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ABSTRACT 
Extensive computing power has been used to tackle issues 
such as climate changes, fusion energy, and other pressing 
scientific challenges. These computations produce a 
tremendous amount of data; however, many of the programs 
used to analyze this data currently only run a single 
processor.  In this work, we explore the possibility of using 
the emerging cloud computing platform to parallelize such 
sequential data analysis tasks.  As a proof of concept, we 
wrap a program for analyzing trends of tropical cyclones in 
a set of virtual machines (VMs). This approach allows the 
user to keep their familiar data analysis environment in the 
VMs, while we provide the coordination and data transfer 
services to ensure the necessary input and output are 
directed to the desired locations.  This work extensively 
exercises the networking capability of the cloud computing 
systems and has revealed a number of weaknesses in the 
current cloud system software.  In our tests, we are able to 
scale the parallel data analysis job to a modest number of 
VMs and achieve a speedup that is comparable to running 
the same analysis task using MPI.  However, compared to 
MPI based parallelization, the cloud-based approach has a 
number of advantages.  The cloud-based approach is more 
flexible because the VMs can capture arbitrary software 
dependencies without requiring the user to rewrite their 
programs.  The cloud-based approach is also more resilient 
to failure; as long as a single VM is running, it can make 
progress while as soon as one MPI node fails the whole 
analysis job fails.  In short, this initial work demonstrates 
that a cloud computing system is a viable platform for 
distributed scientific data analyses traditionally conducted 
on dedicated supercomputing systems. 
Keywords: tropical cyclone, cloud computing, virtualization, 
virtual machine, parallelization, climate data 

1. INTRODUCTION 
Climate change is one of the most pressing issues we as a 
species currently face. In recent years, evidence for global 
warming has become increasingly difficult to refute, with 
numerous surveys showing clear increasing trends in 
average sea-surface and air temperatures. The National 
Oceanographic Data Center, for example, compiled data 
from a survey buoy in the Gulf of Alaska showing a 1 
degree Celsius increase in average sea-surface temperature 
from 1975 to 2005 [1]. Both scientists and governments 

seek to understand the potential threat to human society 
posed by this change. Many damaging consequences must 
be considered: a warming climate could cause problems 
such as heat waves, biological extinctions, violent weather 
conditions, and pronounced rises in sea level. By 
understanding how such threats propagate and worsen, 
governments can plan ahead to mitigate many potential 
damages.  Moreover, by understanding the role of human 
activity in creating these threats, we can modify our own 
actions to lessen the stress we place on our planet. 
A promising method of predicting the future effects of 
climate change is to run large-scale simulations of the global 
climate many years into the future [2, 3]. Climatologists 
discretize our globe, setting up differential equations to 
model Earth's climate.  These differential equations are run 
forward using numerical methods, such as Runge-Kutta [4], 
over many time-steps encapsulating decades or centuries; 
data for the entire globe at certain time steps are stored into 
large repositories.  Because the Earth's climate is extremely 
sensitive to initial conditions (the famous "butterfly effect") 
[5], these simulations are commonly run many times with 
slightly varying initial conditions.  A large number of 
analysis techniques have been developed to make use of 
these ensembles to generate more accurate understanding of 
climate model [19] [20]. 
The data generated by these simulations is massive. For 
example, a climate model currently in use called fvCAM [3] 
generates roughly 500GB data when forced for 15 simulated 
years with output every 6 simulated hours and a mesh point 
resolution of 0.5 degrees latitude by 0.625 degrees 
longitude. Climatologists plan to run this model many times 
for 100 simulated years with different initial conditions, 
thus generating petabytes of raw data. 
This raw data requires computationally intensive analysis to 
yield any useful information to climatologists, who are 
interested in finding a variety of phenomena including heat 
waves, hurricane counting/tracking, alterations in wind 
patterns, etc. To conduct these analysis tasks, we need to 
transfer terabytes or even petabytes of raw data from storage 
systems to the computational systems.  Managing such 
volume of data is frequently tedious and time consuming.  
Many of the climate analysis programs avoid such issues by 
working with one data file that is already on disk.  To better 



utilize the computer resources, we seek to automate the data 
management for such analysis programs. 
Many of these climate data analysis programs are 
parallelizable in a data-driven manner, since each time step 
in the data can usually be analyzed independently of others, 
for example, to search for hurricane conditions or high-
temperature regions. Hence, it is often possible to greatly 
speed up these analysis programs by running them many 
times in parallel, giving each process a subset of the data. 
Additionally, these analysis programs typically contain 
numerous software dependencies. For example, climate 
simulation output is often stored in the NetCDF [6] file 
format; NetCDF files are only readable using software 
libraries distributed by Unidata [7]. 
Opportunities for parallelization combined with a 
dependence on library routines create an interesting 
conundrum. Clearly, scientists could benefit from taking 
advantage of massively parallel supercomputing 
infrastructure to run their data analysis programs, but the 
program execution environment provided by any given 
supercomputing facility is typically unique to the facility or 
machine architecture. The execution environment is likely 
to lack or provide the wrong version of an essential library, 
rendering execution of analysis code difficult. Thus, to 
move their analysis code to new supercomputing 
environments, scientists face an unfortunate amount of 
overhead. If the supercomputing environment does not 
provide the proper libraries, users will have to install them 
by hand, which is tedious and often involves learning more 
about the underlying supercomputing system than the user 
would like to; for example, where on the file system the 
libraries should be installed, or how libraries are linked in to 
the analysis code. 
Hence, the motivation for a self-contained, parallelizable 
method of packaging climate analysis code for execution on 
supercomputer infrastructure is clear. Utilization of 
virtualization-based cloud computing infrastructure [8, 9] is 
a natural solution to this problem: Virtualization technology 
provides a desirable configure-once, run-anywhere 
environment and the cloud computing paradigm can provide 
massive parallelism.  Our goal is to provide a set of tools to 
coordinate the virtual machines and to transfer the necessary 
data files between the virtual machines and the storage 
systems. 
The most popular virtualization-based cloud computing 
infrastructure is currently Amazon's EC2 [10]; in this paper, 
we used an open-source implementation of the EC2 API 
called Eucalyptus [11, 12]. The abstraction provided by 
such systems, while requiring a fair amount of overhead, is 
simple and attractive to programmers.  Users create virtual 
machines, customizing them with whatever operating 
systems and software they like, and the cloud infrastructure 
provides a processor and RAM on which to run these virtual 
machines. Hence, users can replicate in their virtual 

machines the environment required by their code, allowing 
them to run their code on any system that can run their 
virtual machine. This would allow climatologists to package 
their analysis code into a format that can be run on a myriad 
of different systems and architectures without any need for 
reconfiguration when moving to new computational 
platforms. 
We explored methods of using virtualization-based cloud 
computing resources to perform massively parallelized 
climate analysis.  We built virtual machines to parallelize a 
program called TSTORMS [2], which finds tropical storms 
in climate simulation output data. Section 2 gives an 
overview of tropical storms and TSTORMS. We ran our 
virtual machine using two systems: the Eucalyptus cluster 
on the Magellan Scientific Cloud [13] at Argonne National 
Laboratory, and the Grid Laboratory of Wisconsin (GLOW) 
at the University of Wisconsin, Madison [14]. We used two 
different techniques to network and to coordinate virtual 
machine instances to perform data-driven parallel analysis 
of climate simulation output data; these techniques are 
outlined in Section 3. We compared the results from VM 
based runs with similar results from MPI based runs at 
NERSC [17] in Section 4, followed by conclusion in 
Section 5. 

2. Tropical Storms and TSTORMS 
Tropical storms are one of the most damaging climate 
events in terms of both monetary destruction and loss of 
human life [3].  In recent years, researchers have collected 
data demonstrating clear increases in tropical storm 
frequency and intensity [1, 2]. Groups of climatologists are 
using simulations to understand why this is happening and 
whether it will worsen.  They devise models and run them 
first on the recent past to establish their validity.  After 
validating a model against recent observations, they run it 
far into the future to see how tropical storm characteristics 
will change.  Often, the prognosis is grim: Using the 
fvCAM2.2 climate model, Wehner et al [3] demonstrated 
the likelihood of an increase in tropical storm frequency 
between the 1990s and the 2090s. 
To find tropical storms in climate simulation output, 
Wehner et al used a program called TSTORMS, written by 
Tom Knutson's group at the Geophysical Fluid Dynamics 
Library [2]. The TSTORMS code is representative of many 
such climate analysis programs: It is very computationally 
intensive, requiring numerical min/max searches over 
splines generated from several large multidimensional 
arrays.  It contains a number of library dependencies, and it 
offers opportunities for data-driven parallelism. 
The TSTORMS code takes as an argument a NetCDF file 
containing climate simulation data and finds points in space 
and time satisfying the following conditions [2]: 
1. A local relative vorticity maximum at 850 hPa exceeds 

1.6*10-4 s-1. Vorticity is the curl of wind velocity, and s 
is time in seconds. 



2. The surface pressure increases by at least 4 hPa from 
the storm center within a radius of 5 degrees. The 
closest local minimum in sea level pressure, within a 
distance of 2 degrees latitude or longitude from the 
vorticity maximum, is defined as the center of the 
storm. 

3. The distance of the warm-core center from the storm 
center does not exceed 2 degrees. The temperature 
decreases by at least 0.8 degrees Celsius in all 
directions from the warm-core center within a distance 
of 5 degrees. The closest local maximum in temperature 
averaged between 300 and 500 hPa is defined as the 
center of the warm core. 

Figure 1 was produced by TSTORMS running on our 
virtual machine on Magellan. This particular plot, which 
shows tropical cyclones in the year 1993 in a simulation of 
1979-1993, would be useful to climatologists in establishing 
the validity of the climate model that produced it. They can 
compare the characteristics of a plot such as this with 
observation data to show that the underlying climate model 
is accurate. 
TSTORMS is a single thread sequential program; running 
on a single processor, analysis of 500GB of climate 
simulation output can take several days. Parallelization is 
possible by running multiple TSTORMS processes 
simultaneously; however, doing this on traditional batch 
processing-based supercomputing systems can be difficult. 
This program requires a number of different support 
libraries.  It also needs a large number of input files and 
produces a large number of output files.  Finding the disk 
space for the 500GB of test data does not seem to be a 

challenging task, however, much larger datasets are 
expected in the near future.  It is highly desirable to 
automate the data management tasks such as distributing the 
data files among the parallel processors and moving the data 
files to and from the storage systems. 
We used virtualization-based cloud computing to parallelize 
this code, using multiple cloud nodes to produce data 
analysis output much more quickly than is possible on 
traditional workstations.  Virtualization and cloud 
computing can provide both of the properties we desire: 
Support for massive parallelism as well as a self-contained 
environment in which climate analysis code can be run on a 
variety of platforms and architectures without 
reconfiguration. 

3. Virtual Machine Coordination 
Using virtual machines on cloud clusters for parallel data 
analysis requires coordination among virtual machine 
instances.  In our case, virtual machines need to split up and 
analyze a large repository of climate data files. Our virtual 
machine contains a list of URLs to these data files; instances 
of the virtual machine must be equipped with some method 
of deciding which files each VM instance will process so 
that no redundant analysis is performed.  This coordination 
is subject to a number of constraints introduced by the 
properties of cloud-based virtualization platforms. These 
constraints, though far from insurmountable, necessitate 
parallelization architectures somewhat different from the 
MPI-like paradigms many programmers are familiar with. 
We identified the following constraints: 
• At launch, no virtual machine instance knows the 

location of or how to address other virtual machine 

 
Figure 1: Simulated tropical storms, September 1993, from fvCAM2.2 simulation encompassing 1979-1993. 



instances. Instances can use broadcast packets or 
IP/port scanning to find each other, and once they do, 
can open TCP connections with each other. Packets 
could be dropped between instances; however, virtual 
machine instances running on a cloud cluster are 
typically topologically close enough, i.e. there are very 
few routers between each instance, that packet 
transmission success rates are very good. 

• In practice, it is difficult to control exactly how many 
virtual machines instances are successfully launched. A 
user requesting 40 instances might, for example, only 
receive 36. Not all cloud clusters share this property, 
but in our tests we hardly ever get all instances we have 
requested. 

• Virtual machine instances launch at varying times: If a 
user makes a request for 20 VM instances, the first 
instance might start a half hour before the last. 

Using MPI, process coordination for data-driven parallelism 
is relatively easy: At launch, each process can learn how 
many other processes exist as well as its "rank", a unique ID 
between 0 and the number of processes. Using this 
information, each process can compute a logical split of the 
input data without ever having to contact another process, as 
shown in Figure 2. Virtual machines on cloud clusters do 
not share this property. They do not know how many other 
virtual machine instances exist, since instances launch 
sporadically and usually in non-deterministically fewer 
numbers than requested; even if they did, there would be no 
easy way for an instance to determine its position in an 
ordering of instances, which MPI provides with process 
rank. Hence, we must devise a method for virtual machines 
to coordinate their data analysis. We explored two 
possibilities for virtual machine coordination: Coordination 
through leader election, and coordination through remote 
services. 

 

3.1 Coordination Using Distributed Leader 
Election 
A reasonable method of virtual machine coordination is to 
elect one virtual machine instance as a leader at launch time 
to track job status and coordinate virtual machine instances. 
In our case, the leader maintains a synchronized queue of 
URLs of input files from which all other VM instances pull 
one URL at a time.  The main advantage of leader election 
is that the job is self-contained: a user can launch as many 
instances as she would like, and does not have to perform 
any further tasks, such as setting up a server for the VMs to 
contact. 
The technical details of our leader election-based 
coordination scheme, as in Figure 3, are as follows: When 
our virtual machines launch, they run a script, written in 
Python 2.6, using their initialization file. This script first 
runs a distributed leader election algorithm (see section 3.2); 
after this algorithm, we are guaranteed that all running 
instances have decided on a single leader and know how to 
address it. Late-starting instances will be contacted by the 
leader or another work, and informed of the correct leader; 
this is built into the leader election scheme. The leader 
initializes a synchronized queue of remote URLs to climate 
simulation output files, as we store these files in a remote 
repository, and sets up an XML-RPC (xml-based remote 
procedure call) wrapper around this synchronized queue. 
The workers use Python's "ServerProxy" abstraction to 
contact this XML-RPC library; each call returns the next 
URL in the leader's synchronized queue. Each time a worker 
receives a URL, it uses GridFTP [15] to copy the file to its 
local file system, runs the TSTORMS code on it, and uses 
GridFTP to stage the results out to a remote directory.  As a 
small optimization, we used multiple threads to perform 
data staging and analysis at the same time, since staging 
data in and out is primarily I/O-bound, whereas the 
TSTORMS code is decidedly CPU-bound.  Once the 
leader's synchronized queue is empty, the workers receive 
"null" values from calls to the XML-RPC library; when this 
happens, they shut themselves down. 
We ran our leader election-based virtual machine on the 
Magellan Scientific Cloud. 

 
 

Figure 2: Sample design of MPI-based data analysis 

 

 
Figure 3: Design of leader election-based virtual Machine 



3.2  Leader Election Algorithm 
We implemented a custom leader election algorithm 
designed to work under the constraints of a virtualized cloud 
environment. Since no instance initially knows the address 
of any other instances, a "discovery" phase must be built 
into the election. Instances launch in unpredictable, non-
deterministic patterns; hence, the algorithm must ensure 
late-starting instances decide upon the correct leader. 
Instances can easily learn their own internal IP, so we used 
this as a "node ID" for the election algorithm. 
Our algorithm is based on the classic Bully algorithm [16], 
in which nodes attempt to choose the highest or lowest node 
ID as the leader. Our algorithm offers probabilistically 
correct performance with parameters that can be configured 
based on the packet transmission success rates of the 
underlying network. 
Our algorithm uses 3 phases. The first phase is for 
discovering other nodes; in this phase, nodes send and 
receive broadcast messages to find the addresses of other 
nodes. In the second phase, nodes vote for and elect a 

leader. In phase 3, nodes notify late-starting nodes of who 
the elected leader is. 
Nodes send 3 types of messages to each other: 
• Announce message: For announcing your presence to 

other nodes. 
• Vote message: For voting for a particular node to be 

leader. Contains the ID of the leader voted for. In our 
case, the ID is the node's IP address. 

• Authoritative Vote message: Sent during phase 3, when 
a node is certain of who the leader will be. It contains 
the ID of the elected leader. A node receiving an 
Authoritative Vote message during phase 1 or 2 will 
skip immediately to phase 3, using the leader indicated 
by the Authoritative Vote. 

Each node runs this algorithm upon startup. Figure 4 is a 
flowchart representing the steps in this algorithm. Notes on 
the flowchart: 
• Each phase of the algorithm requires input. Phase 1 

takes the NodeID of the node running the algorithm, as 

 
Figure 4: Leader election algorithm 



well as two parameters (PH1Length and PH2Length) 
that determine how tolerant of packet loss the algorithm 
will be. Larger values of PH1Length and PH2Length 
cause the algorithm to take longer and be more 
accurate. Phase 2 takes in the NodeID of a potential 
leader to be voted for. Phase 3 takes in the NodeID of 
the elected leader. For example, one step on the 
flowchart says "Enter Phase 2 with NodeID in Vote 
message as PotentialLeader". This means to get the 
NodeID from the given Vote Packet, and use this as the 
input to Phase 2. Then when Phase 2 references 
PotentialLeader, it is referencing the NodeID from the 
Vote message. 

• Some state is stored. In phases 1 and 2, timers are set; 
additionally, in phase 2, a collection of votes is stored. 
A box that says "Timer X above Y seconds?" means "if 
Timer X has been running for more than Y seconds, 
take the 'yes' branch; else, take the 'no' branch". The 
timers and vote collection are reset when revisiting the 
step that initializes them. So, for example, Timer 1 is 
reset every time the algorithm reaches the step that says 
"Start Timer 1". 

We ran stress tests on this algorithm using simulated 90-
95% packet transmission success rates, parameter 
PH1Length, as shown in Figure 4, equal to 20 announce 
packets, PH2Length equal to 10 seconds, varying numbers 
of nodes, and varying amounts of "stagger" between the 
launch time of each node.  Over hundreds of test runs, we 
had a 100% algorithm success rate, where "success" is 
defined as "every node chooses the same leader". We were 
also able to achieve 100% success rates with packet loss 
rates as high as 50% by setting parameters X and Y to be 
suitably large.  With packet loss rates much higher than 
50%, we were unable to achieve 100% algorithm success 
rate. Regardless, we achieved 100% success rate over many 
dozens of runs on Magellan resources, since packet transfer 
success rates are generally very good between virtual 
machine instances on a cloud cluster. 
Because node reliability becomes an issue as parallelism 
scales, most leader election schemes implement some level 
of fault tolerance.  This was unnecessary in our particular 
case. If the leader election fails, which is very unlikely 
based on our test results, the submitter of the job can just 
kill all of his/her instances and restart them, wasting a 
relatively small amount of compute resources and very little 
of the submitter's time, since the leader election is run 
before anything else.  Once a leader is elected, there is only 
one essential node, the leader, and the chances of a 
particular node failing is always very low, even when 
scaling causes the chance of at least one node failing to 
grow large.  Hence, we decided to avoid implementation of 
complex fault-tolerance procedures and simply restart the 
job in the extremely rare case of leader node failure.  Fault-
tolerance for non-leader nodes is much simpler, of course. 
For example, we implemented a scheme where worker 

nodes send "heartbeats" to the leader, allowing the leader to 
infer when a node has failed and subsequently re-release its 
input URLs to other workers. 

3.3 Coordination through a Remote Service 
Another reasonable method of virtual machine coordination 
is to have the virtual machine instances connect to a remote 
service.  This remote service does everything that an elected 
leader would do: It maintains a synchronized queue of 
URLs to input files and an XML-RPC server for connecting 
to the synchronized queue. This method is somewhat easier 
to implement, and it does not require leader election or node 
discovery.  However, it requires maintenance of a remote 
service for virtual machine instances to connect to. Before 
any virtual machine can run, the remote service needs to be 
initialized for VM instances to connect to. 
The technical details of this scheme as in Figure 5 are as 
follows: At launch, each virtual machine fetches, from a 
pre-defined location, a file containing a service IP/port to 
connect to.  This service should be initialized before running 
instances; our implementation of this remote service takes a 
list of climate simulation output URLs as an argument.  The 
service initializes a synchronized queue of input file URLs 
and an XML-RPC wrapper around the queue, just like in the 
leader election scheme. The virtual machines use Python's 
"ServerProxy" abstraction to connect to the remote server 
and pull file URLs. Each time a virtual machine pulls a 
URL, it uses GridFTP to stage in the data, analyzes the data 
using TSTORMS, and stages the results out to a remote 
directory. Once all URLs have been pulled from the queue, 
"null" values are returned and the virtual machines shut 
themselves down. We ran our remote service-based virtual 
machine on GLOW. 

 
4. RESULTS 
We used our virtual machine to run TSTORMS on a remote 
500GB repository of climate simulation data using varying 
numbers of virtual machine instances on Magellan and 
GLOW. We also ran TSTORMS on the same dataset using 
MPI on the Carver cluster at NERSC [17]. Nodes on Carver 
and Magellan are very similar; each node on each system 
contains dual quad-core Intel Nehalem 2.66GHz processors 
and 24GB RAM. Hence, Carver is a comparable system to 
Magellan. The GLOW nodes we used utilized Xeon 

 
Figure 5: Design of remote server-based virtual machine 



2.66GHz and 3.2GHz processors, and had enough RAM for 
TSTORMS to execute without using virtual memory, so our 
VM on GLOW had compute resources comparable to, 
though not exactly the same as, instances on Magellan and 
processes on Carver.  We used Magellan for tests involving 
fewer instances, and GLOW for tests involving many 
instances. 
Our climate simulation data was stored on GPFS file system 
at NERSC, and Carver had somewhat of a speed advantage 
over our virtual machines since data could be accessed 
through a local file system rather than needing to be sent 
across a network.  Virtualization overhead put our virtual 
machines at a further disadvantage compared to Carver. 
Regardless of this, we found that both methods offer similar 
performance, with VM based analysis on Magellan actually 
performing better than MPI based analysis on Carver in one 
test: Analyzing our 500GB repository on Carver using 8 
processes took 3 hours longer than on Magellan using 8 
virtual machine instances (~12.5 vs. ~9.5 hours). Using 90 
instances on GLOW, we were able to produce analysis 
output in ~2 hours. This is a conveniently short amount of 
time for a scientist to wait for analysis output, and it is 
comparable to analysis performance on Carver.  Figure 6 is 
a log-log plot of all timing data we collected. 
Virtual machines were substantially more unpredictable 
than processes on Carver with respect to total analysis time 
as a function of number of instances/processes.  On Carver, 

doubling the amount of processes halves total analysis time; 
using virtual machines on a cloud cluster, this property 
holds only approximately. Since virtual machine instances 
can have different starting times, whereas processes in MPI 
start almost at the same time, this is to be expected. 
However, we saw a little more eccentricity than we would 
expect.  We concluded that this is largely a consequence of 
staging in data over a shared network; we observed that on 
both Magellan and GLOW our virtual machines ran 
somewhat faster late at night and on weekends, when there 
was less competition for network resources. The anomalous 
8-instance test we ran on Magellan was started on a Friday 
night, so competition for both network bandwidth and cloud 
nodes would have been relatively low. Further research will 
include using FUSE [18] to mount data onto our VM, which 
will allow us to avoid transferring data over a network. 
Using 30 virtual machines, we were able to analyze the 
500GB dataset in ~4.5 hours. Using a single-processor 
workstation, analysis of the same dataset can take several 
days; assuming the workstation has similar computational 
power to a single virtual machine instance on Magellan or 
MPI process on Carver, analysis would take roughly 90-95 
hours. Hence, using 30 virtual machine instances, we 
reduced total analysis time by a factor of ~21. Ideally, the 
reduction factor here would be 30. We expect that by FUSE-
mounting data to the VM, instead of transferring it over a 
network, we can reduce total analysis time even further. 

5. CONCLUSIONS 
In light of our results, we concluded parallel virtualization 
to be a viable paradigm for large-scale data analysis. 
Parallel virtualization offers an attractive environment in 
which analysis programs can be configured once and run 
anywhere with configurable, and potentially massive, levels 
of parallelism and efficiency comparable to a traditional 
batch-based supercomputing system.  This is a distinct 
advantage over both methods currently in use: Traditional 
supercomputing systems do not offer the configure once, 
run anywhere property, while personal workstations cannot 
offer the massive levels of parallelism climatologists need to 
analyze the vast amounts of data their simulations produce. 
The usefulness of parallel virtualization is not limited to 
climate simulation data analysis. Any scientist with 
parallelizable data analysis requirements and reluctance to 
migrate analysis code to supercomputing facilities due to 
program execution environment concerns can take 
advantage of virtualization-based cloud computing to 
produce data analysis output quickly and efficiently without 
the usual difficulties that arise in porting analysis code to 
new environments. 
The additional work required is to provide a set of tools for 
coordinating the virtual machines and facilitate data 
movements.  In this work, we experimented with two 
different approaches for coordination: through leader 
election and through an external service.  We handle the 

 
Figure 6: Analysis timing results 



data movements through a common Grid tool.  From our 
experience, we believe that the job coordination and data 
movements can be built into a management system as a part 
of a cloud computing ecosystem.  We plan to extend our 
work to produce such a system. 
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