
Xrootd and Xcache
Andy Hanushevsky

Wei Yang

July 30, 2020 @ ESnet

● Xrootd
○ Plugin architecture
○ Scaling up
○ Monitoring data streams

● Xcache
○ Features of Xcache
○ Expanding functionalities of Xcache, two examples
○ Thoughts on security and general purpose, shared cache

2

July 30, 2020 @ ESnet

Xrootd - open, plugin architecture
Xrootd was originally an open source storage system
● Developed during Babar era as a static scientific data storage (HEP data)

○ Lightweight and reliable, hardened by the Babar experiment.

● The current Xrootd software stack allows plugin to almost everywhere.
● This greatly expands Xrootd’s functionalities
● Attracted many contributions from people outside of the core Xrootd team
● Supported by: dCache, EOS, DPM, RAL-ECHO/CEPH, Posix file systems

Such an architecture also bring challenges:
● Keeping track and keeping peace of those contributions
● Complex configuration and long list of functions validation

○ Every plugin has something to config

● Documentation
3

July 30, 2020 @ ESnet

OFS: Open File System

Open, plugin architecture

Core/Mgmt : sched,
thread, memory,
connection, async IO,
etc …...

 xroot(s) protocol

OSS: Open Storage System

Posix file
systems

S
ecurity

P
lugins

Unix, Krb5, GSI, sss
coming: JWT

Access Ctrl
plugin

Protocol bridge

http(s) plugin

S
ec

ur
ity

P

lu
gi

nsGSI
JWT CEPH

Proxy
plugin

Xrootd
client

Disk
Cache
 plugin

Storage: posix
file system, etc.

http(s)
plugin

remote
data

root(s)://

http(s)://

root(s)://

http(s)://
N2N Rucio integration, XcacheH

Xcache

This is a vastly simplified view of
Xrootd / Xcache components and
plugins. Many are not shown!

It is here to help explaining later
slides.

HDFS

4

July 30, 2020 @ ESnet

Scaling up
A cmsd daemon pairing with an xrootd daemon, to form a cluster of nodes

cmsd
xrootd

cmsd
xrootd

storage

cmsd
xrootd

storage

Redirectors

Date
Servers
Up to 64 per
cluster

cmsd
xrootd

cmsd
xrootd

cmsd
xrootd

Shared storage

cmsd
xrootd

cmsd
xrootd

cmsd
xrootd

Remote data

cmsd
xrootd

root(s):// or http(s)://

Proxy
redirector

Proxy
servers

e.g.
Xcache
cluster

No data striping across data servers & No locking
● Redirect client to where data reside !
● Dramatically simplify metadata operation
● Good for analyzing static science data

Redirection is based on real time query
● “Who has this file” ?
● Info is cached with an expiration time
● If cached info is wrong, client complains

and cache entry is flushed
There could be other redirection mechanisms:

● Use a database
● Use a hash function

5

July 30, 2020 @ ESnet

Monitoring
● Xrootd doesn’t provide monitoring dashboards and analytics

○ There are plenty of industry tools to do that.

● Xrootd sends out summary/performance and event data - in UDP packets

(periodical) Summary data examples:
● Bytes into the cache
● Bytes out of the cache by requests
● Number of times cache hit
● Number of times cache missed
● Number of bytes read but not cached.

(real time) Detail Events data, examples:
● “u” stream: client login and identity info
● “d” stream: who opened that file
● “t” stream: IO patterns

Not provided by Xrootd

6

July 30, 2020 @ ESnet

Other interesting things about Xrootd
1. XrootdFS: mount an Xrootd cluster as a posix filesystem on desktop
2. Third Party Copy (TPC): a replacement of GridFTP by the WLCG
3. GridFTP plugin from Xrootd storage systems:

○ It is a GridFTP Data System Interface (DSI) written in pure Posix I/O functions
○ Working with Xrootd posix preload library -- There is a posix I/O layer upon xrootd protocol

4. Scalable Service Interface (SSI): client asks servers to execute arbitrary
requests, server response with results.

5. File Residence Manager (FRM)
○ Originated from tape stage-in: it runs a custom script

■ The script can: cp, xrdcp, ftp, curl, globus-url-copy, checksum, cook lunch...
○ It also functions as a (whole file) cache:

■ Put client on hold until data is staged in, or
■ Client can ask for pre-staging.

6. Server-less Cache: an cache on your desktop without a running daemon
7

July 30, 2020 @ ESnet

For most people, Xcache is the whole software stack that does caching on disk
● Internally, Xcache refers to a plugin developed by UCSD, assisted by SLAC

It is a Squid like cache: we learned a lot from the Squid (very old “Squid FAQ”)
● Support root(s) protocol and http(s) protocol
● Multi-thread
● Async data fetching (with root(s))
● Caching either file blocks, or whole files
● Designed for both large and small static data files

○ Mostly science data

● Clusterable for scaling up (avoiding sibling query via ICP)
● Customizable cache behavior

○ Mainly through the N2N plugin (slide “Expanding functionalities of Xcache”)

Xcache

8

https://flex.phys.tohoku.ac.jp/texi/faq-squid/FAQ.html#toc12

July 30, 2020 @ ESnet

A few details about Xcache
● Keep on mind: Xcache is both a server, and a client
● A state information file is maintained in parallel for each cached file:

○ Info: original file’s size, blocks committed to storage, # of open/read/bytes read, etc.

● Adjustable RAM buffer to cache data (before they are committed to storage)
● Tunable write-queues to optimize write performance on storage
● Configurable policies to manage cache storage

○ low/high watermark, LRU, unconditional purging of cold file, etc.

● A plugin to decide whether a file should be cached or not
● Handle overload by sending client to somewhere else

○ The CMS redirection (in previous slides - “Scaling up”) is probably a better option

● We have thought of whether we should make Xcache writable
○ So far most people are only interested in a read-only Xcache

9

July 30, 2020 @ ESnet

Optimize Xcache on HPC
Optimization driven by a LDRD @ LBNL
● Run on NERSC DTNs
● Uses main shared filesystem as cache

storage
● InfiniBand-like network for communication

and data delivery

What we want to achieve:
● Cluster ✅
● Deliver fully cached files via the shared file

system ✅
● Deliver partially cached files via Xroot

protocol over RDMA -- does not exist yet !

Xcache
@ DTN

Analysis Job

Lustre

Remote data

File blocks cached
in Lustre

Job redirected to Lustre
when complete file is cached

Data delivered
to job as soon

as it arrives

TCP over
Internet

HPC Cluster

InfiniBand
RDMA

Partially cache files:
● Currently delivered via Xroot over TCP
● Would like to deliver via Xroot over RDMA

10

July 30, 2020 @ ESnet

Protocols
● Support xroot protocol and HTTP protocol, plus their TLS siblings

○ TLS is based on the messy OpenSSL libraries
○ Xroot(s) is the de facto standard in HEP

■ A generic remote data access protocol, support posix semantics and preload library
■ Stateful, binary protocol
■ Support async network I/O

○ HTTP(s) is an industry standard
■ Stateless, text header very flexible, at the expense of overhead
■ HTTPS credential caching: turns HTTPS into a semi-stateful protocol
■ HTTP pipelining to achieve some async I/O

● Xrootd server: natively support xroot(s) protocol
○ A protocol bridge to map other protocol to the Xroot protocol + the HTTP(s) plugin (XrdHTTP)

● Xrootd client library (XrdCl) also has a plugin architecture
○ Load plugins based on protocol, default is xroot(s) protocol
○ HTTP plugin to XrdCl (XrdCl-HTTP) is based on Davix library (developed by CERN)

11

https://dmc.web.cern.ch/projects/davix/home

July 30, 2020 @ ESnet

Access Xcache
● If Xcache is configured to fetch from a fixed root(s) or http(s) data source

○ root(s)://Xcache//file or http(s)://Xcache/file

● If Xcache is configured to fetch from any data source,
○ Use: concatenated URLs

■ root(s)://Xcache//root(s)://cern.ch//eos/file
■ root(s)://Xcache//http(s)://cern.ch/eos/file
■ http(s)://Xcache/http(s)://cern.ch/eos/file
■ http(s)://Xcache/root(s)://cern.ch//eos/file

○ Or define XROOT_PROXY or http_proxy
■ What if TLS is used and users want end-to-end security?

● Will discuss in later slides (slide “Cache and end-to-end encryption”)

● Cache may need a shared credential to access remote data sources
○ User credential are not forward/used to access remote data
○ It is just not practical to keep track of which files/blocks belong to which users.

12

Note: https_proxy isn’t mentioned here

July 30, 2020 @ ESnet

Expanding functionalities of Xcache
● Several plugins exists to expand functionalities of a plain Xcache

○ All of them explore Name2Name translation (N2N is a C++ class in Xrootd)

● N2N has 2 key functions that are called for every cache request:
○ lfn2pfn(): convert an incoming URL to an outgoing URL
○ pfn2lfn(): given an outgoing URL, determine storage path for the corresponding cache entry
○ One can program those functions to do many other things

● I am aware of three such plugins:
○ Caching S3-type objects

■ Handle object doesn’t start with a slash “/” (absolute path)
○ RucioN2N plugin: An example to show what we can do when a central DM system exists

■ Utilized a central Data Management DB to choose best data source & provide failover
○ XcacheH: An example to show the limitation of caching when end-to-end encryption is required

■ Mainly for HTTP(s) protocol
■ Detect updates at data sources
■ Use Cache Context Manager (CCM) to flush cache entry if cache origin is updated

13

July 30, 2020 @ ESnet

Xcache with RucioN2N
● Rucio is a central data management system developed by ATLAS

○ Data grouped as datasets (sets of data files)
○ Each data file has a logical file name (LFN), along with file size, adler32, expiration, etc.
○ Records replica locations around the world. These locations can change over time
○ Once created, a data file never change (static). New version has a new file name, is a new file

● Users use LFN to access ATLAS data file via an Xcache with this plugin
○ lfn2pfn() asks Rucio for a list of data sources, in form of a Metalink (sorted by GEOIP)

■ If the first data source fails, try the second data source
■ XrdCl handles of Rucio metalink, and complex site failure scenarios
■ Metalink is cached in memory for 1 day

○ pfn2lfn() will decide the cache entry location based on LFN, regardless of data source used.
○ Benefits to users: they don’t have to keep track of the location of data replicas

● For completeness, it can still function as a plain Xcache

A challenge: Can Xcaches siblings discover each other’s contents?

14

July 30, 2020 @ ESnet

XcacheH
● Focus on supporting HTTP(s) protocol

○ Cache entry are mapped to storage using full URL from client, including CGI
○ After an initial period, XcacheH will check “mtime” at the origin to detect changes

■ Then decide whether a cache purge / refetch is needed.
■ It is possible that source data changed during the initial period

● This risk always exists.
● Working with static science data avoids this issue

● Still rooms to improve (XcacheH is a very recent development)
○ Response from web servers differ by server type, site configure, or even individual files

■ Always ask: How does Squid handle this issue? Should XcacheH do the same thing ?
○ Better to have place to save info related to remote file metadata

■ For example, can XrdPosixCache interface allow XcacheH to write to cache file’s xattr ?
○ Code optimization

■ XrdHTTP: extra stat(); XrdCl-HTTP/David: open()/read()/close() cycle.
○ Davix: metalink function doesn’t work - note: curl is talking about dropping metalink support

15

Doing all this in pfn2lfn()

July 30, 2020 @ ESnet

Squid

XcacheH and CVMFS
● CVMFS is a read-only global FS

○ Data “published” at stratum-0
○ Replicated to stratum-1

■ spread load; shorten latency
○ Usually have multiple layers of cache

■ Some are Squid clusters

● Squid doesn’t prefer large files
○ CVMFS chop a large file to small pieces
○ CVMFS avoids distributing large file

■ Mostly distribute software

16

CVMFS
cache on
local diskSquid

WAN

CVMFS stratum-1

● XcacheH can replace Squid (tested at SLAC)
○ CVMFS will be free from the constraint by Squid
○ Can efficient distribute large data files
○ Much large cache cluster on fewer HW

July 30, 2020 @ ESnet

XcacheH: working with curl and wget
● There are several ways for curl and wget to use XcacheH

○ Concatenated URL: http(s)://XcacheH:port/http(s)://cern.ch/index.html, or
○ http_proxy=http://XcacheH:port curl http://cern.ch/index.html
○ http_proxy=https://XcacheH:port curl http://cern.ch/index.html
○ https_proxy=http://XcacheH:port curl https://cern.ch/index.html

● The above all works
○ As long as one of the following not HTTPS

■ Xcache URL
■ Destination URL
■ https_proxy

● One combination left behind:
○ https_proxy=https://XcacheH:port curl https://cern.ch/index.html
○ It doesn’t work with XcahceH, but work with Squid

17

http://xcache//http(s)://cern.ch/index.html
https://cern.ch/index.html
https://cern.ch/index.html
https://cern.ch/index.html
https://cern.ch/index.html

July 30, 2020 @ ESnet

Cache and end-to-end encryption
Compare two different ways of using an Xcache (https://osggridftp01.slac.stanford.edu:8443)

Traffic went through successfully
● XcacheH encrypts traffic with both ends. XcacheH can see the data
● This is NOT an end-to-end encryption. XcacheH is a Man-in-the-middle

Traffic could not go through.
● HTTP CONNECT is meant to create an end-to-end encrypted tunnel
● Such a tunnel will bypass the cache
● Squid will honor such a request and route traffic, but will cache nothing
● XcacheH will refuse the HTTP CONNECT request

$ https_proxy=https://osggridftp01.slac.stanford.edu:8443 curl -v https://wt2.slac.stanford.edu/images/junk1
...
> CONNECT wt2.slac.stanford.edu:443 HTTP/1.1
...
< HTTP/1.1 400 Unknown

$ curl -v https://osggridftp01.slac.stanford.edu:8443/https://wt2.slac.stanford.edu/images/junk1
...
> GET /https://wt2.slac.stanford.edu/images/junk1 HTTP/1.1
...
< HTTP/1.1 200 OK

18

What if everything is https ?

https://wt2.slac.stanford.edu/images/junk1
https://osggridftp01.slac.stanford.edu:8443/https://wt2.slac.stanford.edu/images/junk1

July 30, 2020 @ ESnet

Thoughts: it is about “Trust”
● Curl and wget are just two applications

○ They choose to send GET or CONNECT under those scenarios

● Other applications may behave differently
● This bring out a number of issues with general purpose, shared cache

○ End-to-end encryption excludes the idea of such a cache
○ User authentication/authorization also exclude a shared cache

■ Because keeping track of who owns which file/block in a cache is not practical

● But dedicated user private cache is still possible
○ Users can tell their own applications to trust his/her own cache sitting in between two ends of

a supposedly TLS connection
○ User can supply a credential to his/her own cache to authenticate with the remote data source.

● No such problem when TLS and authentication is not used.

19

July 30, 2020 @ ESnet

Summary

● With an open, plugin architecture, Xrootd expands from a storage system to
other type of services

● Xcache is one of those. It generated lots of interests
● Xcache’s functions are expandable too by plugins. We gave

○ An example of integrating Xcache with a central data management system
○ An example of emulating Squid, but with Xcache’s innate high performance characteristics.

● The development of XcacheH forced us to think of the desire and relation of
○ a general purpose, shared cache
○ end-to-end encryption
○ access control
○ Something to think of when we design applications that utilize caches.

20

