much significant.

To evaluate performance, we employ two measures:
“Completeness” is defined as the fraction of the con-
nections in question that are classified either normal
or anomalous; “accuracy” is defined as the fraction
of the connections correctly identified out of all the
connections classified either normal or anomalous.

3.2. Experimental results

We firstly present the result of the sensitive
study by examining the impact of the parameters
(MAX_LEVEL and margin) with both of the data sets.
Then we perform a comparison study with decision tree
and random forest using the data set of NSL-KDD.
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Figure 3. Evaluation results with two connection attributes of
(src_bytes, dst_bytes) with the NSL-KDD data set

Figure 2 shows the impact of the parameters in
different settings with m = {0,0.05,0.1,0.2,0.3,0.4}
(for margin) and L = {2,3,4,5,6} (for level) with
the data set of KDDI10. In this experiment, we split
the data file into 10 sub files in a disjoint manner (i.e,
49K records per each file after splitting) and executed
five times with a pair of two randomly-chosen sub-
files (F1 and F» and F; # F5). The plots in the
figure show the average with the standard deviation.
As expected, m is a dominant factor for completeness
as shown in Figure 2(a); we observed less than 30%
of completeness with m = 0. With m > 0.2, we
see very high completeness approaching to 100% with
L > 3. Figure 2(b) shows accuracy with the same set of
parameters. Overall, we observed better accuracy and
completeness with tiny standard deviations (o < 0.015)
when L = 4 and 0.2 < m < 0.4. We initially
expected better performance with a greater L value,
but it showed a high degree of variation when L > 5,
perhaps due to over-fitting.

Figure 3 shows the results with a pair of KD-
DTrain+ and KDDTest+ for training and testing in
NSL-KDD. Note that the difficulty level for classifying
NSL-KDD is much greater than the original KDD data
with the significant reduction of redundant records. For
example, a recent study in [9] reported 82% of the
binary classification accuracy with a complex model
based on Naive Bayes, KNN, and LDA (Linear Dis-
criminant Analysis) for dimension reduction with the
entire features. Our technique produces 82.4% of accu-
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Figure 4. Completeness and accuracy by service

TABLE 1. EVALUATION RESULT WITH NSL-KDD: THE
PROPOSED TECHNIQUE IS WITH D=2, L=4, m=0.4,
COMPLETENESS > 95%.

Run Proposed DT RF

KDDTrain+/KDDTest+ 82.4% 74.9% | 81.1%
KDDTrain+/KDDTest-21 66.6% 66.3% | 64.7%
KDDTrain_20%/ KDDTest+ 82.4% 76.9% | 81.9%
KDDTrain_20%/ KDDTest-21 66.6% 64.5% | 62.9%

racy with completeness=97.1%, when L=4 and m=0.4
only with the two attributes in consideration. From
the figure, setting either m = 0.3 or m = 0.4 is a
safe choice to maintain a high degree of completeness
(over 96%) with the improved accuracy. With respect
to the level, we observed that L = 4 is still a good
choice. Table 1 compares the performance with the
decision tree and random forest. Our technique works
at least comparable to the popular learning techniques
consistently, with 96.1% of completeness on average.

From our experiment, we observed very poor per-
formance for some services. We next examine this more
in detail by adding an extra dimension. The grid space
is now 3D with the original two variables plus the new
additional dimension for those services. This implies
that the learning takes place independently for each ser-
vice. Figure 4 shows the result by services. We include
the services that have more than 100 connections in the
figure. Half of the services including “http” show high
accuracy over 90%, while some services such as “ftp”,
“ecr_o”, and “pop3” show very poor accuracy less than
30%, downgrading the performance considerably. Ex-
amining this further would be an interesting avenue for
the future investigation to optimize the performance.

To discuss the learning complexity with the mea-
sured data, we measured the learning time for three al-
gorithms (decision tree, random forest and the proposed
technique) on a dedicated cluster node with Intel(R)
Xeon(R) CPU ES5-2670 v3 @ 2.30GHz (12 cores)
and 64GB memory. For learning from “KDDtrain+”, it
takes 226 msec for our technique with the configuration
of MAX_LEVEL=4 and margin=0.4 which is the same
setting used for the performance evaluation presented
in Table 1. We observed that 17.1 sec for decision tree
and 13.7 sec for random forest, which are roughly two
orders of magnitude slower than our technique.



4. Related work

A large body of work investigated network intru-
sion/anomaly detection using machine learning tech-
niques. Various techniques were compared in [7], in-
cluding both supervised and unsupervised learning with
the KDDCup 1999 data. To reduce the bias in the data
set, the authors conducted preprocessing that includes
sampling and normalization. In their experiments, the
authors observed that C4.5 (a variant of the decision
tree algorithm) works the best with 95% true positive
rate at 1% false positive rate, followed by MLP (Multi-
Layer Perceptron) and SVM (Support Vector Machine).

Recent studies such as [9], [15] employed NSL-
KDD for the evaluation. The work in [9] established
a complex model with Naive Bayes, KNN, and LDA
(Linear Discriminant Analysis) for dimension reduc-
tion, and reported 82% of the binary classification ac-
curacy with the default NSL-KDD training and testing
pair. The result in the study [15] with a Bayesian clas-
sifier that aggregates a selected set of Bayesian network
classifiers is promising with over 95% of accuracy by
utilizing multiple classifiers. The focus of our work
is basically different from the past work. First, our
interest is in the first line of detection with a couple
of attributes readily available. The existing techniques
largely considered the entire attributes with a need of an
extra operation of feature selection. Again, many of the
attributes in the KDD Cup data set can be available by
post-processing with the specific domain knowledge.
Second, the computational complexity is very expen-
sive for a complex model with the techniques above,
while our technique is lightweight and scalable based
on an approximation model.

5. Conclusion

With the increasing traffic volume, scalability is
one of the primary concerns for the first line of de-
tection, and the computational complexity should be
manageable to succeed. This paper presented a new
method designed for practical, on-line anomaly detec-
tion using a grid partitioning approximation. We evalu-
ated the proposed technique and showed the detection
accuracy and completeness as well as computational
complexity. With only two connection-related variables
(“src_bytes” and “dst_bytes”) readily available during
the traffic monitoring time, our technique performed at
least comparable with the classical learning methods
including decision tree and random forest, yielding the
accuracy of 98.5% with the KDD data and 83% with
NSL-KDD. In addition, the measured learning time
for our method is significantly low and approximately
two orders of magnitude faster than decision tree and
random forest.
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