
ADAPTIVE TRANSFER ADJUSTMENT IN EFFICIENT BULK DATA
TRANSFER MANAGEMENT FOR CLIMATE DATASET

Alex Sim1, Mehmet Balman1, Dean Williams2, Arie Shoshani1, Vijaya Natarajan1
1Lawrence Berkeley National Laboratory, Berkeley, CA, USA

2Lawrence Livermore National Laboratory, Livermore, CA, USA
{asim,mbalman,ashoshani,vnatarajan}@lbl.gov, williams13@llnl.gov

ABSTRACT
Many scientific applications and experiments, such as high
energy and nuclear physics, astrophysics, climate
observation and modeling, combustion, nano-scale
material sciences, and computational biology, generate
extreme volumes of data with a large number of files.
These data sources are distributed among national and
international data repositories, and are shared by large
numbers of geographically distributed scientists. A large
portion of the data is frequently accessed, and a large
volume of data is moved from one place to another for
analysis and storage. A challenging issue in such efforts is
the limited network capacity for moving large datasets. A
tool that addresses this challenge is the Bulk Data Mover
(BDM), a data transfer management tool used in the Earth
System Grid (ESG) community. It has been managing
massive dataset transfers efficiently in the environment
where the network bandwidth is limited. Adaptive transfer
adjustment was studied to enhance the BDM to handle
significant end-to-end performance changes in the dynamic
network environments as well as to control the data
transfers for the desired transfer performance. We describe
the results from our hands-on data transfer management
experience in the climate research community. We study a
practical transfer estimation model and state our initial
results from the adaptive transfer adjustment methodology.

KEY WORDS
Bulk data movement, Climate datasets, Earth System Grid,
Adaptive transfer adjustment, Transfer estimation model

1. Introduction
Data intensive applications and experiments such as
astrophysics, climate modeling, combustion, high energy
and nuclear physics, nano-scale materials science and
computational biology, is expected to generate exabytes of
data over the next 5-10 years, which must be transferred,
visualized, and analyzed by geographically distributed
teams of researchers. The large amount of data must be
continuously moved from the data source repositories to
scientists and to analysis, visualization, and storage
facilities. The Earth System Grid (ESG) [1] is one of the
communities that faces the difficult challenge of managing
the distribution of massive datasets to thousands of
scientists around the world. An important new collection of
climate datasets, referred to as the “replica centralized
archive (RCA)”, is expected to comprise 1.2 petabytes
(PB) during the Intergovernmental Panel on Climate

Change (IPCC) Fifth Assessment Report (AR5) in 2011.
The amount of data collected and produced is expanding at
a staggering rate, and projected to exceed hundreds of
exabytes by 2020 [2]. It takes 100 Gbps end-to-end
bandwidth to move one petabyte in a day, and an
additional 10,000 times of performance increase is needed
for 100 exabytes in 2020. The ESG and others have
recognized that the new centralized data and future
datasets can only be efficiently served to researchers
around the world by replicating it to sites closer to them
[3]. To move data replicas efficiently, the ESG has
developed a data transfer management tool called the Bulk
Data Mover (BDM) [4] [10]. The BDM is responsible for
the successful replication of large datasets, and achieves
high performance using a variety of techniques. The
performance of the BDM is controlled by application-level
parameters such as the number of concurrency transfers
and the number of parallel streams. A higher preset on
these transfer parameters may overload the storage and
network capacity, and could result in overall performance
decrease. Adaptive transfer adjustment is essential to
handle the dynamics of the shared network environments
as well as to optimize the BDM data transfers. The
adaptive transfer management in BDM contributes to
utilizing the fully available network and storage bandwidth
as well as to control the end-to-end data transfers for the
desired transfer performance.

2. Background
2.1 Earth System Grid
As the climate community makes its first steps towards
building a “science gateway” - a data access and analysis
system open to everyone - the “Earth System Grid” (ESG)
is central to the current and future infrastructure that
enables the large federated enterprise system for the
dissemination and management of extreme scale climate
resources. ESG provides climate resources such as data,
information, models, analysis and visualization tools, and
other computational capabilities for data management and
diagnosis. The ESG project’s goals are (1) to make data
more useful to climate researchers by developing Grid
technology that enhances data usability; (2) to meet
specific needs which national and international climate
projects have for distributed datasets, data access, and data
movement; (3) to provide a universal and secure web-
based data access portal for broad-based multi-model data

collections; and (4) to provide a wide-range of Grid-
enabled climate data analysis tools and diagnostic methods
to climate communities [5] [11]. Thus, ESG is working to
integrate distributed data and computers, high-bandwidth
wide-area networks, and remote computing using climate
data analysis tools in a highly collaborative problem-
solving environment.

Since production began in 2004, the ESG has hosted and
distributed significant and often very large data collections
for many well-known efforts in climate science. The ESG
production system currently has over 20,000 registered
users. ESG manages approximately 270 TB of model data,
comprising the contents of archives at five sites around the
U.S. ESG users have downloaded more than 1PB of data.

2.2 Bulk Data Mover
Climate datasets are characterized by large volume of files
with extreme variance in file sizes. BDM as a high-level
data transfer management component handles the issue of
large variance in file sizes and a big portion of small files
by managing the file transfers with optimized transfer
queue and concurrency management algorithms. The BDM
achieves high performance using a variety of techniques,
including multi-threaded concurrent transfer connections,
data channel caching, load balancing over multiple transfer
servers, and storage I/O pre-fetching. Logging information
from the BDM is collected and analyzed to study the
effectiveness of the transfer management algorithms.

The BDM can accept a request composed of multiple files
or an entire directory. The request also contains the target
site and directory where the replicated files will reside. If
a directory is provided at the source, then the BDM will
replicate the structure of the source directory at the target
site. The BDM is capable of transferring multiple files
concurrently as well as using parallel TCP streams. The
optimal level of concurrency or parallel streams depends
on the bandwidth capacity of the storage systems at both
ends of the transfer as well as achievable bandwidth on the
wide-area network. Setting up the optimal level of
concurrency is an important issue, especially in climate
datasets, because of the many small files. Concurrency that
is too high becomes ineffective (high overheads and
increased congestion), and concurrency that is too low will
not take advantage of available bandwidth. A similar
phenomenon was observed when setting up the level of
parallel streams.

3. Efficient Transfer Management
3.1 Concurrent transfers and data streaming
When the datasets consist of a mixture of large and small
files such as the climate datasets, it is not simple to
maximize the transfer performance with a prefixed number
for concurrency and parallel streams. The typical file size
distribution in climate dataset in Intergovernmental Panel
on Climate Change (IPCC) Coupled Model
Intercomparison Project, phase 3 (CMIP-3) indicates that
most of the data files have less than 200MB of file size,
and among those smaller files, file sizes less than 20MB

have the biggest portion. Using parallel streams, in general,
improves the performance of datasets with large files, and
the pipelining technique in GridFTP transfer protocol
[9,21] improves the performance of datasets with lots of
small files within the transfer connection. However, when
the file size is less than a certain threshold based on the
available network bandwidth, parallel streams can decrease
the performance of the file transfer.

Figure 1: Climate data replication from LLNL to NERSC over
shared network. GridFTP transfers of climate dataset from two
sources at LLNL to one destination at NERSC show throughput
history over time in seconds on different transfer properties.

Figure 1 shows a typical climate dataset transfer over a
shared network. It shows transfer throughput performance
from two data sources at Lawrence Livermore National
Laboratory (LLNL) to one destination at National Energy
Research Scientific Computing Center (NERSC) over time
in seconds with different level of concurrency and number
of parallel streams.

BDM creates concurrent transfer connections, and have
files streaming through the connections with a certain
number of parallel streams. In Figure 1, BDM managed
throughput performance in the climate datasets almost the
same in transfers with different parameters, but transfers
with less parallel streams show more consistency in file
transfer rates throughout the request. For example, the
transfers with 4 concurrency and 8 parallel streams per
data source (the plot with 4x8) have the same number of
total streams 64 (4 concurrency x 8 parallel streams x 2
data sources) as the transfers with 32 concurrency and 1
parallel stream (the plot with 32x1), but it shows more
consistent transfer rates with 1 parallel stream. It indicates
that the parallel streams do not have much effect in the
transfer performance for this type of datasets.

Figure 2: Climate data replication from LLNL to NERSC over
shared network showing concurrent GridFTP transfers and load
balancing over multiple data sources
Multi-threaded concurrent connections and file streaming
which open and maintain N different transfer connections
and having N different files streaming through at the same
time, has shown to improve the performance of datasets
specially with the mixture of large and small files. An
important concern is to keep the network pipe always full.
Each connection should maintain the file streaming
without any gaps between file transfers. Figure 2 shows the
number of concurrent transfers over time in seconds with
different parameters. They are from the same transfer runs
from Figure 1. It shows that BDM maintains the level of
concurrency throughout the transfer run without gaps
between file transfers. This feature, high density of data
flows in concurrent transfers, is achieved by maintaining
transfer queue and storage I/O pre-fetching.

3.2 Balanced transfer connections
When multiple transfer sources are available, transfer
connections can be balanced, and the overall throughput
performance to the destination can be increased. The
balancing algorithm can be as simple as round robin over
multiple transfer sources or based on the available
bandwidth for each transfer source. BDM manages
concurrent connections in mixture of round robin and total
file sizes in the transfer queue per connection. BDM
transfer queue management module assigns files to transfer
queue for each concurrent transfer connection, and when it
detects the total sizes of the files waiting in the queue is
more than the certain threshold, the connection does not
get any more files assigned until file transfers are
completed in that particular connection. In that way, each
transfer connection maintains similar byte sizes in its
transfer queue to other transfer connections, but not the
similar number of files unless the files are all in similar
sizes. Figure 1 and Figure 2 show transfers from two data
sources (one shown in green and another shown in red),
and number of total concurrent transfers and cumulative
throughput are very similar for two data sources.

3.3 Transfer Queue Management
Transfer queue management and concurrent connection
management contribute to more transfer throughput,
including both network and storage. When the dataset has a
large variance in the file sizes, continuous data flow from
the storage into the network can be achieved by pre-
fetching data from storage on to the transfer queue of each
concurrent transfer connection. This overlapping of storage
I/O with the network I/O helps improve the transfer
performance.

Figure 3: Transfer and concurrency management in BDM,
showing adaptive transfer adjustment

As in Figure 3, BDM manages a DB queue from the
concurrent transfer connections, and also manages the
transfer queues for concurrent file transfers. Each transfer
queue checks the configurable threshold for the queued
total files size and gets more files to transfer from the DB
queue when the queued total files size goes below the
configured threshold. Default threshold is set to 200MB
based on the file size distribution as discussed in section
3.1.Storage I/O pre-fetching includes inode creation for writing
files at the destination. In many file system cases, many
inode creations at the same time cause a significant
overhead in file system performance, and this overhead
affects the transfer performance. By creating inodes at the
destination paths when files are being on the transfer
queue, BDM achieves faster storage I/O during the
transfers.
Figure 4 shows another climate data transfers from LLNL
to NERSC for 4.8TB of a climate dataset from two source
servers to one destination. Transfer throughput was
consistent most of the time throughout the request, as
expected. In the middle of the dataset transfers, low
performance was detected, as shown in the middle of the
plot, but the number of concurrency was still at 64 all
together. This caused each concurrent connection
performance to be much lower, and may have caused

packet loss too. The dynamic transfer adjustment can help
this case in minimizing overhead of slow data transfers
during the low performance period, and the BDM can
reduce the number of concurrent transfers to maximize the
per-connection throughput which could maximize the
resource usability during those time.

Figure 4: Climate data replication from LLNL to NERSC over
shared network. Transfers from 11208 files in 4.8TB of climate
dataset from two sources at LLNL to one destination at NERSC
with 32 concurrency and 1 parallel stream for each data source
show throughput history over time in seconds on the top and the
number of concurrency over time in seconds on the bottom.

4. Adaptive Transfer Adjustment
Characteristics of the communication infrastructure
determine which action should be taken when tuning data
transfer operations in order to obtain high transfer rates.
Local area networks and wide area networks have different
characteristics, so they demonstrate diverse features in
terms of congestion, failure rate, and latency. In most
cases, congestion is not a concern in dedicated high
bandwidth networks. However, the latency wall in data
transfers over high bandwidth connections is still an issue
[12,13,14]. Enough data should be obtained from the
applications and storage layers for high throughput
performance. Data transfer optimization has been deeply
studied in the literature [15,16,17]. However, many of the
solutions require kernel level changes that are not preferred
by most domain scientists. In this study, we concentrate on
application level auto-tuning methodologies that are
applied in user-space for better transfer performance
[18,19,20,21]. Using multiple data transfer streams is a
common technique applied in application layer to increase
the network bandwidth utilization [13,17,22]. Instead of a
single connection at a time, multiple streams are opened
for a single data transfer service. Larger bandwidth in a
network is gained with less packet loss rate; concurrent

data transfer operations that are initiated at the same time
better utilize the network and system resources.

4.1 Application-level dynamic tuning
To achieve high throughput, the number of multiple
connections needs to be adjusted according to the capacity
of the underlying environment. There are several studies
on parameter estimation in order to predict the network
behavior and to find a good estimation for the level of
parallelism [17,22,23,24,25]. However, those techniques
usually depend on performance results of sample transfers
with different parameters. The systems probe and
measurements with external profilers are needed. Complex
models are used to calculate the optimum number of
multiple streams with the help of sample measurements in
order to make a prediction [23,25,26]. Further, network
conditions may change over time in the shared
environments, and the estimated value might not reflect the
most recent state of the system. The achievable end-to-end
throughput and the system load in communicating parties
might change during the period of a data transfers,
especially when large volume of data needs to be
transmitted.

Dynamically setting the number of optimal parallel streams
has been introduced in [27]. Further, there are several
studies in adaptive parameter tuning [20,22]. We have
designed a similar approach in which the number of
concurrent connections is set dynamically in a large-scale
data transfer. The proposed methodology operates without
depending on any historical measurements and does not
use external profiles for measurement. Instead of using
predictive sampling as proposed in [17,25,26], we make
use of the instant throughput information gathered from the
actual data transfer operations that are currently active.
The number of multiple streams is set dynamically in an
adaptive manner by gradually increasing the number of
concurrent connections up to an optimal point. The
adaptive approach does not require complex models for
parameter optimization. This also enables us to adapt
varying environmental conditions to come up with a high-
quality tuning for best system and network utilization.

Gradually improving concurrency level brings a near
optimal value without the burden of complex optimization
steps to find the major bottleneck in a data transfer. In this
adaptive algorithm, a change in the performance is
detected and the number of concurrent connections is
adjusted accordingly. Figure 5 shows the results from an
adaptive transfer performance with the number of
concurrent TCP streams. We have conducted our
experiments in a 1-Gbps network where synthetic data
transfer operations were started in order to simulate a
communication channel with the shared bandwidth. The
adaptive tuning by adjusting the concurrency level
dynamically results in better throughput performance.
Figure 5.a shows the number of streams over time in
seconds. Figure 5.b shows the total volume of data
transferred over time, and Figure 5.c shows the instant
throughput measured while data transfer operation is

active. The changes in the performance as in Figure 5.c
were detected live, and the number of concurrent streams
was adjusted over time as shown in Figure 5.a.

Figure 5: Adaptive transfer adjustment: (a) TCP streams, (b)
total bytes transmitted, (c) instant throughput over the time in
seconds.
Instead of making measurements with external profilers to
set the level of concurrency, transfer parameters are
calculated using information from current data transfer
operations. Thus, the network would not have extra packets
and extra load is not put onto the system due to extraneous
calculations for exact parameter settings. The number of
multiple streams is set by observing the achieved
application throughput for each transfer operation, and
parameters are gradually adjusted according to the current
performance merit. The transfer time of each operation is
measured and the total throughput is calculated. The best
throughput for the current concurrency level is recorded.
The actual throughput value of the data transfers is
calculated, and the number of multiple streams is increased
if the throughput value is larger than the best throughput
seen so far. In this dynamic approach, we try to reach to a
near optimum value gradually, instead of finding the best
parameter achieving the highest throughput at once. We
underline the fact that the focus is on application level
tuning such that we do not deal with low-level network and
server optimization. We adjust the number of multiple
streams according to the dynamic environmental
conditions, and also taking into the consideration of the
fact that there might be other data transfer operation using
the same network resources.
We first start with a single stream of a transfer and
measure the instant achievable throughput. The number of
concurrent transfers running at the same time is increased
gradually as long as there is any performance gain in terms
of overall throughput. Although this incremental approach
is practical especially for a large-scale data transfer that

takes time to complete, a good starting point is highly
desirable in terms of the number of multiple streams.
Inspired from the TCP congestion window mechanism, we
benefit from exponentially increasing the concurrency
level in the beginning of the tuning process. Figure 6 gives
a glimpse of the algorithm used to set the optimum
concurrency level. We analyze the search pattern in two
phases. In the first phase, we exponentially increase the
number of multiple streams to quickly find a good starting
point. In the second phase, we gradually set the
concurrency level by measuring instant throughput
between every parameter update in order to come up with
the optimal number of multiple streams in a dynamic
manner.

Figure 6: Algorithm searching for the optimal concurrency level

The interval between the adjustment points is another
important issue. We measure the instant throughput
performance, but it may not be appropriate to make
adjustment on the number of concurrent streams after
every measurement point. Considering the possibility of
minor fluctuations in the network throughput performance,
we set a threshold value based on the transferred data size
before observing any changes in the achievable throughput
performance and deciding the needs of adjustments on the
number of concurrent streams. This property has also
shown in Figure 5.a where the number of concurrent
streams is adjusted based on the major changes in the
achievable throughput. Figure 5.c shows the corresponding
changes in the instant throughput during the entire transfer.
If a significant drop change in the throughput performance
has been detected, the number of concurrent streams is
decreased by half (N/2), and searching for the optimal
number of concurrent streams gets started as described in
Figure 6.
4.2 A Simple Throughput Prediction Model
We have performed several experiments with various file
sizes by changing the number of concurrent TCP streams.
Figure 7 shows the overall throughput performance over
the number of concurrent TCP streams under different
round trip time (RTT) values when different sizes of files
are transferred. The first observation is that, the latency
directly affects the behavior of the throughput performance
curve. Figure 7.a shows throughput performance on a 10-

Gbps network with round-trip time 0.5ms. As seen in
Figure 7.b, more TCP streams are needed to fill the
network bandwidth when latency is higher.

Our second observation is that we can use power-law to
come up with a simple prediction schema. We see that the
relationship between the number of multiple streams and
the throughput gain can be approximated by a simple
power-law model. Figure 8 illustrates log-log graphs for
total throughput versus the number of multiple streams.
We can classify the behavior into two parts. In the first
part, where we reach 80% of the achievable throughput,
the power law approximation models the behavior of the
multiple streams versus throughput. Based on this
information, we present a power-law approximation to
predict the number of multiple streams.

Figure 7: Total throughput over the number of streams;
(a) rtt=0.5 ms, (b) rtt=70ms

Power-law demonstrates the mathematical relationship
between two quantities where one attribute varies as a
power of another attribute. Many functions, especially
man-made phenomena, follow power law [28,29]. In our
case, the achievable throughput varies as a power of the
number of streams where the scaling exponent is related to
the round-trip time. It seems to represent the tradeoff
between the gain and the cost of adding TCP streams in a
data transfer operation over a network.
A simple model was also developed to estimate the starting
point based on round-trip time (RTT) between the source
and destination hosts. The goal is to set the initial number
of multiple streams that would be calculated in the fast-
start phase of the algorithm given in Figure 6, and it will
be used as the base point in the second phase of the
algorithm, where we gradually adjust for optimum tuning.

Note that we try to obtain a good starting point that will be
used later for fine-tuning.

The power law approximation is modeled as

 T = (n / c) (RTT / k) (1)

where T is achievable throughput in percentage, n is the
number of multiple streams (n > 0), RTT is the round trip
time, and c and k are constant factors. Unlike other
models [23,24,25] trying to find an approximation model
for the multiple streams and throughput relationship, this
model only focuses on the initial behavior of the transfer
performance.

Figure 8: Total throughput over the number of streams (log-log
scale).

As in Figure 9, test runs show achievable throughput over
the number of concurrent transfers in different RTT values.
When RTT is low, the achievable throughput starts high
with the low number of streams and quickly approaches to
the optimal throughput. When RTT is high, more number
of streams is needed for higher achievable throughput. Our
goal is to come up with a proper starting point for the
number of concurrent streams. The simple estimation
model must capture the relationship between the latency
and the throughput performance. The initial estimation
value will be used in dynamic parameter tuning for the
optimum number of streams.
Since our simple model estimates the achievable
throughput in percentage, (n / c) should be less than 1.
Further, the exponent (RTT / k) should be less than 1, in
order to capture the relationship between the achievable
throughput in percentage and cost of adding additional
transfer streams into the transfer operation. In our test,
shown in Figure 9, where we have conducted experiments
over high-bandwidth networks with high and low latency,
we set c as 100 as the maximum number of concurrent
streams, and k as 300 the maximum RTT. The constant
values in the given formula can be adjusted to obtain more
accurate model. However, accurate starting point is not
required in our case, and the model can estimate the
number of streams to give 80% of achievable throughput
performance as starting point, similar to 80-20 rule in
Pareto distributions [29].

0.8 = (n / c) (RTT / k) (2)

n = (e (k * ln 0.8 / RTT)) ∙ c (3)

According to the equation (3), the initial estimated value
for number of streams n is; 10 if RTT is 30ms (Figure 9.d),
38 if RTT is 70ms (Figure 9.e), 61 if RTT is 140ms (Figure
9.f), and 0.1 (which is rounded to 1) if RTT is 10ms (Figure
9.c).

Figure 9: Achievable throughput in percentage over the
number of streams with low/medium/high RTT;

(a) RTT=1ms, (b) RTT=5ms, (c) RTT=10ms, (d) RTT=30ms,
(e) RTT=70ms, (f) RTT=140ms

A

practical throughput prediction model for approximating
the initial behavior of the transfer performance is
important. The adaptive transfer adjustment model gives a
base for optimal transfer throughput management in
dynamic environments. In addition to that, we need a
mathematical model that will be used to obtain a good
starting point for adaptive fine-tuning. This model should
be simple and easily applicable inside BDM for initial
concurrency estimation. The test runs in real shared
environment show that the dynamic transfer management
in BDM with the initial transfer estimation would provide
an effective way in obtaining optimal transfer
performance.

5. Testbed
The Green Data Oasis (GDO) [6] at LLNL has over 600
TB of spinning disk and serves 35 TB of IPCC CMIP-3
multi-model data. Two GridFTP server nodes with Solaris
10 running ZFS on AMD-64 hardware were used with
access to the 10-Gbps ESnet network. Two NERSC Data
Transfer Nodes [7] were used to transfer data located on
NERSC storage units based on GPFS. A 10-Gbps SDN

through OSCARS [8] could be reserved through ESnet
between NERSC and LLNL. In this test setup, randomly
selected a few climate datasets from IPCC CMIP-3 were
replicated for test runs under different transfer conditions.
Dataset sizes range from 40 GB to 10 TB.

6. Discussion and Future Work
The ESG has the difficult challenges of managing the
distribution of massive datasets and accessing and
analyzing them. The IPCC CMIP-3 holds over 35 TB of
data at the LLNL site. The IPCC Coupled Model
Intercomparison Project, phase 5 (CMIP-5) is projected to
be 10 PB. Bulk Data Mover (BDM) is to provide the
efficient data delivery required for the scalability that the
ESG needs for data access in the highly collaborative
decentralized environment, with efficient and adaptive
transfer management.

We have studied dynamic transfer adjustment to enhance
end-to-end data transfer performance. In our adaptive
approach, we set the level of concurrency on the fly. The
number of multiple streams is set by observing the
achieved application throughput for each transfer
operation, and parameters are gradually adjusted according
to the current performance merit. We have studied several
versions of this dynamic adaption approach and enhanced
the algorithm after intensive testing and analysis. We have
been working on applying and implementing our dynamic
adaptation algorithm in BDM.

We also observed that we can use power-law to come up
with a simple prediction schema. We see that the
relationship between the number of multiple streams and
the throughput gain can be approximated by a simple
power-law model. We presented a power-law
approximation to predict the number of multiple streams.
The achievable throughput varies as a power of the number
of streams where the scaling exponent is related to the
round-trip time. It represents the tradeoff between the gain
and the cost of adding TCP streams in a data transfer
operation over a network. This power law model is used
along with the dynamic adaptation algorithm. The goal is
to set the initial number of multiple streams that would be
calculated in the first phase. This will be used as the base
point in the second phase of the algorithm, where we
gradually adjust for optimum tuning. Note that we try to
obtain a good starting point that will be used later for fine-
tuning (dynamic adaptation). Unlike other models in the
literature (trying to find an approximation model for the
multiple streams and throughput relationship), this model
only focuses on the initial behavior of the transfer
performance. When RTT is low, the achievable throughput
starts high with the low number of streams and quickly
approaches to the optimal throughput. When RTT is high,
more number of streams is needed for higher achievable
throughput. We are in the process of applying this model
inside BDM. Besides, we plan to enhance our
mathematical approach by conducting several other
experiments in different environments.

Acknowledgements
This work was funded by the Office of Advanced
Scientific Computing Research, Office of Science, U.S.
Department of Energy, under contracts DE-AC02-
05CH11231. We would like to thank Jeff Long at
Lawrence Livermore National laboratory, and Jason Hick
at National Energy Research Scientific Computing Center
for their support on our experiments.

References
[1] Earth System Grid (ESG), http://www.earthsystemgrid.org

[2] E. Dart and B. Tierney (editors), "BES Science Network
Requirements", Report of the Basic Energy Sciences
Network Requirements Workshop sponspored by Basic
Energy Sciences Program Office, DOE Office of Science
and the Energy Sciences Network 2007.

[3] D. N. Williams, D. E. Middleton, M. Anitsecu, V. Balaji,
W. Bethel, S. Cotter, W. G. Strand, K. Schuchardt, and A.
Shoshani, "Extreme Scale Data Management, Analysis,
Visualization, and Productivity in Climate Change Science,"
Report for the Extreme Scale Computing Workshop
sponsored by DOE Joint Office of Biological and
Environmental Research (BER) and the Office of Advanced
Scientific Computing Research (ASCR), http://esg-
pcmdi.llnl.gov/publications_and_documents/Extreme_Scale
_Data_Mgmt_Panel%20Report.pdf 2008.

[4] A. Sim, D. Gunter, V. Natarajan, A. Shoshani, D. Williams,
J. Long, J. Hick, J. Lee, E. Dart, "Efficient Bulk Data
Replication for the Earth System Grid", International Symp.
on Grid Computing (ISGC), 2010.

[5] Williams et al., “The Earth System Grid: Enabling Access to
Multimodel Climate Simulation Data”, in the Bulletin of the
American Meteorological Society, February 2009.

[6] Green Data Oasis (GDO),
https://computing.llnl.gov/resources/gdo/

[7] NERSC Data Transfer Node (DTN),
http://www.nersc.gov/nusers/systems/datatran/

[8] OSCARS, http://www.es.net/OSCARS/

[9] Allcock, W., Bresnahan, J., Kettimuthu, R., Link, M.,
Dumitrescu, C., Raicu, I., and Foster, I., "The Globus
Striped GridFTP Framework and Server" In Proc. of the
2005 ACM/IEEE Conference on Supercomputing.

[10] Bulk Data Mover (BDM), http://sdm.lbl.gov/bdm/

[11] D. Bernholdt, S. Bharathi, D. Brown, K. Chancio, M. Chen,
A. Chervenak, L. Cinquini, B. Drach, I. Foster, P. Fox, J.
Garcia, C. Kesselman, R. Markel, D. Middleton, V.
Nefedova, L. Pouchard, A. Shoshani, A. Sim, G. Strand, D.
Williams, "The Earth System Grid: Supporting the Next
Generation of Climate Modeling Research," Proceedings of
the IEEE, vol. 93, pp. 485- 495, March 2005.

[12] Wu, Y., Kumar, S., and Park, S., "Measurement and
performance issues of transport protocols over 10Gbps high-
speed optical networks", Computer Network 54, 3 (Feb.
2010), 475-488

[13] M. Balman and T. Kosar, "Data Scheduling for Large Scale
Distributed Applications", In Proceedings of the 9th
International Conference on Enterprise Information Systems
Doctoral Symposium (DCEIS 2007), 2007

[14] H. Bullot, R. Les Cottrell and R. Hughes-Jones, "Evaluation
of Advanced TCP Stacks on Fast Long-Distance Production
Networks", Journal of Grid Computing, Springer, Volume 1,
Number 4, Dec. 2003

[15] FastTCP. An alternative congestion control algorithm in tcp.
http://netlab.caltech.edu/FAST.

[16] sTCP. Scalable TCP.
http://www.deneholme.net/tom/scalable/, 2006.

[17] T. Dunigan, M. Mathis, and B. Tierney, "A tcp tuning
daemon”, In Proceedings of SuperComputing: High-
Performance Networking and Computing, 2002.

[18] M. Gardner, S. Thulasidasan, and W. Feng, "User-space
auto tuning for tcp flow control in computational grids",
Computer Communications, 27:1364-1374, 2004.

[19] S. Soudan, B. Chen, and P. Vicat-Blanc Primet, "Flow
scheduling and endpoint rate control in grid networks",
Future Gener. Comput. Syst., 25(8):904–911, 2009.

[20] W. Feng, M. Fisk, M. Gardner, and E. Weigle, "Dynamic
right sizing:An automated, lightweight, and scalable
technique for enhancing grid performance", In Proc. of the
7th IFIP/IEEE International Workshop on Protocols for
High Speed Networks, 2002.

[21] J. Bresnahan, M. Link, R. Kettimuthu, D. Fraser and I.
Foster, "GridFTP Pipelining", Proceedings of the 2007
TeraGrid Conference, June, 2007

[22] T. Ito, H. Ohsaki, and M. Imase, "On parameter tuning of
data transfer protocol gridftp in wide-area grid computing",
In Proc. of Second International Workshop on Networks for
Grid Applications, GridNets, 2005.

[23] Hacker, T. J., Noble, B. D., and Athey, B. D., "Adaptive
data block scheduling for parallel TCP streams", In
Proceedings of the High Performance Distributed
Computing, 2005.

[24] Mirza, M., Sommers, J., Barford, P., and Zhu, X., "A
machine learning approach to TCP throughput prediction",
SIGMETRICS Perform. Eval. Rev. 35, pg 97-108, 2007

[25] E. Yildirim, M. Balman, and T. Kosar, "Dynamically
Tuning Level of Parallelism in Wide Area Data Transfers",
In Proceedings of DADC'08, June 2008

[26] D. Yin, E. Yildirim, and T. Kosar, "A Data Throughput
Prediction and Optimization Service for Widely Distributed
Many-Task Computing", In Proceedings of MTAGS, 2009

[27] M. Balman and T. Kosar, "Dynamic Adaptation of
Parallelism Level in Data Transfer Scheduling", In Proc. of
Second International Workshop on Adaptive Systems in
Heterogeneous Environments, 2009

[28] Faloutsos, M., Faloutsos, P., and Faloutsos, C., "On power-
law relationships of the Internet topology", In Proceedings
of the Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication
SIGCOMM 1999.

[29] M. Newman, "Power laws, Pareto distributions and Zipf's
law", Contemporary Physics, Volume 46, Issue 5, pages 323
– 351, September 2005.

