
ADAPTIVE  TRANSFER ADJUSTMENT IN EFFICIENT BULK DATA 
TRANSFER MANAGEMENT FOR CLIMATE DATASET

Alex Sim1, Mehmet Balman1, Dean Williams2, Arie Shoshani1, Vijaya Natarajan1 
1Lawrence Berkeley National Laboratory, Berkeley, CA, USA

2Lawrence Livermore National Laboratory, Livermore, CA, USA
{asim,mbalman,ashoshani,vnatarajan}@lbl.gov, williams13@llnl.gov

ABSTRACT
Many scientific applications and experiments, such as high 
energy  and  nuclear  physics,  astrophysics,  climate 
observation  and  modeling,  combustion,  nano-scale 
material  sciences,  and  computational  biology,  generate 
extreme  volumes  of  data  with  a  large  number  of  files.  
These  data  sources  are  distributed  among  national  and 
international  data  repositories,  and  are  shared  by  large 
numbers  of  geographically  distributed  scientists.  A large 
portion  of  the  data  is  frequently  accessed,  and  a  large 
volume  of  data  is  moved  from one  place  to  another  for  
analysis and storage. A challenging issue in such efforts is 
the limited network capacity for moving large datasets. A 
tool that addresses this challenge is the Bulk Data Mover 
(BDM), a data transfer management tool used in the Earth 
System  Grid  (ESG)  community.  It  has  been  managing 
massive  dataset  transfers  efficiently  in  the  environment 
where the network bandwidth is limited. Adaptive transfer 
adjustment  was  studied  to  enhance  the  BDM  to  handle 
significant end-to-end performance changes in the dynamic 
network  environments  as  well  as  to  control  the  data 
transfers for the desired transfer performance. We describe 
the  results  from  our  hands-on  data  transfer  management 
experience in the climate research community. We study a 
practical  transfer  estimation  model  and  state  our  initial  
results from the adaptive transfer adjustment methodology.
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1. Introduction
Data  intensive  applications  and  experiments  such  as 
astrophysics,  climate  modeling,  combustion,  high  energy 
and  nuclear  physics,  nano-scale  materials  science  and 
computational biology, is expected to generate exabytes of 
data over the next 5-10 years,  which must be transferred,  
visualized,  and  analyzed  by  geographically  distributed 
teams of researchers.   The large amount of data must be 
continuously  moved  from the  data  source  repositories  to 
scientists  and  to  analysis,  visualization,  and  storage 
facilities.  The Earth System Grid (ESG) [1] is one of the  
communities that faces the difficult challenge of managing 
the  distribution  of  massive  datasets  to  thousands  of 
scientists around the world. An important new collection of 
climate  datasets,  referred  to  as  the  “replica  centralized  
archive  (RCA)”,  is  expected  to  comprise  1.2  petabytes 
(PB)  during  the  Intergovernmental  Panel  on  Climate 

Change  (IPCC) Fifth  Assessment  Report  (AR5)  in  2011. 
The amount of data collected and produced is expanding at 
a  staggering  rate,  and  projected  to  exceed  hundreds  of 
exabytes  by  2020  [2].  It  takes  100  Gbps  end-to-end 
bandwidth  to  move  one  petabyte  in  a  day,  and  an 
additional 10,000 times of performance increase is needed 
for  100  exabytes  in  2020.  The  ESG  and  others  have 
recognized  that  the  new  centralized  data  and  future 
datasets  can  only  be  efficiently  served  to  researchers 
around the world by replicating it  to sites closer  to them 
[3].  To  move  data  replicas  efficiently,  the  ESG  has 
developed a data transfer management tool called the Bulk 
Data Mover (BDM) [4] [10]. The BDM is responsible for 
the  successful  replication  of  large  datasets,  and  achieves 
high  performance  using  a  variety  of  techniques.  The 
performance of the BDM is controlled by application-level 
parameters  such  as  the  number  of  concurrency  transfers 
and  the  number  of  parallel  streams.  A  higher  preset  on 
these  transfer  parameters  may  overload  the  storage  and 
network capacity, and could result in overall performance 
decrease.  Adaptive  transfer  adjustment  is  essential  to 
handle the dynamics of the shared network environments 
as  well  as  to  optimize  the  BDM  data  transfers.  The 
adaptive  transfer  management  in  BDM  contributes  to 
utilizing the fully available network and storage bandwidth 
as well  as to control the end-to-end data transfers for the 
desired transfer performance.

2. Background
2.1 Earth System Grid
As the  climate  community  makes  its  first  steps  towards 
building a “science gateway” - a data access and analysis 
system open to everyone  - the “Earth System Grid” (ESG) 
is  central  to  the  current  and  future  infrastructure  that 
enables  the  large  federated  enterprise  system  for  the 
dissemination  and  management  of  extreme  scale  climate  
resources.  ESG provides  climate  resources  such  as  data, 
information,  models,  analysis and visualization tools, and 
other computational capabilities for data management and 
diagnosis.  The ESG project’s  goals  are  (1)  to make  data 
more  useful  to  climate  researchers  by  developing  Grid 
technology  that  enhances  data  usability;  (2)  to  meet 
specific  needs  which  national  and  international  climate 
projects have for distributed datasets, data access, and data 
movement;  (3)  to  provide  a  universal  and  secure  web-
based data access portal for broad-based multi-model data 



collections;  and  (4)  to  provide  a  wide-range  of  Grid-
enabled climate data analysis tools and diagnostic methods 
to climate communities [5] [11]. Thus, ESG is working to 
integrate  distributed  data  and  computers,  high-bandwidth 
wide-area  networks,  and remote  computing using climate 
data  analysis  tools  in  a  highly  collaborative  problem-
solving environment. 

Since production began in 2004, the ESG has hosted and 
distributed significant and often very large data collections 
for many well-known efforts in climate science. The ESG 
production  system  currently  has  over  20,000  registered 
users. ESG manages approximately 270 TB of model data,  
comprising the contents of archives at five sites around the 
U.S. ESG users have downloaded more than 1PB of data.

2.2 Bulk Data Mover
Climate datasets are characterized by large volume of files  
with extreme variance  in file  sizes.  BDM as a high-level  
data transfer management component handles the issue of 
large variance in file sizes and a big portion of small files 
by  managing  the  file  transfers  with  optimized  transfer 
queue and concurrency management algorithms. The BDM 
achieves high performance  using a variety of techniques, 
including  multi-threaded  concurrent  transfer  connections,  
data channel caching, load balancing over multiple transfer  
servers, and storage I/O pre-fetching. Logging information 
from  the  BDM  is  collected  and  analyzed  to  study  the 
effectiveness of the transfer management algorithms. 

The BDM can accept a request composed of multiple files 
or an entire directory. The request also contains the target  
site and directory where the replicated files will reside.  If 
a directory is provided at  the source,  then the BDM will 
replicate the structure of the source directory at the target  
site.   The  BDM is  capable  of  transferring  multiple  files 
concurrently as well  as using parallel  TCP streams.   The 
optimal  level  of concurrency  or parallel  streams depends 
on the bandwidth capacity  of the storage systems at both 
ends of the transfer as well as achievable bandwidth on the 
wide-area  network.  Setting  up  the  optimal  level  of 
concurrency  is  an  important  issue,  especially  in  climate  
datasets, because of the many small files. Concurrency that 
is  too  high  becomes  ineffective  (high  overheads  and 
increased congestion), and concurrency that is too low will 
not  take  advantage  of  available  bandwidth.  A  similar 
phenomenon  was  observed  when  setting  up  the  level  of 
parallel streams.

3. Efficient Transfer Management
3.1 Concurrent transfers and data streaming
When the datasets consist of a mixture of large and small 
files  such  as  the  climate  datasets,  it  is  not  simple  to 
maximize the transfer performance with a prefixed number 
for concurrency and parallel streams. The typical file size 
distribution in climate  dataset  in Intergovernmental  Panel  
on  Climate  Change  (IPCC)  Coupled  Model 
Intercomparison Project,  phase 3 (CMIP-3)  indicates  that 
most of the data files have less than 200MB of file size,  
and among those smaller  files,  file  sizes less than 20MB 

have the biggest portion. Using parallel streams, in general, 
improves the performance of datasets with large files, and 
the  pipelining  technique  in  GridFTP  transfer  protocol 
[9,21] improves the performance  of  datasets  with lots  of 
small files within the transfer connection. However, when 
the file  size is less than a certain  threshold based on the  
available network bandwidth, parallel streams can decrease 
the performance of the file transfer.  

Figure 1: Climate data replication from LLNL to NERSC over 
shared network. GridFTP transfers of climate dataset from two 
sources at LLNL to one destination at NERSC show throughput 
history over time in seconds on different transfer properties.

 

Figure  1  shows a  typical  climate  dataset  transfer  over  a 
shared network. It shows transfer throughput performance 
from  two  data  sources  at  Lawrence  Livermore  National 
Laboratory (LLNL) to one destination at National Energy 
Research Scientific Computing Center (NERSC) over time 
in seconds with different level of concurrency and number 
of parallel streams.

BDM  creates  concurrent  transfer  connections,  and  have 
files  streaming  through  the  connections  with  a  certain 
number  of  parallel  streams.  In  Figure  1,  BDM managed 
throughput performance in the climate datasets almost the 
same  in transfers  with  different  parameters,  but  transfers 
with  less  parallel  streams  show more  consistency  in  file 
transfer  rates  throughout  the  request.  For  example,  the 
transfers  with  4  concurrency  and  8  parallel  streams  per 
data source (the plot  with 4x8) have the same number of 
total  streams 64 (4 concurrency  x 8 parallel  streams x 2  
data  sources)  as the  transfers  with 32 concurrency  and 1 
parallel  stream  (the  plot  with  32x1),  but  it  shows more 
consistent transfer rates with 1 parallel stream.  It indicates  
that  the  parallel  streams do not  have  much effect  in  the 
transfer performance for this type of datasets. 



Figure 2: Climate data replication from LLNL to NERSC over 
shared network showing concurrent GridFTP transfers and load 
balancing over multiple data sources
Multi-threaded  concurrent  connections and file  streaming 
which open and maintain  N different transfer connections 
and having N different files streaming through at the same 
time,  has  shown to improve  the  performance  of  datasets 
specially  with  the  mixture  of  large  and  small  files.  An 
important concern is to keep the network pipe always full.  
Each  connection  should  maintain  the  file  streaming 
without any gaps between file transfers. Figure 2 shows the 
number of concurrent transfers over time in seconds with 
different parameters. They are from the same transfer runs 
from Figure 1. It shows that  BDM maintains the level  of 
concurrency  throughout  the  transfer  run  without  gaps 
between  file  transfers.  This  feature,  high  density  of  data 
flows in concurrent  transfers,  is achieved  by maintaining 
transfer queue and storage I/O pre-fetching.

3.2 Balanced transfer connections
When  multiple  transfer  sources  are  available,  transfer 
connections  can  be  balanced,  and  the  overall  throughput 
performance  to  the  destination  can  be  increased.  The 
balancing algorithm can be as simple as round robin over 
multiple  transfer  sources  or  based  on  the  available 
bandwidth  for  each  transfer  source.  BDM  manages 
concurrent connections in mixture of round robin and total  
file  sizes  in  the  transfer  queue  per  connection.  BDM 
transfer queue management module assigns files to transfer  
queue for each concurrent transfer connection, and when it 
detects the total  sizes of the files waiting in the queue is 
more  than  the  certain  threshold,  the  connection  does not 
get  any  more  files  assigned  until  file  transfers  are 
completed in that particular connection. In that way, each 
transfer  connection  maintains  similar  byte  sizes  in  its 
transfer  queue  to  other  transfer  connections,  but  not  the 
similar  number  of  files  unless  the  files  are  all  in  similar  
sizes. Figure 1 and Figure 2 show transfers from two data 
sources  (one  shown in green  and  another  shown in red), 
and  number  of  total  concurrent  transfers  and  cumulative 
throughput are very similar for two data sources.

3.3 Transfer Queue Management
Transfer  queue  management  and  concurrent  connection 
management  contribute  to  more  transfer  throughput, 
including both network and storage. When the dataset has a 
large variance in the file sizes, continuous data flow from 
the  storage  into  the  network  can  be  achieved  by  pre-
fetching data from storage on to the transfer queue of each 
concurrent transfer connection. This overlapping of storage 
I/O  with  the  network  I/O  helps  improve  the  transfer 
performance. 

Figure 3: Transfer and concurrency management in BDM, 
showing adaptive transfer adjustment

As  in  Figure  3,  BDM  manages  a  DB  queue  from  the 
concurrent  transfer  connections,  and  also  manages  the 
transfer queues for concurrent file transfers. Each transfer 
queue  checks  the  configurable  threshold  for  the  queued 
total files size and gets more files to transfer from the DB 
queue  when  the  queued  total  files  size  goes  below  the 
configured  threshold.  Default  threshold  is  set  to  200MB 
based on the file  size distribution as discussed in section 
3.1.Storage I/O pre-fetching includes inode creation for writing 
files  at  the destination.  In many file  system cases,  many 
inode  creations  at  the  same  time  cause  a  significant  
overhead  in  file  system  performance,  and  this  overhead 
affects the transfer performance. By creating inodes at the 
destination  paths  when  files  are  being  on  the  transfer 
queue,  BDM  achieves  faster  storage  I/O  during  the 
transfers. 
Figure 4 shows another climate data transfers from LLNL 
to NERSC for 4.8TB of a climate dataset from two source 
servers  to  one  destination.  Transfer  throughput  was 
consistent  most  of  the  time  throughout  the  request,  as 
expected.  In  the  middle  of  the  dataset  transfers,  low 
performance was detected, as shown in the middle of the 
plot,  but  the  number  of  concurrency  was  still  at  64  all 
together.  This  caused  each  concurrent  connection 
performance  to  be  much  lower,  and  may  have  caused 



packet loss too. The dynamic transfer adjustment can help 
this  case  in  minimizing  overhead  of  slow  data  transfers 
during  the  low  performance  period,  and  the  BDM  can 
reduce the number of concurrent transfers to maximize the 
per-connection  throughput  which  could  maximize  the 
resource usability during those time. 

Figure 4: Climate data replication from LLNL to NERSC over 
shared network. Transfers from 11208 files in 4.8TB of climate 
dataset from two sources at LLNL to one destination at NERSC 
with 32 concurrency and 1 parallel stream for each data source 
show throughput history over time in seconds on the top and the 
number of concurrency over time in seconds on the bottom. 

4. Adaptive Transfer Adjustment 
Characteristics  of  the  communication  infrastructure 
determine which action should be taken when tuning data 
transfer  operations  in  order  to  obtain  high  transfer  rates. 
Local area networks and wide area networks have different 
characteristics,  so  they  demonstrate  diverse  features  in 
terms  of  congestion,  failure  rate,  and  latency.  In  most 
cases,  congestion  is  not  a  concern  in  dedicated  high 
bandwidth  networks.  However,  the  latency  wall  in  data 
transfers over high bandwidth connections is still an issue 
[12,13,14].  Enough  data  should  be  obtained  from  the 
applications  and  storage  layers  for  high  throughput 
performance.  Data  transfer  optimization  has  been  deeply 
studied in the literature [15,16,17]. However, many of the 
solutions require kernel level changes that are not preferred 
by most domain scientists. In this study, we concentrate on 
application  level  auto-tuning  methodologies  that  are 
applied  in  user-space  for  better  transfer  performance 
[18,19,20,21].  Using  multiple  data  transfer  streams  is  a 
common technique applied in application layer to increase 
the network bandwidth utilization [13,17,22].  Instead of a 
single connection at  a time,  multiple  streams are  opened 
for  a  single  data  transfer  service.  Larger  bandwidth in  a 
network  is  gained  with  less  packet  loss  rate;  concurrent  

data transfer operations that are initiated at the same time 
better utilize the network and system resources. 

4.1 Application-level dynamic tuning
To  achieve  high  throughput,  the  number  of  multiple 
connections needs to be adjusted according to the capacity 
of  the  underlying  environment.  There  are  several  studies 
on  parameter  estimation  in  order  to  predict  the  network 
behavior  and  to  find  a  good  estimation  for  the  level  of 
parallelism  [17,22,23,24,25].  However,  those  techniques 
usually depend on performance results of sample transfers 
with  different  parameters.  The  systems  probe  and 
measurements with external profilers are needed. Complex 
models  are  used  to  calculate  the  optimum  number  of 
multiple streams with the help of sample measurements in 
order  to  make  a  prediction  [23,25,26].  Further,  network 
conditions  may  change  over  time  in  the  shared 
environments, and the estimated value might not reflect the 
most recent state of the system. The achievable end-to-end 
throughput and the system load in communicating parties 
might  change  during  the  period  of  a  data  transfers,  
especially  when  large  volume  of  data  needs  to  be 
transmitted. 

Dynamically setting the number of optimal parallel streams 
has  been  introduced  in  [27].  Further,  there  are  several 
studies  in  adaptive  parameter  tuning  [20,22].  We  have 
designed  a  similar  approach  in  which  the  number  of 
concurrent connections is set dynamically in a large-scale 
data transfer. The proposed methodology operates without 
depending  on  any  historical  measurements  and  does  not 
use  external  profiles  for  measurement.  Instead  of  using 
predictive  sampling  as  proposed  in  [17,25,26],  we make 
use of the instant throughput information gathered from the 
actual  data  transfer  operations  that  are  currently  active.  
The number of multiple streams is set  dynamically  in an 
adaptive  manner  by  gradually  increasing  the  number  of 
concurrent  connections  up  to  an  optimal  point.   The 
adaptive  approach  does  not  require  complex  models  for 
parameter  optimization.  This  also  enables  us  to  adapt  
varying environmental conditions to come up with a high-
quality tuning for best system and network utilization.

Gradually  improving  concurrency  level  brings  a  near 
optimal value without the burden of complex optimization 
steps to find the major bottleneck in a data transfer. In this 
adaptive  algorithm,  a  change  in  the  performance  is 
detected  and  the  number  of  concurrent  connections  is 
adjusted accordingly.  Figure 5 shows the results  from an 
adaptive  transfer  performance  with  the  number  of 
concurrent  TCP  streams.  We  have  conducted  our 
experiments  in  a  1-Gbps  network  where  synthetic  data 
transfer  operations  were  started  in  order  to  simulate  a 
communication  channel  with the shared  bandwidth.   The 
adaptive  tuning  by  adjusting  the  concurrency  level 
dynamically  results  in  better  throughput  performance.  
Figure  5.a  shows  the  number  of  streams  over  time  in 
seconds.  Figure  5.b  shows  the  total  volume  of  data 
transferred  over  time,  and  Figure  5.c  shows  the  instant 
throughput  measured  while  data  transfer  operation  is 



active.  The changes  in  the  performance  as  in  Figure  5.c  
were detected live,  and the number of concurrent streams 
was adjusted over time as shown in Figure 5.a. 

Figure 5: Adaptive transfer adjustment: (a) TCP streams, (b) 
total bytes transmitted, (c) instant throughput over the time in 
seconds.
Instead of making measurements with external profilers to 
set  the  level  of  concurrency,  transfer  parameters  are 
calculated  using  information  from  current  data  transfer 
operations. Thus, the network would not have extra packets 
and extra load is not put onto the system due to extraneous 
calculations  for  exact  parameter  settings.  The  number  of 
multiple  streams  is  set  by  observing  the  achieved 
application  throughput  for  each  transfer  operation,  and 
parameters are gradually adjusted according to the current 
performance merit.  The transfer time of each operation is 
measured and the total  throughput is calculated. The best 
throughput  for  the current  concurrency  level  is  recorded.  
The  actual  throughput  value  of  the  data  transfers  is 
calculated, and the number of multiple streams is increased  
if the throughput value is larger  than the best  throughput 
seen so far.  In this dynamic approach, we try to reach to a  
near optimum value gradually,  instead of finding the best 
parameter  achieving  the  highest  throughput  at  once.  We 
underline  the  fact  that  the  focus  is  on  application  level 
tuning such that we do not deal with low-level network and 
server  optimization.  We  adjust  the  number  of  multiple 
streams  according  to  the  dynamic  environmental 
conditions,  and  also  taking  into  the  consideration  of  the 
fact that there might be other data transfer operation using 
the same network resources.
We  first  start  with  a  single  stream  of  a  transfer  and 
measure the instant achievable throughput. The number of 
concurrent transfers running at the same time is increased 
gradually as long as there is any performance gain in terms 
of overall throughput. Although this incremental approach 
is practical  especially  for  a  large-scale  data  transfer  that 

takes  time  to  complete,  a  good  starting  point  is  highly 
desirable  in  terms  of  the  number  of  multiple  streams. 
Inspired from the TCP congestion window mechanism, we 
benefit  from  exponentially  increasing  the  concurrency 
level in the beginning of the tuning process. Figure 6 gives 
a  glimpse  of  the  algorithm  used  to  set  the  optimum 
concurrency  level.  We analyze  the search  pattern  in  two 
phases.  In  the  first  phase,  we  exponentially  increase  the 
number of multiple streams to quickly find a good starting 
point.  In  the  second  phase,  we  gradually  set  the 
concurrency  level  by  measuring  instant  throughput 
between every parameter update in order to come up with 
the  optimal  number  of  multiple  streams  in  a  dynamic  
manner.

Figure 6: Algorithm searching for the optimal concurrency level

The  interval  between  the  adjustment  points  is  another 
important  issue.  We  measure  the  instant  throughput 
performance,  but  it  may  not  be  appropriate  to  make 
adjustment  on  the  number  of  concurrent  streams  after 
every  measurement  point.  Considering  the  possibility  of 
minor fluctuations in the network throughput performance, 
we set a threshold value based on the transferred data size  
before observing any changes in the achievable throughput 
performance and deciding the needs of adjustments on the 
number  of  concurrent  streams.   This  property  has  also 
shown  in  Figure  5.a  where  the  number  of  concurrent 
streams  is  adjusted  based  on  the  major  changes  in  the 
achievable throughput. Figure 5.c shows the corresponding 
changes in the instant throughput during the entire transfer. 
If a significant drop change in the throughput performance 
has  been  detected,  the  number  of  concurrent  streams  is 
decreased  by  half  (N/2),  and  searching  for  the  optimal 
number of concurrent streams gets started as described in 
Figure 6.
4.2 A Simple Throughput Prediction Model
We have performed several  experiments with various file  
sizes by changing the number of concurrent TCP streams. 
Figure  7 shows the  overall  throughput  performance  over 
the  number  of  concurrent  TCP  streams  under  different 
round trip time (RTT) values when different sizes of files 
are  transferred.  The  first  observation  is  that,  the  latency 
directly affects the behavior of the throughput performance 
curve. Figure 7.a shows throughput performance on a 10-



Gbps  network  with  round-trip  time  0.5ms.  As  seen  in 
Figure  7.b,  more  TCP  streams  are  needed  to  fill  the 
network bandwidth when latency is higher.

Our second observation  is that  we can  use power-law to 
come up with a simple prediction schema. We see that the  
relationship between the  number  of multiple  streams and 
the  throughput  gain  can  be  approximated  by  a  simple 
power-law model.  Figure  8  illustrates  log-log  graphs  for 
total  throughput  versus  the  number  of  multiple  streams.  
We can  classify the  behavior  into two parts.  In  the  first  
part,  where  we reach  80% of the  achievable  throughput, 
the power law approximation models  the behavior  of the 
multiple  streams  versus  throughput.  Based  on  this 
information,  we  present  a  power-law  approximation  to 
predict the number of multiple streams. 

Figure 7: Total throughput over the number of streams; 
(a) rtt=0.5 ms, (b) rtt=70ms

Power-law  demonstrates  the  mathematical  relationship 
between  two  quantities  where  one  attribute  varies  as  a 
power  of  another  attribute.  Many  functions,  especially 
man-made phenomena, follow power law [28,29].   In our 
case,  the  achievable  throughput  varies  as  a  power of  the 
number of streams where the scaling exponent is related to 
the  round-trip  time.  It  seems  to  represent  the  tradeoff 
between the gain and the cost of adding TCP streams in a 
data transfer operation over a network. 
A simple model was also developed to estimate the starting 
point  based on round-trip time (RTT) between the source 
and destination hosts. The goal is to set the initial number  
of multiple  streams that  would be calculated  in  the  fast-
start phase of the algorithm given in Figure 6, and it will 
be  used  as  the  base  point  in  the  second  phase  of  the 
algorithm, where we gradually adjust for optimum tuning. 

Note that we try to obtain a good starting point that will be 
used later for fine-tuning. 

The power law approximation is modeled as

         T = (n / c) (RTT / k)                               (1)

where  T is achievable  throughput  in  percentage,  n is the 
number of multiple streams (n > 0),  RTT is the round trip 
time,  and  c and  k  are  constant  factors.   Unlike  other 
models [23,24,25] trying to find an approximation model 
for the multiple streams and throughput relationship,  this 
model  only focuses on the initial  behavior of the transfer 
performance.

Figure 8: Total throughput over the number of streams (log-log 
scale). 

As in Figure 9, test runs show achievable throughput over 
the number of concurrent transfers in different RTT values. 
When  RTT is  low,  the  achievable  throughput  starts  high 
with the low number of streams and quickly approaches to 
the optimal throughput.  When  RTT is high, more number 
of streams is needed for higher achievable throughput. Our 
goal  is  to  come  up  with  a  proper  starting  point  for  the 
number  of  concurrent  streams.  The  simple  estimation 
model  must  capture  the  relationship between  the  latency 
and  the  throughput  performance.  The  initial  estimation 
value  will  be  used  in  dynamic  parameter  tuning  for  the 
optimum number of streams. 
Since  our  simple  model  estimates  the  achievable 
throughput  in  percentage,  (n /  c)  should  be  less  than  1. 
Further,  the exponent (RTT / k) should be less than 1, in 
order  to  capture  the  relationship  between  the  achievable 
throughput  in  percentage  and  cost  of  adding  additional 
transfer  streams  into  the  transfer  operation.  In  our  test,  
shown in Figure 9, where we have conducted experiments 
over high-bandwidth networks with high and low latency,  
we set  c as  100  as  the  maximum  number  of  concurrent 
streams,  and  k as  300  the  maximum  RTT.  The  constant 
values in the given formula can be adjusted to obtain more 
accurate  model.  However,  accurate  starting  point  is  not 
required  in  our  case,  and  the  model  can  estimate  the 
number of streams to give 80% of achievable  throughput 
performance  as  starting  point,  similar  to  80-20  rule  in 
Pareto distributions [29].



0.8 = (n / c) (RTT / k)                                              (2)

n = (e ( k * ln 0.8 / RTT )) ∙ c                    (3)

According to the equation (3),  the initial  estimated value 
for number of streams n is; 10 if RTT is 30ms (Figure 9.d), 
38 if RTT is 70ms (Figure 9.e), 61 if RTT is 140ms (Figure 
9.f), and 0.1 (which is rounded to 1) if RTT is 10ms (Figure 
9.c).

Figure 9: Achievable throughput in percentage over the 
number of streams with low/medium/high RTT; 

(a) RTT=1ms, (b) RTT=5ms, (c) RTT=10ms, (d) RTT=30ms, 
(e) RTT=70ms, (f) RTT=140ms

A 

practical  throughput  prediction  model  for  approximating 
the  initial  behavior  of  the  transfer  performance  is 
important.  The adaptive transfer adjustment model gives a 
base  for  optimal  transfer  throughput  management  in 
dynamic  environments.  In  addition  to  that,  we  need  a 
mathematical  model  that will  be  used  to  obtain  a  good 
starting point for adaptive fine-tuning. This model should 
be  simple  and  easily  applicable  inside  BDM  for  initial 
concurrency  estimation.  The  test  runs  in  real  shared 
environment  show that  the dynamic  transfer management 
in BDM with the initial transfer estimation would provide 
an  effective  way  in  obtaining  optimal  transfer 
performance.

5. Testbed
The Green Data Oasis (GDO) [6] at  LLNL has over 600 
TB of spinning disk and serves  35 TB of IPCC CMIP-3 
multi-model data. Two GridFTP server nodes with Solaris 
10  running  ZFS  on  AMD-64  hardware  were  used  with 
access to the 10-Gbps ESnet network. Two NERSC Data 
Transfer  Nodes [7] were used to transfer  data located on 
NERSC  storage  units  based  on  GPFS.  A  10-Gbps  SDN 

through  OSCARS  [8]  could  be  reserved  through  ESnet 
between NERSC and LLNL. In this test  setup,  randomly 
selected a few climate  datasets from IPCC CMIP-3 were 
replicated for test runs under different transfer conditions. 
Dataset sizes range from 40 GB to 10 TB.

6. Discussion and Future Work
The  ESG  has  the  difficult  challenges  of  managing  the 
distribution  of  massive  datasets  and  accessing  and 
analyzing them.  The IPCC CMIP-3 holds over 35 TB of 
data  at  the  LLNL  site.  The  IPCC  Coupled  Model 
Intercomparison Project, phase 5 (CMIP-5) is projected to 
be  10  PB.  Bulk  Data  Mover  (BDM)  is  to  provide  the 
efficient data delivery required for the scalability that the 
ESG  needs  for  data  access  in  the  highly  collaborative 
decentralized  environment,  with  efficient  and  adaptive 
transfer management. 

We have studied dynamic  transfer  adjustment  to enhance 
end-to-end  data  transfer  performance.  In  our  adaptive 
approach, we set the level of concurrency on the fly. The 
number  of  multiple  streams  is  set  by  observing  the 
achieved  application throughput  for  each  transfer 
operation, and parameters are gradually adjusted according 
to the current performance merit.  We have studied several 
versions of this dynamic adaption approach and enhanced 
the algorithm after intensive testing and analysis. We have 
been working on applying and implementing our dynamic 
adaptation algorithm in BDM. 

We also observed that we can use power-law to come up 
with  a  simple  prediction  schema.  We  see  that  the 
relationship between the  number  of multiple  streams and 
the  throughput  gain  can  be  approximated  by  a  simple 
power-law  model.  We  presented  a  power-law 
approximation to predict  the number of multiple streams. 
The achievable throughput varies as a power of the number 
of  streams  where  the  scaling  exponent  is  related  to  the 
round-trip time. It  represents the tradeoff between the gain 
and  the  cost  of  adding  TCP  streams  in  a  data  transfer  
operation over a network.   This power law model is used 
along with the dynamic adaptation algorithm.  The goal is 
to set the initial number of multiple streams that would be  
calculated in the first phase. This will be used as the base  
point  in  the  second  phase  of  the  algorithm,  where  we 
gradually adjust  for optimum tuning.  Note that  we try to 
obtain a good starting point that will be used later for fine-
tuning  (dynamic  adaptation).  Unlike  other  models  in  the 
literature  (trying  to  find  an approximation  model  for  the 
multiple  streams and throughput relationship),  this model 
only  focuses  on  the  initial  behavior  of  the  transfer 
performance. When RTT is low, the achievable throughput 
starts  high  with  the  low number  of  streams  and  quickly 
approaches to the optimal throughput. When RTT is high, 
more  number  of streams is needed for  higher  achievable 
throughput.  We are in the process of applying this model 
inside  BDM.  Besides,  we  plan  to  enhance  our 
mathematical  approach  by  conducting  several  other 
experiments in different environments.
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