
FastQuery: A Parallel Indexing System for

Scientific Data

Jerry Chou∗, Kesheng Wu∗ and Prabhat∗

∗ Lawrence Berkeley Lab.

Email: {jchou, kwu, prabhat}@lbl.gov

Abstract—Modern scientific datasets present numerous data
management and analysis challenges. State-of-the-art index and
query technologies such as FastBit can significantly improve ac-
cesses to these datasets by augmenting the user data with indexes
and other secondary information. However, a challenge is that the
indexes assume the relational data model but the scientific data
generally follows the array data model. To match the two data
models, we design a generic mapping mechanism and implement
an efficient input and output interface for reading and writing
the data and their corresponding indexes. To take advantage of
the emerging many-core architectures, we also develop a parallel
strategy for indexing using threading technology. This approach
complements our on-going MPI-based parallelization efforts.

We demonstrate the flexibility of our software by applying it
to two of the most commonly used scientific data formats, HDF5
and NetCDF. We present two case studies using data from a
particle accelerator model and a global climate model. We also
conducted a detailed performance study using these scientific
datasets. The results show that FastQuery speeds up the query
time by a factor of 2.5x to 50x, and it reduces the indexing time
by a factor of 16 on 24 cores.

I. INTRODUCTION

Modern scientific applications produce and consume vast

amounts of data [11], [23]. In many cases, the essential

information is contained in a relatively small number of data

records. For example, the Intergovernmental Panel on Climate

Change’s (IPCC) is in the process of generating tens of

petabytes (1015 bytes) for its fifth assessment report (AR5)1

but critical information related to important events such as

hurricanes might occupy no more than a few gigabytes (109

bytes), an example of which is shown in Figure 1. The ability

to directly access the necessary information instead of going

through all data records can significantly accelerate analyses.

This requirement for efficiently locating the interesting data

records is indispensable to many data analysis procedures.

The best-known technology for locating selected data

records from a large dataset is the database indexing [23,

Ch. 6]. Typically, the database indexing techniques are avail-

able through large centralized database management systems

(DBMS), however, scientists are often unwilling or unable

to place the datasets under the control of DBMS [15]. For

example, IPCC has settled on storing all AR5 data in the

NetCDF [26] file format. Instead of requiring the users to

place their data into DBMS, we propose to build indexes along

with the existing data to accelerate the search operations. We

implement this functionality in a system named FastQuery.

1More information available at http://www.ipcc.ch/.

Fig. 1. Visualization of a global climate simulation with multiple storms.
The regions with storms cover only a small portion of the globe.

An essential challenge in this work is how to map the data

model assumed by the index structures to the data model used

in scientific data sets. More specifically, the indexing data

structures assume a relational data model [18], while scientific

data formats such as NetCDF [26] and HDF5 [25] typically use

the array data model. The second challenge that we address

is how to efficiently work with massive datasets. The main

contributions of the paper are as follows:

• We define a mapping between the relational model fol-

lowed by the indexing software and the array model used

by most scientific applications.

• We define a simple abstraction layer between FastQuery

and the scientific format file libraries, so that our system

can be applicable to common scientific data formats

quickly and efficiently.

• We deploy a simple yet flexible naming scheme for users

to specify datasets in an arbitrary arrays and subarrays in

a scientific dataset.

• We implemented threading capability in FastQuery to

take advantage of many-core architecture for processing

large datasets.

• We extensively evaluate the performance of our new

indexing software using realistic scientific dataset, and

demonstrate the usability of our system through two

application case studies.

The rest of the paper is structured as follows. We review

the related work on scientific data formats and indexing is in

Section II. We describe the design of FastQuery in Section III,

show an extensive performance evaluation of FastQuery in

Section IV, and discuss two use cases in Section V. We con-

clude with some thoughts for future directions in Section VI.



II. RELATED WORK

To accelerate accesses to data, we bring database indexing

techniques to scientific data. In this section, we briefly review

related work on scientific data formats and database indexing,

and point out the distinct features of our current work.

A. Scientific Data Formats

The database management systems generally follow the

relation data model [18] that treats user data as tables with

rows and columns. A typical scientific application views its

data as arrays, often each physical quantity such as temperature

and pressure is stored in its own array. In these cases, the

columns in the relational data model can be easily mapped to

variables in scientific applications. However, in many cases,

an array may contain many physical quantities. This would

make it necessary for us to work with subarrays. Earlier work

on indexing scientific data have only considered indexing

whole arrays [9]; we believe that we are the first ones to

consider indexing subarrays. We will describe how to address

the mapping of rows and tables in the next section.

Since scientific applications store their data as arrays, the

commonly used scientific data formats are designed to store

arrays efficiently. We use two of the most popular formats,

NetCDF [26] and HDF5 [25], to demonstrate the flexibility of

FastQuery design. Both NetCDF and HDF5 are designed to

be portable and self-describing. With appropriate data access

libraries, they can be transported across machines.

B. Indexing for Scientific Data Formats

Most of the research work on indexing and searching

techniques are designed for commercial database applications.

However with the recent explosion of scientific datasets,

researchers are extending indexing techniques for scientific ap-

plications as well [23]. Traditional indexing techniques such as

B-tree are designed primarily to accelerate access to individual

data records, such as looking for a customer’s bank record [4].

In contrast, a query on scientific data typically returns a fairly

large number of records, for example, a search for accelerated

particles in a Laser Wakefield particle accelerator might result

in thousands of data records corresponding to thousands of

particles. Furthermore, scientific datasets are often produced or

collected in bulk, and are never modified. A class of indexing

methods that can take full advantage of these characteristics

is called the bitmap index.

C. Bitmap Indexing Technology and FastBit

A bitmap index logically contains the same information as

a B-tree index. A B-tree consists of a set of pairs of key

value and row identifiers; however a bitmap index replaces the

row identifiers associated with each key value with a bitmap.

Because the bitmaps can be operated efficiently, this index can

answer queries efficiently as demonstrated first by O’Neil [17].

The basic bitmap index uses one bitmap for each distinct

key value as illustrated in Figure 2. For scientific data where

the number of distinct values can be as large as the number of

rows (i.e., every value is distinct). The number of bits required

bitmaps
RID X b0 b1 b2 b3 b4

=0 =1 =2 =3 =4

1 1 0 1 0 0 0
2 0 1 0 0 0 0
3 4 0 0 0 0 1
4 2 0 0 1 0 0
5 3 0 0 0 1 0
6 3 0 0 0 1 0
7 1 0 1 0 0 0
8 4 0 0 0 0 1

Fig. 2. The logical view of a sample bitmap index shown as eight columns
on the right.

to represent an index may scale quadratically with the number

of rows. In such a case, an index for 109 rows may require

1018 bits. Such an index is much larger than the raw data size

and is not acceptable except for the smallest datasets.

A number of different strategies have been proposed to

reduce the bitmap index sizes and improve their overall ef-

fectiveness. Common methods include compressing individual

bitmaps, encode the bitmaps in different ways, and binning

the original data [23, Ch. 6]. FastBit [28] is an open-source

software package that implements many of these methods. In

this work, we choose to use FastBit as a representative of

general indexing methods. FastBit has been shown to perform

well in a number of different scientific applications [28].

In addition, there are also a series of theoretic computation

complexity studies to further establish its soundness [29], [30].

D. Distributed Indexing

The benefits of performing data analyses in parallel have

been recognized since the dawn of parallel computing [10],

[19]. Unlike many other high-performance computing appli-

cations, database operations are dominated by data accesses

rather than computations performed by the CPUs. Optimal I/O

performance is, hence, the most critical consideration when

designing parallel database systems. A number of parallel

database vendors have opted for custom hardware to achieve

this objective. For example, Netezza uses an active storage

approach where the disk controllers are modified to carry out

certain database operations [5]. Teradata employs a specialized

interconnect, called BYNET, to increase the bandwidth among

data access modules [2], [7]. Alternatively, a number of

researchers proposed to store the data in main memory [6],

[14]. Such hardware-based solutions are typically not available

to scientific users, or are unable to handle a large volume of

data. To maximize the impact of our indexing system, we use

a purely software-based approach with threading to take full

advantage of commodity hardware.

Among the approaches that use commodity hardware, the

“shared-nothing” approach has been demonstrated to be the

most effective for data management applications [24]. Our

work follows this strategy by partitioning an array provided

by the user into a number of disjoint sub-arrays. We build and

use the index for each sub-array independently. This approach

minimizes the coordination required among the parallel tasks.

Since tasks can read (and process) data in parallel, the under-



lying file system has an opportunity to maximize data access

throughput using this approach.

Many of the parallel and distributed indexing techniques are

derived from the B-Tree [1]. These parallel trees support only

limited amounts of concurrency in both index construction and

use, and have been shown to not perform as well as bitmap

indexes. In general, we see bitmap indexes as more appropriate

for scientific data and have implemented our parallel indexing

system based on the sequential software FastBit [28].

In this work, we explore thread parallelism for the emerging

many-core architecture. This threading approach complements

the on-going effort of MPI-based parallel approach [3]. Issues

such as how threading is affected by the I/O system and how

to integrate thread parallelism with MPI parallelism are to be

explored in the future.

III. FASTQUERY

Our design goal for FastQuery was to perform searching

operations on scientific data efficiently with database indexing

technologies. To achieve this, we need to address two chal-

lenges: (1) mapping the array data model used by common

scientific data format libraries to the relational data model

assumed by the indexing data structure, and (2) paralleliz-

ing indexing functions to take full advantage of many-core

architectures.

We map the arrays into the relational data model using the

following three assumptions: (I) each array element is mapped

to a row in a relational table, (II) elements of a multidi-

mensional array are linearized following C/C++ convention,

that is the first dimension is the slowest varying dimension

while the last dimension is the fastest varying dimension,

and (III) an arbitrary number of arrays or subarrays can be

placed into a relational table as long as they have the same

number of elements. A key piece of information most indexing

data structures rely on the relational data model is the the

row identifiers. Assumption (II) defines a row identifier from

any array, and assumption (III) allows us to use the row

identifiers defined for different arrays to refer to the same

rows. In many simulations, the physical quantities such as

temperature and pressure computed are stored in separate

arrays, an element in one of these arrays refer to values

associated with a point in space or a cell in space. In such

a case, it is natural to select the pressure values in regions

of space where temperate is greater than 1000. Under the

above assumptions, this selection operation can be expressed

as a SQL statement as follows “SELECT pressure FROM

simulation-data WHERE temperature > 1000”. In general,

our approach defines a mechanism for expressing SQL-style

selections on arrays. It is up to users to ensure that the selection

is actually meaningful.

To produce a concrete design for a software package,

FastQuery addresses the following specific issues: (1) how to

handle variables organized in arbitrary file layout, (2) how

to support array-based specification and interface, (3) how

to parallelize the indexing operations, and (4) how to work

with different array-based data formats in a unified way. In

Fig. 3. FastQuery architecture

(a) Build index

(b) Query index.

Fig. 4. Processing steps in FastQuery.

the remainder of this section, we give an overview of the

FastQuery design and then describe each of these four issues

in turn.

A. System Design

FastQuery consists of a few key components as shown

in Figure 3. The main purpose and responsibility of each

component is briefly described below:

• FastQuery API defines the main functions for indexing

and querying. The two set of functions are implemented

in two C++ classes named IndexBuilder and QueryPro-

cessor.

• Parser defines the naming scheme for variables and

syntax for query expressions. The naming scheme will

be explained later in this section. In the current imple-

mentation, a query consists of a list of range conditions

on arithmetic operations such as “/time1/x[1, :] > 10*2

&& /time2/x[1, :] > 7+5”.

• FastBit provides the indexing and querying functions used

in FastQuery. More information about FastBit can be

found in Section II-C.

• Array I/O interface defines a unified interface for the un-

derline array-based file formats. At this time, FastQuery

can support NetCDF and HDF5 files.

• Variable table represents the relational data model used by

FastQuery and other indexing and query technology [28],

[4]. The array data read from file is interpreted and

temporarily stored in tables dynamically created for each

query or index operation.

Figure 4 (a) and (b) further illustrate the process of indexing

and querying in FastQuery. Upon receiving the buildIndex call

from users, FastQuery first parses the variable name specified



/

test

x

time0

exp

time1 time2

zy x zy x yx

time2

zy test1

space

test2

energy temperaturea cb

Fig. 5. An example of scientific data format file layout. In FastQuery, vari-
ables are identified by their full-paths. So, variable with path “\exp\time1\
z” can also be recognized by FastQuery with path “\exp\time2\z”.
But FastQuery allows users to specify variable with a naming tuple
(varName, varPath), which will match to variables whose path satisfies
to regular expression “\ ∗ \varPath\ ∗ \varName”. Therefore, FastQuery
can answer a user-friendly query such as “temperature > 3” without asking
for additional path information, because there is only one variable in the file
that matches our regular expression.

by the user to identify the corresponding dataset and array

range. Then FastQuery creates a variable table that provides

the relational table view needed by the underlying indexing

building software FastBit. Finally, the bitmap indexes are

stored as arrays in a user specified location.

Similarly, during query processing, FastQuery starts with

parsing the user query string to determine the query conditions

and variables. Then, a variable table is created from variables

involved in the query, and the indexes of the variables are

loaded from file into the table. Finally, FastQuery uses FastBit

to resolve the query and return the number of hits or coordi-

nates of the selected data from query.

B. Variable naming scheme

As shown in Figure 5, scientific formats commonly store

data in a hierarchical layout. This layout provides users the

flexibility to organize data in the most convenient way for their

applications. However, it also introduces additional complexity

and difficulty when the data has to be used by different

applications. To overcome the issue, one approach that has

been adapted in several scientific data analysis tools is to

enforce an internal file layout, such as H5hut [13]. While such

approach could simplify the issue, it limits the usability of a

file, and the restricted layout may not be applicable to all the

science datasets or future applications. In contrast, we design

FastQuery to work with arbitrary file layout.

Our basic approach is to require a full-path for each variable.

Any path that refer to a unique variable can be used, and

every variable can be identified by any of its paths. For

instance, in the file layout shown in Figure 5, for a full-path

“\exp\time1\z”, FastQuery identifies an unique variable in the

file, and the variable can also be referred by its alternate path

“\exp\time2\z”.

FastQuery also provides a regular expression like naming

scheme to simplify specification of variable names. In particu-

lar, the current implementation lets users specify variables by a

naming tuple (varName, varPath). Then FastQuery then in-

ternally parses and matches a naming tuple to variables whose

full-path satisfying the regular expression “\ ∗ \varPath\ ∗
\varName”. For instance, in the file shown in Figure 5, using

the varName “temperature” is sufficient for FastQuery to

0 1 2 3 4 5 6 7 8 9

0 1 1 2 4 1 -5 1 5 4 -1

1 -1 -2 -3 -4 -5 7 -5 7 3 2

2 -1 -1 -1 -1 -1 -1 3 5 3 -2

3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

4 -1 -4 2 5 2 7 -1 2 1 3

Fig. 6. Examples of FastQuery array specification for multi-dimensional
data variable. In FastQuery API, “A[4, :]” refers to the data in the last row
of the dataset, “A[0:2, 1:4]” refers to the continuous subarray region at the
top-left corner, and “A[0:3:2, 5:10:2]” refers to the striped subarrary region
at the top-right. FastQuery considers these user specified arrays as individual
variables. Thus, FastQuery can process a query like “A[0:2, 1:4] > 0 &&
A[0:3:2, 5:10:2] > 0”. The query will result in 1 hit as circled in the figure,
and the resulting coordinate of the selected element will be [0, 1], which is
the relative coordinate position in the two user specified arrays.

identify the variable “\test\space\test2\temperature”. There-

fore, the FastQuery interface improves the flexibility and

usability of the query system without exposing unnecessary

details to users.

C. Array model and Subarray specification

Scientific data is commonly represented and stored in the

form of a set of multi-dimensional arrays because scientists

tend to generate and manipulate data in the array model.

Hence, a key objective of FastQuery is to present a array model

interface for users to manipulate and query their data, so that

FastQuery can more seamlessly connect with the scientific

applications and use cases. For example, instead of storing

each variable in a separate dataset, scientists normally just

dump their data to a single 2-dimensional dataset where each

column represents one variable. As a result, users cannot

access the values of a particular variable without specifying

an array region of the dataset. Furthermore, some scientific

applications might only be interested in one particular region

of the data. For instance, climate data is commonly stored

in a 2-dimensional dataset, and data points are placed in the

dataset according to their latitude and longitude geographical

positions. But for detecting atmospheric rivers [16], [21],

scientists are only interested in the water vapor values in the

area of tropical regions, which corresponds to a particular

data array region in the dataset. Thus, the scientist would

like the query system be able answer a query of the form

“vapor[:, 452:600] > threshold”. Otherwise, users would have

to send queries like “vapor > threshold”, then filter out the

resulting data by the associated coordinates. As shown by our

experimental evaluations in Section IV-B, without the support

of array specification (i.e. such as using HDF5-FastQuery [9]),

the post-processing overhead could easily dominate the overall

query response time and limits the performance benefit from

using an indexing/query system.

The approach of FastQuery is to allow users explicitly

specify data with an array description through the FastQuery

API. Specifically, FastQuery uses the array specification,

var[start : end : stride], which is similar to the syntax

used by Fortran and other programming languages used by

scientists. As shown by the examples in Figure 6, users can

use “A[4, :]”, “A[0:2, 1:4]” or “A[0:3:2, 5:10:2]” to refer

to different regions of a two-dimensional variable, or they



TABLE I
ELAPSED TIME FOR PROCESSING QUERY WITH A SINGLE CORE.

dataset query
1% selectivity 10% selectivity 50% selectivity

(speed-up) (speed-up) (speed-up)

small dataset 1.43s 9.58s 40.11s
(9GB) (44.23x) (6.60x) (1.58x)

medium dataset 6.38s 46.10s 200.0s
(45GB) (52.2x) (7.23x) (1.67x)

large dataset 12.17s 90.70s 409.5s
(90GB) (48.91x) (6.56x) (1.45x)

TABLE II
ELAPSED TIME FOR BUILDING INDEX WITH A SINGLE CORE.

dataset read data build index write index total

small dataset 72s 2,113s 62s ∼40mins
(9GB) (3.2%) (86.3%) (2.5%)

medium dataset 274s 10,751s 206s ∼3hours
(45GB) (2.4%) (95.7%) (1.8%)

large dataset 405s 21,683s 422s ∼6hours
(90GB) (1.8%) (96.3%) (1.9%)

could simply use the variable name, “A”, to refer the whole

dataset. In fact, the array specification defined in FastQuery is

relatively flexible because the specification is recognized by a

language syntax implemented in the FastQuery parser. Once

the array specification is recognized, FastQuery internally cre-

ates a temporary variable in the variable table. The temporary

variable only corresponds to the data from the specified array

region, so that FastQuery can perform all its functions on the

array, just like a regular variable from file.

D. Parallel indexing

It has been demonstrated that indexing can accelerate data

query in earlier research work [17], [28]. From the summary

of our experiments in Table I, we also found that using indexes

could achieve a significant speed-up over a factor of 50. Even

in the worst case, when 50% of data is selected by a query,

we still observed a speed-up factor around 1.5. However, one

shortcoming of using an index is that we have to build the

index in advance, and this pre-processing step can be a time

consuming process for large datasets. As shown in Table II,

the time of building index can increase linearly with the size

of the data, and it can take more than 6 hours for a dataset

of size 90GB. Therefore, it is critical to minimize the time

for building indexes, and prevent this step from becoming a

bottleneck in our index/query system.

In this paper, we attempt to reduce the index building time

by exploring the parallel processing power offered by the

modern many-core processors. Our approach is to implement

the FastQuery system using multi-threaded programming, so

that the index of each variable in a dataset can be built

independently on a single core of a compute node in a parallel

fashion. In our experiments, we will demonstrate that our

approach reduces the time to build indexes by a factor of 16

when using 24 cores. Furthermore, we analyze the parallel

efficiency with respect to I/O and CPU to show the potential

issues and bottlenecks of our parallel approach.

E. Unified array-based I/O interface

Various array-based data file formats, such as NetCDF and

HDF5, are widely used by the scientific community. Scientists

often store their data in the format that best fits to the needs

of their applications. Although the functionality and design of

these file formats are similar, the raw data can can only be

accessed by their respective APIs. As the size of a scientific

datasets increase, it could be costly or even infeasible to

convert datasets between different file formats. Hence, we do

not want to limit our system to a specific file format.

In order to make FastQuery applicable to any scientific data

file format, we define a unified I/O interface for FastQuery

to interact with the underlying file format libraries. Hence,

once the interface for the specific file format is implemented,

FastQuery is able to perform indexing and querying functions

on the files conforming to the format. To demonstrate the

applicability of our I/O interface, we have implemented the

interface for the two most common scientific data formats,

HDF5 and NetCDF.

As shown in Figure 3, the main I/O operations from

FastQuery are reading/writing index and data. According to

the data access pattern of FastQuery, our interface includes

a set of functions that perform I/O on the whole region

of a dataset, a subarray region of a dataset, or a list of

coordinates of a dataset. Most of our interface functions can

be directly mapped to the I/O functions provided by the

HDF5 and NetCDF file libraries. We note that NetCDF cannot

retrieve data by coordinates, thus results have to be read

from file one-by-one in special case. Overall, the underlying

file format libraries do have a significant impact on the I/O

performance of FastQuery. But, we do expect to leverage

various performance improvement efforts currently underway

by major library developers.

IV. EXPERIMENTS

In this section, we extensively evaluate the performance

of FastQuery by using a real scientific dataset and a 24-

core compute node from the NERSC Cray XE6 Hopper II

supercomputer [12]. We describe our experimental testbed

in Section IV-A. Then we present the query and indexing

performance in Section IV-B and Section IV-C, respectively.

All the results reported in our evaluation correspond to the

median value over at least 5 experimental runs.

A. Testbed

We evaluate FastQuery by processing queries on a real

scientific dataset collected from a large-scale, high resolution

physics simulation generated by the IMPACT-T [20] code. The

original dataset is over 50TB and consists of 720 time steps.

Each time step has 9 variables, and each variable has 1 billion

records/particles. For our evaluation, we use three different

subsets of the original dataset. Each subset has 120 time steps,

and each time step has one variable. We adjust the size of the

subset by choosing different number of particles per variable.

The “Large” dataset has 100 million particles per variable,

the “Medium” dataset has 50 million particles per variable,



and the “Small” dataset has 10 million particles per variable.

Accordingly, the total size of the three datasets are 90GB,

45GB and 9GB. To perform query on the datasets, indexes are

built for each of the datasets using the FastBit binning option

“precision=3” [23]. The built indexes are stored in file separate

from the data, and the size of each index file is roughly the

same as the size of its data file. For these experiments, all

the data is stored in the HDF5 file format, but we expect to

obtain similar performance on NetCDF files because the latest

NetCDF-4 implementation uses HDF5 as its storage layer.

The experiments was ran on a single compute node from

NERSC Cray XE6 supercomputing system Hopper II [12].

A hopper compute node has 2 twelve-core AMD ’Magny-

Cours’2.1 GHz processors, and each processor consists of 2

NUMA nodes with 6 cores each. Hence, each compute node

has a total of 24 cores and 32GB memory. Each core has

its own L1 and L2 cache, but a 6MB L3 cache is shared by

the 6 cores from a NUMA node. Under our multi-threaded

execution environment, threads are placed next to the cores in

the order of NUMA node. In other words, the first 6 threads

runs on the six cores of the first NUMA node, then the next 6

threads runs on the second NUMA node, and so on. Although

the placement of threads could affect performance, we will

not explore this issue further in the present work.

Hopper uses Lustre as its file system. The current Lustre

hardware consists of 156 OSTs (Object Storage Target). Our

datasets are stored on the file system with the default stripe size

of 1MB and stripe count of 13. According to a system profile

report from NERSC [12], the peak aggregated I/O rate is

25 GB/s. But the maximum I/O rate between a single compute

node to the file system is around 1.5∼2 GB/s.

B. Query Evaluation

Our evaluations compare the performance of three different

query techniques: FastQuery, HDF5-FastQuery and Scan. Scan

simply reads all the data values from file and scans through

them to answer the query. On the other hand, HDF5-FastQuery

uses index like FastQuery, but it doesn’t support array specifi-

cation. As a result, given a query like var[0 : 50] < 0.5, users

first have to submit HDF5-FastQuery the query var < 0.5,

then filter out the results by comparing the coordinates of

each selected data with the query array region. Hence, HDF5-

FastQuery needs to both index and scan the data. In contrast,

the query can be directly answered by the FastQuery system

using indexes without reading data, because FastQuery sup-

ports array specifications. We now explain our methodology

for generating queries for the evaluation, and compare the

performance among the three query techniques.

1) Query generation: The queries used by our experiments

are generated in the form of “var[0 : region] < threshold”,

where the value of “region” is determined by the query

parameter “coverage”, and the value of “threshold” is deter-

mined by the query parameter “selectivity”. A 100% coverage

query means the array region of a query covers the whole

variable dataset, and a x% coverage query means the array

region of a query covers x% of the region of the variable

dataset. On the other hand, the selectivity represents the

percentage of elements would be selected from the query array

region. Let us consider a one-dimensional variable with 100

elements, and the values of its elements as being uniformly

distributed between 0 and 1. An example of query with 100%

coverage and 50% selectivity would be var[0 : 100] < 0.5 (or

simply var < 0.5). This is because the query is applied

to the whole array region of the variable, and 50% of the

elements from the query region is expected to be selected

due to the uniform data value distribution. Similarly, a query

var[0 : 50] < 0.5 has 50% coverage and 50% selectivity

because it queries on an array region with the size of 50%

of the total number of data elements, and only 50% of the

elements from the array region would be selected. Hence, by

reducing the coverage or the selectivity of a query could both

result in fewer number of selected elements.

2) Performance comparison: In the experiments, each

query is iteratively processed on each of the 120 time steps,

and the total elapsed time is shown in Figure 7. The selectivity

of queries is varied from 0% to 100% in steps of 1%, and the

coverage is varied from 25% to 100% in steps of 25%. As

shown from the figure, Scan always scans through all data

values for any query regardless its selectivity and coverage.

Therefore, its response time is a constant, and plotted as a flat

line in the figures.

For FastQuery, under a fixed query coverage, its response

time changes along with the selectivity. This behavior has

been observed and explained in the previously study in the

HDF5-FastQuery paper [9]. The reason is that as the selectivity

increases, more bitmaps need to be read from file and pro-

cessed by FastBit. In addition, the results are symmetric after

50% selectivity because queries are evaluated by negating the

query expression. For instance, a query “A>0.8” is evaluated

as “NOT(A ≤ 0.8)”. Thus, the selectivity of the query is

actually 20% as oppose to 80%. Lastly, we found the time also

reduces as the query coverage decreases. This is because the

size of bitmaps associated with an array region has positive co-

relation to the number of elements in the array. Since a smaller

coverage query corresponds to a smaller array region, the size

of bitmap indexes read by FastQuery is also reduced From

the results under various query selectivities and coverages, we

show that FastQuery scales well to the number of selected

data, and it can have significant performance advantages for

queries with smaller selectivity or coverage.

The query performance of HDF5-FastQuery is different

from the results of Scan and FastQuery because it needs

both scanning and indexing. Since HDF5-FastQuery does not

support array specification, all queries must be converted to

100% coverage queries by ignoring the array specification

from the original queries. Hence, the total query time of

HDF5-FastQuery is at least as long as the total query time

of FastQuery. After getting the query results from HDF5-

FastQuery, users still have to scan through the coordinates

of selected data and filter out the data outside the array

region. Therefore, the time of scanning is proportional to the

number of selected data (i.e. query selectivity). As a result,



0 20 40 60 80 100
0

20

40

60

80

100

120

query selectivity (%)

e
la

p
s
e
 t
im

e
 (

s
)

FastQuery with 25% coverage
FastQuery with 50% coverage
FastQuery wtih 75% coverage
FastQuery with 100% coverage
HDF5−FastQuery
Scan

(a) Large dataset

0 20 40 60 80 100
0

100

200

300

400

500

600

query selectivity (%)

e
la

p
s
e
 t
im

e
 (

s
)

FastQuery with 25% coverage
FastQuery with 50% coverage
FastQuery with 75% coverage
FastQuery with 100% coverage
HDF5−FastQuery
Scan

(b) Medium

0 20 40 60 80 100
0

200

400

600

800

1000

1200

query selectivity (%)

e
la

p
s
e
 t
im

e
 (

s
)

FastQuery with 25% coverage
FastQuery with 50% coverage
FastQuery with 75% coverage
FastQuery with 100% coverage
HDF5−FastQuery
Scan

(c) Small dataset

Fig. 7. Elapsed time for processing queries with various selectivity and coverage settings.

4 8 12 16 20 24
2

4

8

16

32

64

128

256

512

number of cores

e
la

p
s
e
d
 t
im

e
(m

in
)

Large dataset

Medium dataset

Small dataset

Fig. 8. Elapsed time for building indexes with increasing number of
cores/threads.

the total response time of HDF5-FastQuery further grows as

the selectivity increases. In fact, we found the scanning time

starts to dominate the total time after 50% selectivity, and

it would be essentially more efficient to use Scan instead of

HDF5-FastQuery when selectivity is over 40%.

3) Summary: Our evaluation shows that using indexing can

significantly improve query performance by a factor of 1.5

to over 50 depending on the selectivity of queries. We also

demonstrate the importance of supporting array specification

for queries. Our results show that the post-processing time for

HDF5-FastQuery, which does not support array specifications,

can dominate the query response time and this can potentially

degrade the performance of query resolution to below that

of Scan. Finally, we demonstrate that FastQuery scales well

with the number of selected data from query regardless of

the data size. Therefore, as dataset sizes continue to grow,

the performance benefits from using FastQuery for query

resolution will become even more significant.

C. Indexing Parallelism

Now, we will evaluate our parallel implementation for

building indexes. In our approach, FastQuery utilizes multiple

cores on a node using multi-thread programming. In these

experiments, each thread runs on a single core, and we

report parallel performance and efficiency as the number cores

increases from 1 to 24.

1) Performance comparison: Figure 8 shows the elapsed

time for building indexes for each of the three datasets. As

shown from the figure, the elapsed time gradually decreases

as the number of cores increases from 1 to 24. When using

a single core, the time to build index for Small, Medium

and Large datasets, are 2,243s (37mins), 11,204s (3hours) and

22,535s (6hours), respectively. In comparison, with 24 cores,

we achieve a speed-up factor of 16 for all three datasets by

reducing their indexing time to 143s, 674s and 1350s.

To further explore this result, we plot Figure 9 which shows

the time taken by various steps in the index building process.

As described in Section III-A, there are four steps for building

indexes: a). reading data from file, b). constructing index in

memory, c). creating a new dataset in file for storing the

index, and finally d). writing index to the file. As expected, the

elapsed time for I/O and computing decreases as more cores

are used. In particular, the aggregate I/O rate increases from

200MB/s to 1.5GB/s which is around the peak single node

I/O rate reported on this NERSC platform [12]. However, the

dataset creation time significantly increases from less than 1

second to more than 10 seconds when multiple threads are

used. The dataset creation step involves modifications to the

file metadata, and requires synchronization among threads.

Therefore, the increasing time is likely due to the synchro-

nization cost from the HDF5 library. We also observe that

the synchronization cost roughly stays constant regardless the

number of threads. Hence, the synchronization cost could have

greater impact on a smaller datasets. As shown in Figure 9 (c),

the data creation time is almost the same as the I/O time for the

Small dataset. We cannot do much about this synchronization

cost at the FastQuery layer, we do note that efforts are

currently underway to make performance improvements for

collective metadata modifications in HDF5 files.
2) Efficiency analysis: Finally, we study the efficiency

of our parallel approach by plotting the efficiency of the

overall elapsed time in Figure 10. As shown from the figure,

the overall efficiency decreases rapidly for 6 cores, then it

asymptotically reaches 0.1. To gain a better understanding of

results, we analyzed the efficiency with respect to both I/O and

CPU. The I/O efficiency corresponds to the time for reading



4 8 12 16 20 24

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

e
la

p
s
e

d
 t

im
e

(s
e

c
)

number of cores

read data
construct index

write index
create dataset

(a) Large dataset

4 8 12 16 20 24

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

e
la

p
s
e

d
 t

im
e

(s
e

c
)

number of cores

read data
construct index

write index
create dataset

(b) Medium dataset

4 8 12 16 20 24

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

e
la

p
s
e

d
 t

im
e

(s
e

c
)

number of cores

read data
construct index

write index
create dataset

(c) Small dataset

Fig. 9. Time breakdown for building index versus number of cores/threads.

4 8 12 16 20 24
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
a

ra
lle

l 
e

ff
ic

ie
n

c
y

number of cores

Large dataset

Medium dataset

Small dataset

Fig. 10. Overall parallel efficiency.

4 8 12 16 20 24
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
a

ra
lle

l 
e

ff
ic

ie
n

c
y

number of cores

Large dataset

Medium dataset

Small dataset

Fig. 11. I/O parallel efficiency.

4 8 12 16 20 24
0.7

0.75

0.8

0.85

0.9

0.95

1

p
a

ra
lle

l 
e

ff
ic

ie
n

c
y

number of cores

Large dataset
Medium dataset

Small dataset
L3 cache hit rate

Fig. 12. CPU parallel efficiency.

data and writing indexes. Since we observe similar results for

both I/O operations, we plot the efficiency of reading data

to represent the I/O efficiency in Figure 11. As shown from

the figure, I/O causes contentions among threads, because all

cores on a compute node share the same network bandwidth

to the file system. As a result, in spite of the increasing

aggregate I/O rate previously observed in Figure 9, the I/O

efficiency decreases linearly from 1 to 0.3. We also observe

that the efficiency is higher for the Small dataset possibly due

to smaller data size and less bandwidth contention. We plot

results for the CPU efficiency which corresponds to the time

for constructing indexes in Figure 12. Although FastQuery

constructs index independently across threads, surprisingly we

still observed the CPU efficiency drops from 1 to 0.8. Upon

further investigation, we found the drop is caused by the L3

cache being shared amongst 6 cores. We profiled and plotted

the L3 cache hit rate in Figure 12. The cache hit rate appears

to be strongly correlated with the CPU efficiency. Therefore,

for the overall efficiency plot shown in Figure 10, we can

attribute the steep drop within 6 cores to the CPU efficiency,

then slower drop afterwards to the I/O efficiency. Finally, the

overhead of dataset creation causes the large efficiency drop

from 1 core to 2 cores, and the overall efficiency could be

even slightly worse than the I/O efficiency.

3) Summary: We were able to achieve substantial perfor-

mance speed-up by a factor of 16 when using 24 cores. The

time for building index was reduced from over several hours

to less than half hour. The aggregated I/O rate also increased

from 200MB/s to 1.5GB/s. However, we did observe that the

CPU efficiency reduces, this is most likely due the L3 cache

being shared among cores. The I/O efficiency also gradually

decreases from 1 to 0.3. Finally, the synchronization overhead

from creating dataset during the index building process could

be an issue for smaller datasets. As a result, the overall

efficiency decreases from 1 to 0.2. Our experiments not only

show the performance and efficiency of our parallel approach,

but also identify some of the bottlenecks and issues for the

future improvement.

V. CASE STUDIES

In this section, we highlight two case studies to show how

FastQuery can be applied to real life scientific data analysis

tasks. The first study comes from the field of climate modeling:

we process climate simulation data stored in NetCDF files and

identify an extreme weather pattern known as an atmospheric

river. In the second study, we look at accelerator modeling data

stored in HDF5 files and study energetic particle bunches.



Fig. 13. A plot of the water vapor concentration with an atmospheric river
reaching from Hawaii to California.

A. Atmospheric Rivers

An atmospheric river is a weather phenomenon where a

significant amount of tropical moisture in the air is transported

far away into extratropical regions [16], an example is shown

in Figure 13. This phenomena produces unusually heavy

amounts of rainfall and could cause catastrophic damage to

the local communities [21], such as the western coast of north

America. Therefore, it is desirable that global climate model

simulations faithfully capture atmospheric rivers. We describe

the basic query operations needed to detect and characterize

atmospheric rivers in global climate simulation output.

The simulation data we use is produced by fvCAM, a

version of the Community Climate Model adapted for high-

performance computing [27]. The particular dataset used is

on a fixed latitude-longitude mesh with quarter degree spacing,

and many variables are stored in 2D arrays of size 1440×720.

Based on earlier work on detecting atmospheric rivers in the

observational data [16], the key simulated quantity associated

with the phenomenon is the concentration of water vapor in

the atmosphere. In particular, an atmospheric river is basically

a region with high vapor concentration outside of the tropical

zone. Hence, it can be identified by expressed a range query

such as “SELECT * FROM simulation data WHERE vapor

concentration > threshold and (60◦ > latitude > 23◦ or

−60◦ < latitude < −23◦)”.

Since data is located in a dataset according to its latitude

and longitude position, the condition of above query “60◦ >

latitude > 23◦” is converted to the mesh points between 452

and 600 along the latitude and similarly “−60◦ < latitude

< −23◦” is converted to the mesh points between 120 and

268. Let “vapor” denote the vapor concentration stored in the

data file. Instead of indexing “vapor” directly, our software

allows us to index only the relevant port of the data, “va-

por[:,120:268]” and “vapor[:,452:600]”, then search data from

the subarray with conditions “vapor[:,120:268]> threshold”

and “vapor[:,452:600]> threshold”.

B. Laser Wakefield Particle Accelerator

Particle acceleration using plasma laser wakefields is a

promising new development in the area of particle physics.

In contrast to conventional electromagnetic accelerators that

needs tens of kilometers for accelerating particles, Laser

Wakefield accelerators can achieve the same acceleration in

Fig. 14. Example parallel coordinate display for selecting particles from
Laser Wakefield Particle Accelerator simulations.

meters. Laser wakefield simulations model the behavior of

individual particles, and the electric and magnetic fields associ-

ated with the plasma. Scientists at the LBNL LOASIS facility

are currently using the VORPAL program to model physical

experiments, gain deeper understanding of the physical obser-

vations and optimize methodology for future experiments [8],

[22].

VORPAL simulations currently generate its output in HDF5.

The sizes of the dataset are proportional to the number of

particles used in the simulation and the discretization of the

electromagnetic fields. Typical simulations with 100 million

particles can produce datasets of the order of 10 GB per

timestep, and dozens of timesteps. For this case study, we use

FastQuery to accelerate a common analysis operation that is

of importance to the particle physicists: find all particles that

have undergone significant wakefield acceleration, and then

trace them back in time. Tracing these particles back in time

reveals acceleration dynamics and potentially provides insights

into how to better design experiments.

To help scientists make meaningful selections, we use a

parallel coordinate display as illustrated in Figure 14. After

the user selected particles of interest, we read the particle

identifiers, extract the particles based on the identifiers from

other timesteps, and then produce a trace for each particle.

VI. CONCLUSIONS

In this paper, we present a design that maps array data

to a relational data model in order to make use of database

indexing techniques. The resulting software, named FastQuery,

is a general indexing and querying system for scientific data. In

addition to supporting semantic queries on NetCDF and HDF5,

FastQuery is able to take full advantage of the emerging many-

core computers through threaded parallelism. We believe Fast-

Query is an important step towards a general infrastructure for

scientific data analysis by bridging the gap between the array

model used by the scientific data and relational model used

by the database technology.

Specifically, FastQuery achieves its goal with the following

approaches. (a) FastQuery accelerates query performance us-

ing the start-of-art indexing technology, FastBit. (b) FastQuery

integrates the array data model into its interface and allow



users to query data using a general array specification, such as

“A[1:10] > 15”. The array model interface also provide more

seamlessly connection between FastQuery and the scientific

applications. (c) Instead of enforcing data to be stored in a

specific layout, such as in H5hut [13], FastQuery deploys a

flexible yet simple variable naming scheme based on regular

expressions to handle arbitrary file layout. (d) FastQuery

defines a unified array I/O interface to interact with the array-

based scientific data formats. The applicability of the interface

is demonstrated by the use of HDF5 and NetCDF in our im-

plementation. (e) FastQuery exploits multi-core architectures

to minimize the indexing time.

Finally, the performance and the efficiency of FastQuery

were extensively evaluated and analyzed in our experiments.

Using real scientific datasets, we showed indexing can improve

query response time by a factor of 2.5 to over a factor of 50.

We also showed the time for building indexes can be reduced

by a factor of 16 when 24 cores are used. We verified that I/O

contention contributes to the loss in efficiency , and that CPU

efficiency degrades because the L3 cache is shared among

cores. We made an interesting observation in that creating new

dataset for storing indexes could cause a constant synchroniza-

tion overhead. Therefore, to further improve parallel efficiency,

we plan to minimize the I/O contention and reduce thread

synchronization in the future. We also plan to developing a

hybrid implementation of FastQuery to deploy it on large scale

distributed multi-core platforms.

VII. ACKNOWLEDGMENTS

The authors wish to thank Allen Sanderson, John Shalf,

Quincey Koziol, E. Wes Bethel and Arie Shoshani for their

helpful discussions leading up to the design and specification

of FastQuery software. This work was supported by the

Director, Office of Science, Office of Advanced Scientific

Computing Research, of the U.S. Department of Energy under

Contract No. DE-AC02-05CH11231, and used resources of the

National Energy Research Scientific Computing Center.

REFERENCES

[1] M. K. Aguilera, W. Golab, and M. A. Shah. A practical scalable
distributed b-tree. Proc. VLDB Endow., 1:598–609, August 2008.

[2] C. Ballinger and R. Fryer. Born to be parallel: Why parallel origins
give teradata an enduring performance edge. IEEE Data Eng. Bull.,
20(2):3–12, 1997.

[3] J. Chou, K. Wu, O. Rübel, M. Howison, J. Qiang, Prabhat, B. Austin,
E. W. Bethel, R. D. Ryne, and A. Shoshani. Parallel index and query
for large scale data analysis. In SC11, 2011.

[4] D. Comer. The ubiquitous B-tree. Computing Surveys, 11(2):121–137,
1979.

[5] G. S. Davidson, K. W. Boyack, R. A. Zacharski, S. C. Helmerich, and
J. R. Cowie. Data-centric computing with the netezza architecture.
Technical Report SAND2006-3640, Sandia National Laboratory, 2006.

[6] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. Stone-
braker, and D. A. Wood. Implementation techniques for main mem-
ory database systems. In SIGMOD Conference, pages 1–8, 1984.
http://doi.acm.org/10.1145/602259.602261.

[7] D. J. DeWitt, M. Smith, and H. Boral. A single-user performance
evaluation of the teradata database machine. In Proceedings of the

2nd International Workshop on High Performance Transaction Systems,
pages 244–276, London, UK, 1989. Springer-Verlag.

[8] C. G. R. Geddes, C. Toth, J. van Tilborg, E. Esarey, C. B. Schroeder,
D. Bruhwiler, C. Nieter, J. Cary, and W. P. Leemans. High-quality
electron beams from a laser wakefield accelerator using plasma-channel
guiding. Nature, 431:538–541, 2004.

[9] L. Gosink, J. Shalf, K. Stockinger, K. Wu, and W. Bethel. HDF5-
FastQuery: Accelerating complex queries on HDF datasets using fast
bitmap indices. In SSDBM, pages 149–158, 2006.

[10] G. Graefe. Query evaluation techniques for large databases. ACM

Comput. Surv., 25:73–169, June 1993.
[11] T. Hey, S. Tansley, and K. Tolle, editors. The Fourth Paradigm: Data-

Intensive Scientific Discovery. Microsoft, Oct. 2009.
[12] Hopper II: Cray XE6. http://www.nersc.gov/nusers/systems/hopper2.
[13] M. Howison, A. Adelmann, E. W. Bethel, A. Gsell, B. Oswald, and

Prabhat. H5hut: A High-Performance I/O Library for Particle-Based
Simulations. In Proceedings of Workshop on Interfaces and Abstractions

for Scientific Data Storage, pages 1–8, 2010.
[14] H. Lu, Y. Y. Ng, and Z. Tian. T-tree or b-tree: Main memory database

index structure revisited. In Australasian Database Conference, pages
65–73, 2000.

[15] R. Musick and T. Critchlow. Practical lessons in supporting large-scale
computational science. SIGMOD Rec., 28(4):49–57, 1999.

[16] P. J. Neiman, F. M. Ralph, G. A. Wick, Y. Kuo, T. Wee, Z. Ma, G. H.
Taylor, and M. D. Dettinger. Diagnosis of an intense atmospheric river
impacting the pacific northwest: Storm summary and offshore vertical
structure observed with COSMIC satellite retrievals. Monthly Weather

Review, 136(11):4398–4420, 2008.
[17] P. O’Neil. Model 204 architecture and performance. In 2nd International

Workshop in High Performance Transaction Systems, Asilomar, CA,
volume 359 of Lecture Notes in Computer Science, pages 40–59.
Springer-Verlag, Sept. 1987.

[18] P. O’Neil and E. O’Neil. Database: principles, programming, and

performance. Morgan Kaugmann, 2nd edition, 2000.
[19] M. T. Ozsu. Principles of Distributed Database Systems. Prentice Hall

Press, Upper Saddle River, NJ, USA, 3rd edition, 2007.
[20] J. Qiang, R. D. Ryne, M. Venturini, and A. A. Zholents. High resolution

simulation of beam dynamics in electron linacs for x-ray free electron
lasers. Physical Review, 12:100702–1 – 100702–11, 2009.

[21] F. M. Ralph, P. J. Neiman, G. A. Wick, S. I. Gutman, M. D. Dettinger,
D. R. Cayan, and A. B. White. Flooding on California’s Russian River:
Role of atmospheric rivers. Geophysical Research Letters, 33:L13801,
2006.

[22] O. Rübel, Prabhat, K. Wu, H. Childs, J. Meredith, C. G. R. Geddes,
E. Cormier-Michel, S. Ahern, G. H. weber, P. Messmer, H. Hagen,
B. Hamann, and E. W. Bethel. High performance multivariate visual
data exploration for extemely large data. In SuperComputing, pages
1–12, Nov. 2008.

[23] A. Shoshani and D. Rotem, editors. Scientific Data Management:

Challenges, Technology, and Deployment, chapter 6. Chapman &
Hall/CRC Press, 2010.

[24] M. Stonebraker. The case for shared nothing. IEEE Database Eng.

Bull., 9(1):4–9, 1986. http://sites.computer.org/debull/86MAR-CD.pdf.
[25] The HDF Group. HDF5 user guide.

http://hdf.ncsa.uiuc.edu/HDF5/doc/H5.user.html, 2010.
[26] Unidata. The NetCDF users’ guide.

http://www.unidata.ucar.edu/software/netcdf/docs/netcdf/, 2010.
[27] M. F. Wehner, L. Oliker, and J. Shalf. Towards ultra-high resolution

models of climate and weather. IJHPCA, 22(2):149–165, 2008.
[28] K. Wu, S. Ahern, E. W. Bethel, J. Chen, H. Childs, E. Cormier-

Michel, C. Geddes, J. Gu, H. Hagen, B. Hamann, W. Koegler, J. Lauret,
J. Meredith, P. Messmer, E. Otoo, V. Perevoztchikov, A. Poskanzer,
Prabhat, O. Rubel, A. Shoshani, A. Sim, K. Stockinger, G. Weber, and
W.-M. Zhang. FastBit: Interactively searching massive data. In SciDAC,
2009. http://sdm.lbl.gov/fastbit/.

[29] K. Wu, E. Otoo, and A. Shoshani. Optimizing bitmap indices with
efficient compression. ACM Transactions on Database Systems, 31:1–
38, 2006.

[30] K. Wu, A. Shoshani, and K. Stockinger. Analyses of multi-level and
multi-component compressed bitmap indexes. ACM Trans. Database

Syst., pages 1–52, 2010.


