
Finding Tropical Cyclones on a Cloud Computing Cluster:
Using Parallel Virtualization for Large-Scale Climate Simulation Analysis

D. Hasenkamp, A. Sim, M. Wehner and K. Wu

Lawrence Berkeley National Laboratory, USA
{dhasenkamp, asim, mfwehner, kwu}@lbl.gov

ABSTRACT
Extensive computing power has been used to tackle issues
such as climate changes, fusion energy, and other pressing
scientific challenges. These computations produce a
tremendous amount of data; however, many of the programs
used to analyze this data currently only run a single
processor. In this work, we explore the possibility of using
the emerging cloud computing platform to parallelize such
sequential data analysis tasks. As a proof of concept, we
wrap a program for analyzing trends of tropical cyclones in
a set of virtual machines (VMs). This approach allows the
user to keep their familiar data analysis environment in the
VMs, while we provide the coordination and data transfer
services to ensure the necessary input and output are
directed to the desired locations. This work extensively
exercises the networking capability of the cloud computing
systems and has revealed a number of weaknesses in the
current cloud system software. In our tests, we are able to
scale the parallel data analysis job to a modest number of
VMs and achieve a speedup that is comparable to running
the same analysis task using MPI. However, compared to
MPI based parallelization, the cloud-based approach has a
number of advantages. The cloud-based approach is more
flexible because the VMs can capture arbitrary software
dependencies without requiring the user to rewrite their
programs. The cloud-based approach is also more resilient
to failure; as long as a single VM is running, it can make
progress while as soon as one MPI node fails the whole
analysis job fails. In short, this initial work demonstrates
that a cloud computing system is a viable platform for
distributed scientific data analyses traditionally conducted
on dedicated supercomputing systems.
Keywords: tropical cyclone, cloud computing, virtualization,
virtual machine, parallelization, climate data

1. INTRODUCTION
Climate change is one of the most pressing issues we as a
species currently face. In recent years, evidence for global
warming has become increasingly difficult to refute, with
numerous surveys showing clear increasing trends in
average sea-surface and air temperatures. The National
Oceanographic Data Center, for example, compiled data
from a survey buoy in the Gulf of Alaska showing a 1
degree Celsius increase in average sea-surface temperature
from 1975 to 2005 [1]. Both scientists and governments

seek to understand the potential threat to human society
posed by this change. Many damaging consequences must
be considered: a warming climate could cause problems
such as heat waves, biological extinctions, violent weather
conditions, and pronounced rises in sea level. By
understanding how such threats propagate and worsen,
governments can plan ahead to mitigate many potential
damages. Moreover, by understanding the role of human
activity in creating these threats, we can modify our own
actions to lessen the stress we place on our planet.
A promising method of predicting the future effects of
climate change is to run large-scale simulations of the global
climate many years into the future [2, 3]. Climatologists
discretize our globe, setting up differential equations to
model Earth's climate. These differential equations are run
forward using numerical methods, such as Runge-Kutta [4],
over many time-steps encapsulating decades or centuries;
data for the entire globe at certain time steps are stored into
large repositories. Because the Earth's climate is extremely
sensitive to initial conditions (the famous "butterfly effect")
[5], these simulations are commonly run many times with
slightly varying initial conditions. A large number of
analysis techniques have been developed to make use of
these ensembles to generate more accurate understanding of
climate model [19] [20].
The data generated by these simulations is massive. For
example, a climate model currently in use called fvCAM [3]
generates roughly 500GB data when forced for 15 simulated
years with output every 6 simulated hours and a mesh point
resolution of 0.5 degrees latitude by 0.625 degrees
longitude. Climatologists plan to run this model many times
for 100 simulated years with different initial conditions,
thus generating petabytes of raw data.
This raw data requires computationally intensive analysis to
yield any useful information to climatologists, who are
interested in finding a variety of phenomena including heat
waves, hurricane counting/tracking, alterations in wind
patterns, etc. To conduct these analysis tasks, we need to
transfer terabytes or even petabytes of raw data from storage
systems to the computational systems. Managing such
volume of data is frequently tedious and time consuming.
Many of the climate analysis programs avoid such issues by
working with one data file that is already on disk. To better

utilize the computer resources, we seek to automate the data
management for such analysis programs.
Many of these climate data analysis programs are
parallelizable in a data-driven manner, since each time step
in the data can usually be analyzed independently of others,
for example, to search for hurricane conditions or high-
temperature regions. Hence, it is often possible to greatly
speed up these analysis programs by running them many
times in parallel, giving each process a subset of the data.
Additionally, these analysis programs typically contain
numerous software dependencies. For example, climate
simulation output is often stored in the NetCDF [6] file
format; NetCDF files are only readable using software
libraries distributed by Unidata [7].
Opportunities for parallelization combined with a
dependence on library routines create an interesting
conundrum. Clearly, scientists could benefit from taking
advantage of massively parallel supercomputing
infrastructure to run their data analysis programs, but the
program execution environment provided by any given
supercomputing facility is typically unique to the facility or
machine architecture. The execution environment is likely
to lack or provide the wrong version of an essential library,
rendering execution of analysis code difficult. Thus, to
move their analysis code to new supercomputing
environments, scientists face an unfortunate amount of
overhead. If the supercomputing environment does not
provide the proper libraries, users will have to install them
by hand, which is tedious and often involves learning more
about the underlying supercomputing system than the user
would like to; for example, where on the file system the
libraries should be installed, or how libraries are linked in to
the analysis code.
Hence, the motivation for a self-contained, parallelizable
method of packaging climate analysis code for execution on
supercomputer infrastructure is clear. Utilization of
virtualization-based cloud computing infrastructure [8, 9] is
a natural solution to this problem: Virtualization technology
provides a desirable configure-once, run-anywhere
environment and the cloud computing paradigm can provide
massive parallelism. Our goal is to provide a set of tools to
coordinate the virtual machines and to transfer the necessary
data files between the virtual machines and the storage
systems.
The most popular virtualization-based cloud computing
infrastructure is currently Amazon's EC2 [10]; in this paper,
we used an open-source implementation of the EC2 API
called Eucalyptus [11, 12]. The abstraction provided by
such systems, while requiring a fair amount of overhead, is
simple and attractive to programmers. Users create virtual
machines, customizing them with whatever operating
systems and software they like, and the cloud infrastructure
provides a processor and RAM on which to run these virtual
machines. Hence, users can replicate in their virtual

machines the environment required by their code, allowing
them to run their code on any system that can run their
virtual machine. This would allow climatologists to package
their analysis code into a format that can be run on a myriad
of different systems and architectures without any need for
reconfiguration when moving to new computational
platforms.
We explored methods of using virtualization-based cloud
computing resources to perform massively parallelized
climate analysis. We built virtual machines to parallelize a
program called TSTORMS [2], which finds tropical storms
in climate simulation output data. Section 2 gives an
overview of tropical storms and TSTORMS. We ran our
virtual machine using two systems: the Eucalyptus cluster
on the Magellan Scientific Cloud [13] at Argonne National
Laboratory, and the Grid Laboratory of Wisconsin (GLOW)
at the University of Wisconsin, Madison [14]. We used two
different techniques to network and to coordinate virtual
machine instances to perform data-driven parallel analysis
of climate simulation output data; these techniques are
outlined in Section 3. We compared the results from VM
based runs with similar results from MPI based runs at
NERSC [17] in Section 4, followed by conclusion in
Section 5.

2. Tropical Storms and TSTORMS
Tropical storms are one of the most damaging climate
events in terms of both monetary destruction and loss of
human life [3]. In recent years, researchers have collected
data demonstrating clear increases in tropical storm
frequency and intensity [1, 2]. Groups of climatologists are
using simulations to understand why this is happening and
whether it will worsen. They devise models and run them
first on the recent past to establish their validity. After
validating a model against recent observations, they run it
far into the future to see how tropical storm characteristics
will change. Often, the prognosis is grim: Using the
fvCAM2.2 climate model, Wehner et al [3] demonstrated
the likelihood of an increase in tropical storm frequency
between the 1990s and the 2090s.
To find tropical storms in climate simulation output,
Wehner et al used a program called TSTORMS, written by
Tom Knutson's group at the Geophysical Fluid Dynamics
Library [2]. The TSTORMS code is representative of many
such climate analysis programs: It is very computationally
intensive, requiring numerical min/max searches over
splines generated from several large multidimensional
arrays. It contains a number of library dependencies, and it
offers opportunities for data-driven parallelism.
The TSTORMS code takes as an argument a NetCDF file
containing climate simulation data and finds points in space
and time satisfying the following conditions [2]:
1. A local relative vorticity maximum at 850 hPa exceeds

1.6*10-4 s-1. Vorticity is the curl of wind velocity, and s
is time in seconds.

2. The surface pressure increases by at least 4 hPa from
the storm center within a radius of 5 degrees. The
closest local minimum in sea level pressure, within a
distance of 2 degrees latitude or longitude from the
vorticity maximum, is defined as the center of the
storm.

3. The distance of the warm-core center from the storm
center does not exceed 2 degrees. The temperature
decreases by at least 0.8 degrees Celsius in all
directions from the warm-core center within a distance
of 5 degrees. The closest local maximum in temperature
averaged between 300 and 500 hPa is defined as the
center of the warm core.

Figure 1 was produced by TSTORMS running on our
virtual machine on Magellan. This particular plot, which
shows tropical cyclones in the year 1993 in a simulation of
1979-1993, would be useful to climatologists in establishing
the validity of the climate model that produced it. They can
compare the characteristics of a plot such as this with
observation data to show that the underlying climate model
is accurate.
TSTORMS is a single thread sequential program; running
on a single processor, analysis of 500GB of climate
simulation output can take several days. Parallelization is
possible by running multiple TSTORMS processes
simultaneously; however, doing this on traditional batch
processing-based supercomputing systems can be difficult.
This program requires a number of different support
libraries. It also needs a large number of input files and
produces a large number of output files. Finding the disk
space for the 500GB of test data does not seem to be a

challenging task, however, much larger datasets are
expected in the near future. It is highly desirable to
automate the data management tasks such as distributing the
data files among the parallel processors and moving the data
files to and from the storage systems.
We used virtualization-based cloud computing to parallelize
this code, using multiple cloud nodes to produce data
analysis output much more quickly than is possible on
traditional workstations. Virtualization and cloud
computing can provide both of the properties we desire:
Support for massive parallelism as well as a self-contained
environment in which climate analysis code can be run on a
variety of platforms and architectures without
reconfiguration.

3. Virtual Machine Coordination
Using virtual machines on cloud clusters for parallel data
analysis requires coordination among virtual machine
instances. In our case, virtual machines need to split up and
analyze a large repository of climate data files. Our virtual
machine contains a list of URLs to these data files; instances
of the virtual machine must be equipped with some method
of deciding which files each VM instance will process so
that no redundant analysis is performed. This coordination
is subject to a number of constraints introduced by the
properties of cloud-based virtualization platforms. These
constraints, though far from insurmountable, necessitate
parallelization architectures somewhat different from the
MPI-like paradigms many programmers are familiar with.
We identified the following constraints:
• At launch, no virtual machine instance knows the

location of or how to address other virtual machine

Figure 1: Simulated tropical storms, September 1993, from fvCAM2.2 simulation encompassing 1979-1993.

instances. Instances can use broadcast packets or
IP/port scanning to find each other, and once they do,
can open TCP connections with each other. Packets
could be dropped between instances; however, virtual
machine instances running on a cloud cluster are
typically topologically close enough, i.e. there are very
few routers between each instance, that packet
transmission success rates are very good.

• In practice, it is difficult to control exactly how many
virtual machines instances are successfully launched. A
user requesting 40 instances might, for example, only
receive 36. Not all cloud clusters share this property,
but in our tests we hardly ever get all instances we have
requested.

• Virtual machine instances launch at varying times: If a
user makes a request for 20 VM instances, the first
instance might start a half hour before the last.

Using MPI, process coordination for data-driven parallelism
is relatively easy: At launch, each process can learn how
many other processes exist as well as its "rank", a unique ID
between 0 and the number of processes. Using this
information, each process can compute a logical split of the
input data without ever having to contact another process, as
shown in Figure 2. Virtual machines on cloud clusters do
not share this property. They do not know how many other
virtual machine instances exist, since instances launch
sporadically and usually in non-deterministically fewer
numbers than requested; even if they did, there would be no
easy way for an instance to determine its position in an
ordering of instances, which MPI provides with process
rank. Hence, we must devise a method for virtual machines
to coordinate their data analysis. We explored two
possibilities for virtual machine coordination: Coordination
through leader election, and coordination through remote
services.

3.1 Coordination Using Distributed Leader
Election
A reasonable method of virtual machine coordination is to
elect one virtual machine instance as a leader at launch time
to track job status and coordinate virtual machine instances.
In our case, the leader maintains a synchronized queue of
URLs of input files from which all other VM instances pull
one URL at a time. The main advantage of leader election
is that the job is self-contained: a user can launch as many
instances as she would like, and does not have to perform
any further tasks, such as setting up a server for the VMs to
contact.
The technical details of our leader election-based
coordination scheme, as in Figure 3, are as follows: When
our virtual machines launch, they run a script, written in
Python 2.6, using their initialization file. This script first
runs a distributed leader election algorithm (see section 3.2);
after this algorithm, we are guaranteed that all running
instances have decided on a single leader and know how to
address it. Late-starting instances will be contacted by the
leader or another work, and informed of the correct leader;
this is built into the leader election scheme. The leader
initializes a synchronized queue of remote URLs to climate
simulation output files, as we store these files in a remote
repository, and sets up an XML-RPC (xml-based remote
procedure call) wrapper around this synchronized queue.
The workers use Python's "ServerProxy" abstraction to
contact this XML-RPC library; each call returns the next
URL in the leader's synchronized queue. Each time a worker
receives a URL, it uses GridFTP [15] to copy the file to its
local file system, runs the TSTORMS code on it, and uses
GridFTP to stage the results out to a remote directory. As a
small optimization, we used multiple threads to perform
data staging and analysis at the same time, since staging
data in and out is primarily I/O-bound, whereas the
TSTORMS code is decidedly CPU-bound. Once the
leader's synchronized queue is empty, the workers receive
"null" values from calls to the XML-RPC library; when this
happens, they shut themselves down.
We ran our leader election-based virtual machine on the
Magellan Scientific Cloud.

Figure 2: Sample design of MPI-based data analysis

Figure 3: Design of leader election-based virtual Machine

3.2 Leader Election Algorithm
We implemented a custom leader election algorithm
designed to work under the constraints of a virtualized cloud
environment. Since no instance initially knows the address
of any other instances, a "discovery" phase must be built
into the election. Instances launch in unpredictable, non-
deterministic patterns; hence, the algorithm must ensure
late-starting instances decide upon the correct leader.
Instances can easily learn their own internal IP, so we used
this as a "node ID" for the election algorithm.
Our algorithm is based on the classic Bully algorithm [16],
in which nodes attempt to choose the highest or lowest node
ID as the leader. Our algorithm offers probabilistically
correct performance with parameters that can be configured
based on the packet transmission success rates of the
underlying network.
Our algorithm uses 3 phases. The first phase is for
discovering other nodes; in this phase, nodes send and
receive broadcast messages to find the addresses of other
nodes. In the second phase, nodes vote for and elect a

leader. In phase 3, nodes notify late-starting nodes of who
the elected leader is.
Nodes send 3 types of messages to each other:
• Announce message: For announcing your presence to

other nodes.
• Vote message: For voting for a particular node to be

leader. Contains the ID of the leader voted for. In our
case, the ID is the node's IP address.

• Authoritative Vote message: Sent during phase 3, when
a node is certain of who the leader will be. It contains
the ID of the elected leader. A node receiving an
Authoritative Vote message during phase 1 or 2 will
skip immediately to phase 3, using the leader indicated
by the Authoritative Vote.

Each node runs this algorithm upon startup. Figure 4 is a
flowchart representing the steps in this algorithm. Notes on
the flowchart:
• Each phase of the algorithm requires input. Phase 1

takes the NodeID of the node running the algorithm, as

Figure 4: Leader election algorithm

well as two parameters (PH1Length and PH2Length)
that determine how tolerant of packet loss the algorithm
will be. Larger values of PH1Length and PH2Length
cause the algorithm to take longer and be more
accurate. Phase 2 takes in the NodeID of a potential
leader to be voted for. Phase 3 takes in the NodeID of
the elected leader. For example, one step on the
flowchart says "Enter Phase 2 with NodeID in Vote
message as PotentialLeader". This means to get the
NodeID from the given Vote Packet, and use this as the
input to Phase 2. Then when Phase 2 references
PotentialLeader, it is referencing the NodeID from the
Vote message.

• Some state is stored. In phases 1 and 2, timers are set;
additionally, in phase 2, a collection of votes is stored.
A box that says "Timer X above Y seconds?" means "if
Timer X has been running for more than Y seconds,
take the 'yes' branch; else, take the 'no' branch". The
timers and vote collection are reset when revisiting the
step that initializes them. So, for example, Timer 1 is
reset every time the algorithm reaches the step that says
"Start Timer 1".

We ran stress tests on this algorithm using simulated 90-
95% packet transmission success rates, parameter
PH1Length, as shown in Figure 4, equal to 20 announce
packets, PH2Length equal to 10 seconds, varying numbers
of nodes, and varying amounts of "stagger" between the
launch time of each node. Over hundreds of test runs, we
had a 100% algorithm success rate, where "success" is
defined as "every node chooses the same leader". We were
also able to achieve 100% success rates with packet loss
rates as high as 50% by setting parameters X and Y to be
suitably large. With packet loss rates much higher than
50%, we were unable to achieve 100% algorithm success
rate. Regardless, we achieved 100% success rate over many
dozens of runs on Magellan resources, since packet transfer
success rates are generally very good between virtual
machine instances on a cloud cluster.
Because node reliability becomes an issue as parallelism
scales, most leader election schemes implement some level
of fault tolerance. This was unnecessary in our particular
case. If the leader election fails, which is very unlikely
based on our test results, the submitter of the job can just
kill all of his/her instances and restart them, wasting a
relatively small amount of compute resources and very little
of the submitter's time, since the leader election is run
before anything else. Once a leader is elected, there is only
one essential node, the leader, and the chances of a
particular node failing is always very low, even when
scaling causes the chance of at least one node failing to
grow large. Hence, we decided to avoid implementation of
complex fault-tolerance procedures and simply restart the
job in the extremely rare case of leader node failure. Fault-
tolerance for non-leader nodes is much simpler, of course.
For example, we implemented a scheme where worker

nodes send "heartbeats" to the leader, allowing the leader to
infer when a node has failed and subsequently re-release its
input URLs to other workers.

3.3 Coordination through a Remote Service
Another reasonable method of virtual machine coordination
is to have the virtual machine instances connect to a remote
service. This remote service does everything that an elected
leader would do: It maintains a synchronized queue of
URLs to input files and an XML-RPC server for connecting
to the synchronized queue. This method is somewhat easier
to implement, and it does not require leader election or node
discovery. However, it requires maintenance of a remote
service for virtual machine instances to connect to. Before
any virtual machine can run, the remote service needs to be
initialized for VM instances to connect to.
The technical details of this scheme as in Figure 5 are as
follows: At launch, each virtual machine fetches, from a
pre-defined location, a file containing a service IP/port to
connect to. This service should be initialized before running
instances; our implementation of this remote service takes a
list of climate simulation output URLs as an argument. The
service initializes a synchronized queue of input file URLs
and an XML-RPC wrapper around the queue, just like in the
leader election scheme. The virtual machines use Python's
"ServerProxy" abstraction to connect to the remote server
and pull file URLs. Each time a virtual machine pulls a
URL, it uses GridFTP to stage in the data, analyzes the data
using TSTORMS, and stages the results out to a remote
directory. Once all URLs have been pulled from the queue,
"null" values are returned and the virtual machines shut
themselves down. We ran our remote service-based virtual
machine on GLOW.

4. RESULTS
We used our virtual machine to run TSTORMS on a remote
500GB repository of climate simulation data using varying
numbers of virtual machine instances on Magellan and
GLOW. We also ran TSTORMS on the same dataset using
MPI on the Carver cluster at NERSC [17]. Nodes on Carver
and Magellan are very similar; each node on each system
contains dual quad-core Intel Nehalem 2.66GHz processors
and 24GB RAM. Hence, Carver is a comparable system to
Magellan. The GLOW nodes we used utilized Xeon

Figure 5: Design of remote server-based virtual machine

2.66GHz and 3.2GHz processors, and had enough RAM for
TSTORMS to execute without using virtual memory, so our
VM on GLOW had compute resources comparable to,
though not exactly the same as, instances on Magellan and
processes on Carver. We used Magellan for tests involving
fewer instances, and GLOW for tests involving many
instances.
Our climate simulation data was stored on GPFS file system
at NERSC, and Carver had somewhat of a speed advantage
over our virtual machines since data could be accessed
through a local file system rather than needing to be sent
across a network. Virtualization overhead put our virtual
machines at a further disadvantage compared to Carver.
Regardless of this, we found that both methods offer similar
performance, with VM based analysis on Magellan actually
performing better than MPI based analysis on Carver in one
test: Analyzing our 500GB repository on Carver using 8
processes took 3 hours longer than on Magellan using 8
virtual machine instances (~12.5 vs. ~9.5 hours). Using 90
instances on GLOW, we were able to produce analysis
output in ~2 hours. This is a conveniently short amount of
time for a scientist to wait for analysis output, and it is
comparable to analysis performance on Carver. Figure 6 is
a log-log plot of all timing data we collected.
Virtual machines were substantially more unpredictable
than processes on Carver with respect to total analysis time
as a function of number of instances/processes. On Carver,

doubling the amount of processes halves total analysis time;
using virtual machines on a cloud cluster, this property
holds only approximately. Since virtual machine instances
can have different starting times, whereas processes in MPI
start almost at the same time, this is to be expected.
However, we saw a little more eccentricity than we would
expect. We concluded that this is largely a consequence of
staging in data over a shared network; we observed that on
both Magellan and GLOW our virtual machines ran
somewhat faster late at night and on weekends, when there
was less competition for network resources. The anomalous
8-instance test we ran on Magellan was started on a Friday
night, so competition for both network bandwidth and cloud
nodes would have been relatively low. Further research will
include using FUSE [18] to mount data onto our VM, which
will allow us to avoid transferring data over a network.
Using 30 virtual machines, we were able to analyze the
500GB dataset in ~4.5 hours. Using a single-processor
workstation, analysis of the same dataset can take several
days; assuming the workstation has similar computational
power to a single virtual machine instance on Magellan or
MPI process on Carver, analysis would take roughly 90-95
hours. Hence, using 30 virtual machine instances, we
reduced total analysis time by a factor of ~21. Ideally, the
reduction factor here would be 30. We expect that by FUSE-
mounting data to the VM, instead of transferring it over a
network, we can reduce total analysis time even further.

5. CONCLUSIONS
In light of our results, we concluded parallel virtualization
to be a viable paradigm for large-scale data analysis.
Parallel virtualization offers an attractive environment in
which analysis programs can be configured once and run
anywhere with configurable, and potentially massive, levels
of parallelism and efficiency comparable to a traditional
batch-based supercomputing system. This is a distinct
advantage over both methods currently in use: Traditional
supercomputing systems do not offer the configure once,
run anywhere property, while personal workstations cannot
offer the massive levels of parallelism climatologists need to
analyze the vast amounts of data their simulations produce.
The usefulness of parallel virtualization is not limited to
climate simulation data analysis. Any scientist with
parallelizable data analysis requirements and reluctance to
migrate analysis code to supercomputing facilities due to
program execution environment concerns can take
advantage of virtualization-based cloud computing to
produce data analysis output quickly and efficiently without
the usual difficulties that arise in porting analysis code to
new environments.
The additional work required is to provide a set of tools for
coordinating the virtual machines and facilitate data
movements. In this work, we experimented with two
different approaches for coordination: through leader
election and through an external service. We handle the

Figure 6: Analysis timing results

data movements through a common Grid tool. From our
experience, we believe that the job coordination and data
movements can be built into a management system as a part
of a cloud computing ecosystem. We plan to extend our
work to produce such a system.

ACKNOWLEDGMENTS
This work was funded, and used resources of the National
Energy Research Scientific Computing Center, by the
Office of Advanced Scientific Computing Research, Office
of Science, U.S. Department of Energy, under contracts DE-
AC02-05CH11231. This work also used resources of the
Argonne Leadership Computing Facility at Argonne
National Laboratory which is supported by the Office of
Science of the U.S. Department of Energy under contract
DE-AC02-06CH11357, funded through the American
Recovery and Reinvestment Act of 2009, and resources
provided by the Open Science Grid, which is supported by
the National Science Foundation and the U.S. Department
of Energy's Office of Science. We would like to thank
Shane Canon, Jason Hick and David Skinner at National
Energy Research Scientific Computing Center and the
Condor Team at University of Wisconsin at Madison and
the OSG Engage Team for their support on our experiments.

REFERENCES
[1] P. J. Webster, G. J. Holland, J. A. Curry, H.R. Chang.

Changes in Tropical Cyclone Number, Duration, and
Intensity in a Warming Environment. Science 2005 vol.
309, no. 5742, pp. 1844-1846.

[2] T. R. Knutson, J. J. Sirutis, S. T. Garner, I. M. Held, R.
E. Tuleya. Simulation of the Recent Multidecadal
Increase of Atlantic Hurricane Activity Using an 18-
km-Grid Regional Model. Bulletin of the American
Meteorological Society 2007 88:10, 1549-1565.

[3] M. F. Wehner, G. Bala, P. Duffy, A. A. Mirin, and R.
Romano. Towards Direct Simulation of Future Tropical
Cyclone Statistics in a High-Resolution Global
Atmospheric Model. Advances in Meteorology.
Volume 2010 (2010), Article ID 915303.

[4] J. Stoer and R. Bulirsch. Introduction to Numerical
Analysis. New York: Springer-Verlag, 1980.

[5] Lorenz, Edward N. "Deterministic Nonperiodic Flow".
Journal of the Atmospheric Sciences 20 (2): 130–141,
March 1963.

[6] NetCDF. [Online]
http://www.unidata.ucar.edu/software/netcdf/

[7] Unidata. [Online] http://www.unidata.ucar.edu/
[8] M. Cusumano. Cloud computing and SaaS as new

computing platforms. Comm. ACM 53, 4 (Apr. 2010),
27-29.

[9] R. Buyya, C. S. Yeo, and S. Venugopal. Market-
Oriented Cloud Computing: Vision, Hype, and Reality
for Delivering IT Services as Computing Utilities. In

Proceedings of the 10th IEEE International Conference
on High Performance Computing and Communications
(HPCC 2008, IEEE CS Press, Los Alamitos, CA,
USA), Sept. 25-27, 2008.

[10] Amazon EC2 Case Studies. [Online]
http://aws.amazon.com/solutions/case-studies/

[11] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S.
Soman, L. Youseff, and D. Zagorodnov. The
Eucalyptus Open-Source Cloud-Computing System. In
Proceedings of the 2009 9th IEEE/ACM international
Symposium on Cluster Computing and the Grid (May
18 - 21, 2009). CCGRID. IEEE Computer Society,
Washington, DC, 124-131.

[12] Eucalyptus. [Online] http://www.eucalyptus.com/
[13] Magellan Scientific Cloud. [Online]

http://magellan.alcf.anl.gov/
[14] UW-HEP Computing. [Online]

http://www.hep.wisc.edu/computing/
[15] Allcock, W., Bresnahan, J., Kettimuthu, R., Link, M.,

Dumitrescu, C., Raicu, I., and Foster, I., "The Globus
Striped GridFTP Framework and Server" In
Proceedings of the 2005 ACM/IEEE Conference on
Supercomputing (November 12 - 18, 2005).

[16] Hector Garcia-Molina, Elections in a Distributed
Computing System, IEEE Transactions on Computers,
Vol. C-31, No. 1, January (1982) 48-59.

[17] Carver at NERSC. [Online]
http://www.nersc.gov/nusers/systems/carver/

[18] FUSE: File system in user space. [Online]
http://fuse.sourceforge.net/

[19] Giorgi, F. and Mearns, L.O. “Calculation of average,
uncertainty range and reliability of regional climate
changes from AOGCM simulations via the ‘Reliability
Ensemble Averaging’ (REA) method.” J. Climate 15,
1141-1158. 2002.

[20] Richard L. Smith, Claudia Tebaldi, Doug Nychka,
Linda O. Mearns. Journal of the American Statistical
Association. March 1, 2009, 104(485): 97-116.
doi:10.1198/jasa.2009.0007.

