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1. Introduction

Berkeley Storage Manager (BeStMan)[1] is a java-based full implementation of Storage Resource 
Manager  (SRM)[2],  which is  widely  used for  storage resource  management  that  enables  file  
access  and replication  in distributed environments.  The open specification  of  SRM has been 
remarkably successful because it provides a consistent homogeneous interface to the Grid and 
allows  various  sites  to  interoperate  despite  possible  difference  in  the  infrastructure  and 
technologies of the storage resources.

According to the general specification of SRM, BeStMan includes some important features, for 
example space management, data movement, load balancing etc. These functionalities are useful  
for Grid users to reserve space, move files and conduct other storage related operations. From the 
system  perspective,  BeStMan  is  able  to  interact  with  remote  storage  on  their  behalf  and 
significantly improve the interoperability between different Grid sites.

In recent development of scientific computing, some new distributed file systems are integrated 
into the Grid storage system, for example Hadoop distributed file system (HDFS)[3]. In a typical 
architecture of the Grid site with BeStMan + HDFS (or other file systems) implementation, the 
BeStMan server is running under the Gateway mode and equivalent to a load balancing frontend 
for data transfer. BeStMan can work on top of a number of disk-based POSIX-compliant file  
systems, such as NFS, GPFS, PVFS2, GFS, Ibrix, HFS+, Hadoop, XrootdFS and Lustre. It also  
works with any existing file transfer services, such as gridftp, http, https, bbftp and ftp. 

In large-scale scientific collaboration, the storage resource of a Grid site is always open to and 
shared with thousands of users. Storage system have to simultaneously support high throughput  
data transfer, intensive random local data access for user analysis jobs, low latency real time data  
analysis from interactive applications. It requires a highly scalable and available frontend system 
that provides general data access to the users and applications. 

Since many of the Grid sites have adopted the scale-out strategy for both computing power and 
storage capacity, the overall number of CPUs and storage space can increase by a large factor  
during a few years with almost the same implementation of middleware and system architecture.  
While most of grid services are still run inside a single server, those network-facing services may 



be one of bottleneck for coping with increasing number of clients, either from local or remote 
sites. Large scale grids, like the Open Science Grid (OSG)[4], LHC-CMS Grid[5], LHC-ATLAS 
Grid[6] etc., are composed of tens of thousands of CPUs and Petabytes of storage distributed 
across  different  countries  and involving  a  level  of  one  hundred  Grid sites  and  thousands  of 
authorized users and groups.

The scheduling of Grid resources is essentially to mediate the competition between users and 
groups based on available resources and priority set by either the collaboration or each site. The 
randomness  of  Grid  resource  access  pattern  and  lacking  of  an  effective  collaboration  level  
scheduling  mechanism mean  the  Grid  network-facing  services  must  be  scalable  and reliable  
enough  to  survive  the  extreme  high  accessing  rate  for  an  extended  period  of  time.  Some 
organized activities, such as Monte Carlo event generation and simulation, may use thousands of 
CPUs and stage-out the results to one or more storage systems. It has become more and more 
common a single user can take high percentage of available CPU slots for a relatively short time 
and remote copy all the output files to one site. These use cases indicate that the storage frontend  
needs to be capable of handling thousand of clients nowadays to ensure the proper functioning of 
the site and provide reliable computing source and services to the collaboration.

Since 2009 many efforts have been taken to measure, understand and improve the scalability of  
BeStMan. As shown in the following figure, in the test of using large number of clients to access  
BeStMan  conducted  in  2009  [7],  we  observed  the  linear  relationship  between  the  effective 
processing rate of the requests at the server side and number of clients running simultaneously.

                                     
Fig.1   Correlation between Effective Processing Rate and Client Concurrency 

measured in 2009

This paper summarizes some recent testing activities for

• The BeStMan based on Globus[8] container  in the latest OSG release.  Currently this 
flavor of BeStMan is widely deployed for the production at many OSG Grid sites. The  
adoption of  HDFS at  Compact  Muon Solenoid  (CMS) in 2009 facilitated the use  of  
BeStMan as a viable solution for the frontend of the storage system.

• The BeStMan2 based on Java Tomcat in the test release.  It  is expected to eventually  



replace the Globus container because of its lacking of maintenance in recent years and 
observed limitation in its scalability and reliability. 

Most of the functionalities and features of BeStMan and BeStMan2 are expected to be the same 
except the server configuration. In the rest of the paper, the “BeStMan” is used for either the 
general technology of this tool, or specifically the Globus-based implementation.

2. Scalability Testing Tools and Method

The measurement of scalability of BeStMan requires running a large number of clients to access  
the frontend service simultaneously. In order to mimic the real access pattern, those clients are  
better to run in geographically distributed Grid sites with various latency, bandwidth, processing 
power in the client host, local I/O capacity etc.

There are a number of tools that can be used to conduct the test of BeStMan scalability and 
reliability. In this work we mainly choose condor glide-in based tools[9], simply because it is able 
to build a virtual layer (a compute pool) on top of Grid CPU resources and provides an easy and 
flexible  way to submit  and manage testing jobs.  Despite difference in the actual  job slots  at  
different Grid sites, glide-in is able to setup a collaboration wide or customized environment and 
match the actual job slots with user job according to specific rule or requirement. 

Condor Glide-in is one of the pilot job technologies that runs at the worknode (WN) and is late-
bind with the user jobs. Once a matching is made between the glide-in and user job, the job is  
downloaded and executed  via  glide-in.  This  mechanism allows some special  monitoring  and 
management tasks to be done without involving local queuing system at the sites, which is a 
powerful means to control the testing jobs, since in normal Grid job management, once the job is 
sent to a remote site, the management of the job is largely handled by the remote site queueing 
system,  which  puts  some limitation  on  the type of  the  scalability  test  to  be  conducted.  The 
architecture of Condor glide-in is shown in Fig.2.

                                 Fig.2     Overview of  Condor glide-in Technology 

The job control is done through condor starter, which works as a local job manager of a particular  
slot at the WN. It is able to provide detailed status and information about the WN and job. 

The server side glide-in daemon is mainly to bookkeep both the user request and available CPU 
slots, and behave like a resource broker. Our previous work shows that the scalability of glide-in 
system is big enough to simultaneously run close to 30,000 jobs across the Grid to utilize almost  
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all available standard job slots. 

2.1 GlideinWMS for BeStMan Scalability Test

GlideinWMS  (Glide-in  based  Workload  Management  System)[10]  is  a  Grid  workload 
management  system to automate  condor  glide-in  configuration,  submission  and management. 
GlideinWMS is used widely for several large scientific Grid for handling users jobs for physics  
analysis and Monte Carlo production.

The glideinWMS is composed of two parts: the glide-in factory that handles submitting glide-in 
to Grid sources and manages alive glide-ins, and the frontend that specifies which Grid resources  
are targeted and how many glide-ins are sent.  Condor ClassAds are  used for communication  
between the glide-in factory and frontend. The GlideinWMS Architecture is shown in Fig. 3.

In our test, we use GlideinWMS to send jobs to some typical Grid sites and use the normal job 
slots at the site. The test application will be shipped by glide-in and run at the WN. In this way,  
the  randomness  of  user  job  access  pattern  is  repeated  in  the  test  environment,  since  the 
availability of job slots at the remote sites, type of WN and all the local hardware and WAN 
networking features are the same as normal Grid jobs.

Fig. 3    Overview of GlideinWMS Architecture

The drawback of this approach is the proceeding of the tests is completely controlled by the Grid 
instead of the tester:

• The tester has to compete with other Grid users to acquire CPU slots

• The execution of testing job is automated by GlideinWMS on which sites, type of 
WNs etc.

• The concurrency of clients achieved by the test may vary from time to time. The 
validity of results depends on whether the network-facing service is “scalable” 
enough to respond to the real time change in the client access.

• Usually as testing jobs acquire more and more resources, the overall number of 
clients running across the Grid might cause the server malfunctioning. Some sites 
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may fail to maintain the connection to the server and lead to other networking 
problems. In this case, the site administrator has to kill all the testing jobs.

Since the test uses normal job slots, it is  difficult to run a large number of clients simultaneously. 
We  implement  multi-threading  in  the  test  job.  Each  job  can  run  multiple  threads,  which  is  
configureable, as if there are multiple jobs running at the same WN. We found this approach is 
able to accomplish large  concurrency of clients with running limited number of jobs. There is 
chance that multiple jobs are running at the same WN, while each job runs multiple threads,  
which may cause problem to the WN. We limited the maximal number threads less than 5. No 
negative impact on the computing system is found during the test. 

The  CPU  resources  from  CMS  Virtual  Organization  (VO)  is  targeted  for  the  test.  The 
GlideinWMS frontend is configured to present proper Grid user authentication and authorization 
during the test. So does the user environment at the WN. Since the test of I/O of BeStMan is a 
generic operation, no VO-dependent application or environment is actually used for the test.   

Each job is  configured to finish a predefined amount of I/O operations against  the BeStMan 
server. The information of the operation (starting time and end time of each operation) is recorded 
in a log file and shipped back after the job finishes. The I/O of jobs themselves and their activities 
are found negligible on the system load and network throughput. 

2.2 GlideinTester for BeStMan Scalability Test

The Glidein Tester[11] is a fully automated framework for scalability and reliability testing of 
centralized,  network-facing services  using Condor glide-ins.  The main purpose of this  testing 
system is to simplify the testing configuration and operation. For example, to achieve a certain  
level of concurrency, we have to send a large number of jobs to glideinWMS, how many jobs can 
run simultaneously is out of our control. A test  system can actually actively acquire and monitor  
the number of free CPU slots in the Condor pool and manage to send testing jobs to those slots 
when some conditions are met, for example we want to run X jobs simultaneously.  

Following  is  a  short  description  of  the  new  testing  system  architecture,  which  is  built  on 
GlideinWMS. The GlideinTester architecture is shown in Fig.4.

• It uses a virtual-private Condor glide-in pool managed by glide-in factory. It sends 
jobs to the Grid in the same way as normal glide-in submission.

• A daemon is running at the frontend to pass the user testing request to the glide-in 
factory. The user request for CPU resources is based on the concurrency at which 
the test targets. Once the number of glide-ins that are able to accept user jobs is 
equal to the testing jobs, those jobs will be submitted.

• In the  real  implementation,  the user can  specify multiple concurrencies  in  the 
configuration for a chain of tests. The configuration parameters include how long 
each test takes, how much the concurrency for every test etc. 

• The system has a template for user to include executable and add customized log 
in addition to the standard testing log provided by the system. In every run, each 
job has its own directory at the submission side to hold the output and standard 
Condor log files.



• All Condor debugging and monitoring features are inherited from the standard 
release, thus available for the tests.

Fig. 4   Overview of GlideinTester Architecture

Since  GlideinTester  is  a  dedicated  tool  for  scalability  and  reliability  tests,  a  high  level  of  
concurrency should be achieved. Using the normal job slots available in the Grid will be limited 
by  how many  slots  the  test  can  acquire  from various  sites  and  whether  those  job  slots  are 
available during a particular period of time. In the CMS VO, the total number of slots is O(30k)
[12]. Due to the priority setting and policy of each site, using up to 5% of total slots for the test is  
typically  the  limit.  In  order  to overcome this  difficulty,  we  use some collaboration sites  and 
Condor sleep slots. Following is an overview of how the dedicated Condor slots are incorporated 
into the test infrastructure:

• The glide-ins from the GlideinTester to certain sites will  specify what Condor 
slots to use at those sites. Those sites will pass the glide-in to the Condor sleep 
slots, which usually are not available for normal user jobs. From job itself, there is  
no difference between normal job slot  and sleep slot,  in terms of running the 
applications or user jobs within glide-in.

• In the Condor technology, Condor sleep slots provide extra available slots on each 
WN. At five CMS sites, the local batch system implements more batch slots per 
WN than CPU cores. For example at  UCSD a hyperthreaded Dual Quad-Core 
WN have 50 batch slots, while only a 8-16 of them are actually used for running 
user jobs. For analysis and other related jobs, the system is commonly configured 
to run one batch slot per core to maximize the usage of resources and provide 
necessary and sufficient processing power for the applications to be run by the 
jobs. The rest batch slots on each WN, as “sleep” slots and restricted from normal 
access, can be used for some work of special purposes, such as the scalability and 
reliability test.
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• The sleeps slots are manged by the same queueing system and same site policy. 
Technically from user environment point of view, there is no difference between 
normal  batch  slots  and  “sleep”  slots,  so  the  whole  test  infrastructure  and 
technology can be easily integrated with and supported by those Grid sites that are  
willing to provide resources.

• In general, the tests using “sleep” slots will not cause any trouble to the cluster 
and  other  user  jobs,  because  the  load  of  the  scalability  and  reliability  test  is 
mainly  on  the  server  side.  On  the  client  side,  the  application's  waiting  time 
dominates  with very  small  usage of  CPU and memory,  which allows  running 
much more testing jobs at the WN than normal usage. Normal user jobs might 
consume up to 100% of CPU and a fairly amount of memory. For example, a 
typical CMS analysis job will use 1-2 GB of memory, while for the scalability and 
reliability test, this is not the case.

• With the help of using “sleep” slots, we can potentially run tens of thousands of 
testing jobs, which is at the similar scale of all available job slots of the CMS VO, 
without  affecting  the  normal  operation  of  the  sites.  It  is  also  much  easier  to 
acquire  those  slots  since  only  a  few sites  are  involved  and  there  is  no  other 
competition for those resources. 

2.3 Testing Methods

Each testing job is configured to run a loop of query on the BeStMan server for listing all the files 
in a  given directory in the storage system, the storage is either a virtual local file system or a real 
mounted Hadoop distributed file system (HDFS). 

Throughout the test, the load and resource consumption (CPU and memory) are primarily on the 
BeStMan server and its access point to the storage file system (e.g. FUSE mount at the BeStMan  
server). 

3. BeStMan Configuration

3.1 System Implementation

BeStMan  is  part  of  the  VDT  (Virtual  Data  Toolkit)  release.  The  detailed  implementation 
procedure that is maintained by OSG can be found at. The implementation of BeStMan is usually 
based on following storage architecture:
 

• BeStMan provides  frontend services  of SRM v2.2 interface on a  dedicated BeStMan 
server for a disk-based storage system.

• GridFTP servers conduct  the high performance, secure and reliable data transfer.  The 
GridFTP service  is  deployed over  a  bunch of servers,  which can be either  dedicated 
servers, or WN that processes user jobs, or a combination of WN and storage node which 
provides storage space to the local SE.



• BeStMan performs load-balancing among those GridFTP servers. The load-balancing is 
done via real time monitoring. Gratia GridFTP transfer probe has been integrated with 
BeStMan operation that selects GridFTP of the lowest load in the system (we called load-
probe method). A simple GridFTP selector (we called random-selector)  that  select  an 
alive GridFTP randomly or using Round-Robin algorithm from the list is also developed 
and available in the release for reliability and simplicity of usage.

The use of  load-probe or random-selector  method depends on the implementation  of 
GridFT at  the sites.  With relatively small  number of GridFTP (typically  less than 10 
servers) equipped with large I/O capacity, the load-probe is needed to finely balance the  
load across those servers. 

For a site running large number of GridFTP, e.g. running this service on WN at the order  
of 100s of independent GridFTP services, the load-probe method can be too costly. In the 
case that there is significant redundancy of total GridFTP services running in the system, 
the number of available connections provided by GridTP services will be much larger 
than  the minimal “needed” connections to saturate  the WAN network bandwidth,  the 
Random-Selector is a preferred choice.

• For  a  production  storage  system,  the  GUMS[13]  is  normally  used  for  authorization 
because  of  flexibility  and functionality  provided  to  the  site  administration.  Usually a 
standalone GUMS server needs to be deployed. For simple testing purpose with limited 
amount  of  users  and reducing the overhead of  accessing  GUMS to further speed  up 
BeStMan service, grid-mapfile based solution can be used.

The overview of the typical SE architecture using BeStMan is shown in Fig. 5[14].

In  the  implementation  of  BeStMan,  to  make  it  access  the  storage  via  a  POSIX-compliant 

Fig. 5   Overview of BeStMan-SE Architecture



interface, FUSE is usually needed.  This can be a separate deployment.  Since many Grid site 
started to use HDFS as the backbone of the SE, an integrated HDFS-based SE implementation is 
supported and maintained by OSG. Through this approach, the core SE configuration includes 
following components:

• HDFS namenode (NN) installation. The HDFS NN provides the namespace of the file 
system of the SE.

• HDFS datanode (DN) installation. The HDFS DN provides the distributed storage space 
to the SE. In the typical deployment strategy, the Compute Node can also be configured 
as DN.

• FUSE installation on HDFS and BestMan. The FUSE provides the POSIX-compliant 
interface of HDFS for local data access of the SE.

• GridFTP installation.  It  provides  grid  data  transfer  from or  to  the  SE.  It  should  be 
emphasized that the interface between BeStMan and storage, and between BeStMan and 
GridFTP can be more generic, while the interface between GridFTP and storage will be 
less likely general, which is complicated by how the SE file system mange the disk space 
and whether it provides a POSIX-compliant interface for data access. 

The interface between GridFTP and storage system (e.g. a distributed file system) can be 
a  serious  bottleneck  for  high  throughput  data  transfer.  For  the  architecture  using  a 
distributed file system across the cluster, the WN I/O will involve internal data replication 
of the file system, external WAN-read or write of data, and local data access of user jobs.  
In the integration of HDFS-GridFTP, the GridFTP needs to use native HDFS client to 
access the file system and buffer the incoming data in memory because the HDFS doesn't 
support asynchronous writing and for some cases the GridFTP is not able to write data to 
disk storage fast enough.

From current  system integration  and data  access  strategy,  most  of  system dependent  
implementation takes place at GridFTP level. 

• BeStMan installation.  It provides the SRM v2.2 interface of the SE and performs the 
load-balancing of the GridFTP servers.

3.2 Software Release of HDFS and BeStMan

The  VDT  packaging  and  distribution  of  HDFS  and  BeStMan  is  based  on  YUM[15].  All  
components are packaged as RPMs. Two YUM repositories are available

• Stable repository for wider deployments and production usage.

• Testing repository for limited deployments and pre-release evaluation.

This distribution is independent of the Pacman packaging of the VDT: it is separately versioned, 
and separately packaged. It is expected the future releases to eventually be common with the rest 
of  the  VDT,  as  the  "rest"  of  the  VDT begins  to  be packaged as  RPMs.  For  now,  the  VDT 
distribution of HDFS and its related BeStMan are distinct from the rest of the VDT.



The stable YUM repository is enabled by default through the osg-hadoop RPM, and contains the 
“golden release”  supported by  OSG for  LHC operations.  The “golden release”  is  tested  and 
validated by a couple OSG sites.

The version we used for the test is: 2.2.1.3.13 for BeStMan and 2.0.1 for BeStMan2.

3.3 Configuration Parameters

Following is a list of configuration parameters, of which the configuration has significant impact 
on the performance of BeStMan.

Generic system configuration:

• Max Heap Size of Java application, this parameter specifies total virtual memory can be 
used  BeStMan processes. Assuming each incoming client thread uses 2.5 KB, to process  
2000 of clients requests simultaneously, 5GB is needed for server to work properly.

• Limit of max number of opening files (File Descriptor) and processes for a user, since  
high concurrency at the server requires opening a large number of files to be processed  
simultaneously.

• System wide File Descriptors (FD) limit, which can be set in the kernel variable.

• TCP/IP tuning, Number of incoming connection backlog, which needs to be set up to 
5000 or 10000, or through kernel auto-tuning.

• BeStMan log level. Switch off log level will improve the scalability.

• Use grid-mapfile instead of GUMS to eliminate the possible limit in GUMS scalability 
when testing high concurrency of BeStMan query service.

For BeStMan based on Globus container:

• Max  number  of  threads  in  Globus  container,  which  directly  determines  how  many 
incoming client requests can be processed by the server simultaneously.

For BeStMan based on java tomcat and Jetty container:

• Max number  of  threads in  Jetty  container,  which  is  similar  to  the setting  of  Globus 
container.

Our  tests  showed  that  without  tuning  above  parameters  the  maximal  concurrency  level  of 
BeStMan out of the standard release  is near 500-600 for both BeStMan and BeStMan2.

3.4 Test Hardware

Following is the BeStMan server configuration at UCSD:

• Quad dual-core AMD Opteron Processor 275, 2.2 GHz and 1MB cache for each 
processor

• 8 GB of RAM



• 180GB of local disk space

The test HDFS cluster configuration is:
• 12 datanodes and 1 namenode
• Each node has Quad dual-core AMD Opteron Processor 275, 1.0 GHz and 1MB cache for 

each processor
• 8 GB of RAM
• 2-3 TB of disk space for the HDFS 

The networking features:
• 1 Gb/s Ethernet uplink 
• Two 10 Gb/s external link for the test and production cluster, SONIC and ESnet 
• At UCSD, the BeStMan uses FUSE mount to access the HDFS storage.  

A similar BeStMan sever is deployed at Fermi National Accelerator Laboratory (FNAL). The FNAL 
BeStMan uses local host disk as the storage file system. 

4. Results and Discussion

In the rest of the paper, we differentiate the test results between BeStMan and BeStMan2. The 
technology specification of BeStMan and BeStMan2 is described in Introduction. 

4.1 Test of BeStMan with small directory

We used GlideinWMS to test the performance of BeStMan. Similar results are observed in the  
test in 2010, which is shown in Fig. 6. We observe a wide spreading in the correlation between  
the effective processing rate at BeStMan and high concurrency region which shows the scale of 
the number of clients running simultaneously.

Fig. 6 Correlation between Client Concurrency and Effective Processing Rate for BeStMan 
with small directories

The test is against a small directory with ~10 files. The listing command takes very short time in 
the  native  file  system  comparing  to  BeStMan  activities  to  process  the  request  including 



authentication, authorization, assignment of threads and remote I/O. 
On average etc. 1000 (2000) client concurrency makes ~25 (50) Hz processing rate, which is in 
the scale of last year's result as shown in Fig.1.

Overall the BeStMan shows following features in its scalability

• There is strong linear correlation between the average effective processing rate and client  
concurrency. There average ratio is 1 Hz per 40 clients.  More clients push the server  
processing rate higher.

• The above correlation indicates that the BeStMan servers spends fixed amount of time on 
processing an incoming request which is irrelevant to the number of requests. As number 
of clients increases, the more requests are processed in parallel.

• If the concurrency goes very high (for example more than 2500 client concurrency), the 
BeStMan  stops  functioning  and  hangs.  Even  the  there  is  no  client  activities  later, 
BeStMan is not able to recover, so we have to restart the BeStMan. 

4.2 Test of BeStMan2 with small directory

We use glidetester  to test  BeStMan2 deployed at  FNAL and UCSD. The correlation between 
effective processing rate and client concurrency for BeStMan2 is shown Fig.7.

For BeStMan2, a much different correlation is observed:

• The average effective processing rate has little dependency on the client concurrency. 

For BeStMan2 running at FNAL, the local disk file system is used as target for BeStMan2 
storage services. The scalability of FNAL is higher than the HDFS file system used at 
UCSD. We expect it is at least 30% slower for HDFS via FUSE to run those POSIX 
commands.

The difference in BeStMan2 performance may also come from the limitation of total 
number of opening files and how FUSE efficiently handles a large number of commands 
simultaneously. 

• The  above  correlation  indicates  that  the  BeStMan2  servers  spends  fixed  amount  of 
system resource for processing all incoming requests which is irrelevant to the number of 
requests. As the number of  requests increases, the same resource is shared with more 
requests, which leaves no increase in the effective processing rate.

• If the concurrency goes very high, the BeStMan2 stops accepting new requests. But it is 
able to recover later when all the existing requests are processed.

• The overall scalability of BeStMan2 is shown in the high end of effective processing rate  
vs concurrency distribution for the BeStMan. This shows the BeStMan2 delivers better  
performance for most of time. It is only when the client concurrency beyond 2500, the  
BeStMan may be able to provide higher performance than BeStMan2. 

But our tests  also show that  when the concurrency of more than 2500, the system is 
overly stressed, and the effective processing rate is not a good indicator of quality of 



service any more.

(a)

(b)
Fig. 7  Correlation between Effective Processing Rate and Client Concurrency for 

BeStMan2 with small directories at (a) FNAL and (b) UCSD

4.3 Test of BeStMan2 with various size of directories

With big directories, the scalability we measured involves not only the BeStMan2, but also the 
FUSE and distributed file system, since the processing time for running on the file system and 
FUSE is not negligible comparing to the processing time of BeStMan itself.

Fig. 8 and 9 shows the Effective Processing Rate and Time vs Client Concurrency for directories  
of 20, 100, 200 and 1000 files respectively. In the computing system administration and design of 
computing software at CMS VO, we usually limit the total number of files in a directory below  
1000. A directory hold a large number of files may cause various problem for the health of the 
whole storage system.



The results show:

• The Effective Processing Rate is stable vs client concurrency for a given number of files 
in the directory.

• The larger the directory, the lower the scalability and the longer the processing time for 
BeStMan2 to finish the request.

• There is a close to linear relationship between processing time and size of the directory.

Fig. 8 Correlation between Effective Processing Rate and Client Concurrency for large 
directories 

Fig.9 Correlation between Effective Processing Time and Client Concurrency for large 
directories



5. Conclusion

We measure the scalability of recent OSG released BeStMan and BeStMan2. There is significant 
difference in the scalability features between two types of BeStMan technology. The BeStMan2 
shows better performance and reliability from running the high throughput and high available  
service point of view. 
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