
Berkeley Storage Manager (BeStMan)
LBNL implementation of SRM version 2.2

Original Dec. 1, 2003
Revised Mar. 30, 2004
Revised June 27, 2007
Revised July 17, 2009

Introduction
As SRM specification version 2.2 and its corresponding WSDL are defined, we need to develop a new
version of our SRM. This new version is based on WSDL/SOAP over http with GSI (httpg). The new
SRM specification contains many new features, and there is very small intersection with our current
CORBA based SRM v1.1 specification. Rather than modifying and adding features in the current
CORBA based implementations, we need to develop our new version of SRM from scratch. We
describe the advantages and complexities in the new development in the following sections.

History
Our current implementation of HRM (SRM) consists of DRM and TRM: DRM manages users,
requests, queues, file transfers and disk spaces. TRM manages MSS accesses. This design came from
the old STACS in Grand Challenge that had Query Manager (QM) and Cache Manager (CM). At the
time we developed HRM, we used many of ideas and some codes from STACS.

DRM TRM

DISK
MSS

USER 1

USER 2

USER n

File Service Queue

USER QUEUE Management

File Service Queue

PFTP QUEUE Management
DISK

Management

GridFTP
Server

GridFTP
Management

Request Queue Management

DRM manages different file services queue per user according to the user’s disk quota as well as the
number of pin limits and other criteria. If there are multiple users, it does round robin to serve different
user. On the other hand, TRM has one simple queue to connect to MSS based on the PFTP limits (in
case of HPSS). We had an assumption that there are multiple users, but access to MSS is always
through one group account.

What do we need to see in the next version of our SRM, not in the current implementation:

1. We need some way for users to plug-in their codes; e.g. filtering program, proprietary MSS
connection.

2. MSS access (TRM) needs to have a file service queue per request and per user, as well as the
whole queue management, to serve multiple users with different logins,

3. When DRM and TRM are running on the same machine, we need some coordination between
DRM and TRM for the number of outgoing connections and incoming connections It is
because we have the network connections to MSS from TRM, GridFTP connections from
clients, and GridFTP connections by DRM. If there is no synchronization among these
network connections, we will have a saturated network problem that degrades the whole
machine performance as well as the network performance that affects HRM performance.

4. One related problem to item 3 is in the management of disk i/o. Currently user’s gridftp
performance (disk reading) on the DRM disk cache is significantly degraded by the TRM’s
disk access for MSS archiving (disk reading) or staging (disk writing). For example, when a
user performs a gridftp to read out a file from DRM’s cache, and little later when TRM starts to
stage a file from MSS to DRM’s cache, the user’s GridFTP performance before and after the
TRM’s staging process has very significant differences (by 50% or more in most cases).

5. Number of incoming file transfers (typically gsiftp) needs to be coordinated dynamically with
the archiving data rates, specially when network transfer rate is low. We need to collect
network speed for each site as progresses and adjust the number of file transfers automatically
depending on the transfer rates. (Policy)

6. This is a team effort.

Proposed design:

SRM

DISK

MSS

USER 1

USER 2

USER n

File Service

USERs

MSS Access Management
(PFTP, HSI, MSRCP, SCP...)

DISK Management

GridFTP

Network Access Management
(GridFTP. FTP, BBFTP, SCP...)

Policy Module

Requests

WAN

WAN/LAN

WAN/
LAN

GridFTP
server

FTP server

BBFTP server
SRM

Security Management

GROUPs

SPACEs

Network/Disk usage
optimization module

Flow
Manag
ement

Decision Making module

Advantages of new design

1. Simpler design
2. Easy to maintain by modularization, and easier deployment

a. Configurable by the options during the installation
b. Enable us to provide user defined modules
c. Less dependency on one developer

3. The coordination of network connections and disk i/o between different components can be
removed as a separate component.

4. One service queue management with local policy
5. Easy to add local policy with pluggable end

a. Enable us to support user defined policy
6. Overall amount of work can be reduced by modularity
7. More user appealing features via abstraction of interface

a. pluggable user defined policies
b. pluggable site specific software or hardware

8. More flexibility in the user community by giving options in the SRM configuration
9. Still “Hierarchical Resource Manager” because SRM manages disks and MSS in a hierarchical

fashion, when MSS access is configured
10. Will use Java 1.4.x with JNI for C/C++ only libraries if necessary

a. alternative to globus container would be possible
b. can be more graphical on the reporting

General SRM Internal Design

Users

MSS ModulesDISK Modules

Network Modules

Policy Modules

Requests

Pre-processor / Scheduler

Flow Management

File Policy

Request Policy

User Policy

MSS Access Policy

Disk Space Policy

Network Policy

U
se

r d
ef

in
ed

 p
ol

ic
y

(p
lu

gg
ab

le
)

HPSS

NCAR-MSS

SCP - IBM SP

User defined

Security Modules

GSI

Kerberos

SSL

User defined

Plain

GridFTP

FTP

SCP

User defined

BBFTP

Disk

Remote Space
(Web space, SAN, etc)

User defined

NeST

Network Connection
Modules

HTTP(S)

SOAP/WSDL

Outgoing

Incoming

User pluggable

SRM Internal Architecture

Files

Load Balancing

Spaces

Life Time

File Type

Space Type

Life time

User Type

Queue Management
Modules

File

Request

User

Space

Space Policy

Request Type

Priority

MSS Specific

Logging
Modules

Reporting

Logging

Groups/VOs

Priority

Groups

Bulletin Board
Modules

Pulling

Posting

Decision Making
Module

File

Request

User

Space

Groups

Disk

Network

Remote Transfer

MSS Transfer

Virtual File System

Accounting

Group/VO

User

SRM
• Core: files, space, request, user
• Queue management: policy, outgoing network, user, request, space, file
• Outgoing Network Management (protocol): ftp, http, gsiftp, srm, pftp, mss, hsi, scp, ssh, nest,

(udp)
• Disk I/O: disk path, I/O
• Utility: logging
• Incoming network management: http
• Interface management: WSDL/SOAP
• Space management: reservation, compact, …
• Main: workflow

Directory structure

Typical request flow

Space request

Space request
from user

Incoming network
management

(WSDP/SOAP/HTTP)

Preprocessor
user/request/space

Scheduler
user/request/space

Status from user
Return to user

Files request

files request
from user

Incoming network
management

(WSDP/SOAP/HTTP)

Preprocessor
user/request/files

Scheduler
user/request/files

Status from user
Return to user

Disk I/O Outgoing network
(gsiftp, mss, srm, ftp…)

SRM
doc

wsdl

src

core

queue

outnet

innet

util

diskio

space

main

client

others

Developmental plan

• Each box (class) would have a test program.
• Dates are tentative schedules.
• All the developmental documents are done as progresses, including documents for each

functional interface.
• WSDL development needs to some to be agreed among collaborators, so has later dates.

1. Core

objectUser

Space

Request

File

2. Utility
 Policy
 Queue
 Security

Thread

Logging

Queue
management

Users

Requests

Spaces

Files

File
Transfers

WAN
MSS

Security GSI

Policy Round
Robin

3. Disk Management
 Network
 File Transfers

Web
Server

WSDL/
SOAP

Impl

File
Transfer

FTP

GSIFTP

HTTP

MSS

FTP
HTTP

File Transfer
Request SRM

DISK
management disks

Path
assign

SCP

HPSS
MSS

Implementation details

Policy Related

Space:

On Reservation:
- In first implementation, a fixed size & lifetime is given to all users.
- Space is granted based on needs. (best effort)

 Types of space to support:

- Volatile (Yes)
- Permanent (Yes, on either MSS or disk)
- Durable (Yes)

o When space is needed, expired files will be archived and admin will be
notified. If MSS exists, will store archived files there.

o Recovering is left between admin and user. Later implementation will deal
with smart recovering.

For reusing Volatile and Durable Space:

- A threshold is set to each space, when it is reached, SRM will start cleaning up the
expired files. For example, Volatile space can set the threshold to 100% and
Durable to be 80% full, because archiving expired files takes time to finish.

- When space is needed for Volatile space, a lazy removing policy is used.
- When space is needed for Durable space, all files in an expired space token are

removed.

What if:
- For a Get request to a Volatile space, the lifetime of the space expires before the

request is finished?
o We can reduce the space size and extend the lifetime to allow the request to

finish
o In later versions, we can treat users differently depends on how active they

are with the finished files, and how busy the system is.
- The space in the above scenario is Durable?

o Request fails.
- A Get request comes with an invalid token?

o SRM refuses it. SRM will not do automatic space reservation
- A Get request comes with some file sizes exceed the size of space?

o File sizes in a request are just advisory.
- User asks for a file that is in his space(not expired) but file is expired?

o New lifetime will be assigned to the file.
- Space is empty after compact()?

Space will be automatically released.
Clarification:

• ChangeFileType(), upon success, will not do deallocation to the file’s original space.
• ChangeFileType() will not allocate space automatically. User needs to provide a valid

spaceToken to ensure the function runs successfully.
• Mkdir() and reserveSpace() are not related. In other words, a user is allowed to call

mkDir() without having a space token in SRM

LBNL SRM:

• If spaces(Virtual/Durable/Permanent) involved in changeFileType() are using the same
file system, then SRM will just need to do flag switch.

• If the spaces are not using the same file system, then changeFileType() implies copy the
file to the designated space type, and removing the file from the original space type

• A Virtual File System will be used to mantain user’s directory structure.
• We will derive a uid from proxy’s DN by keeping the chars and digits in it. User’s top

directory is assumed to be ~uid
• SrmMkDir() will assume user’s top directory. I.e. srmMkdir(“tmp”) is equivalent to

srmMkdir(“uid/tmp”) where uid is the user’s uid in SRM from his DN.
• Will support file:/ protocol in addition to srm:// protocol in get(), put() and copy()
• User priority will not be supported in first implementation. It will be considered in

future implementations. For example, support Top/Normal priority types.

• We will use round robin (RR) between users and within each user’s requests. If a user
wants his request being served one by one, he has to submit a new one after the existing
one is done.

• MSS policy:
o Will issue calls to check tape-id periodically for a segment of MSS requests.

Enforcements:

• General:
o MaxFileRequestsPerSRM
o MaxNumberOfUsers
o <MaxFileRequestsPerUser = MaxFilesRequestsPerSRM/MaxNumberOfUsers>
o MaxConcurrentFTP(including MSS transfers)
o ConcurrencyLevel(max num of threads)

• MSS:
o Total MSS connection per SRM
o Total MSS connection per user

• File replacement policy:
o Latest Recently Used (LRU)
o May use other ones in later versions

• Load Balancing policy (not sure whether it will be in first implementation)
o E.g. keep as many MSS transfers going as possible since it is slow and would

likely be the bottleneck.
o Assigns priorities to transfer protocols.

• Network Policy:
o MaxNumberOfHTTPConnections

• Disk IO policy: (not clearly understood yet)
o MaxConcurrentReads
o MaxConcurrentWrites
o MaxConcurrentReadsAndWrites

Not discussed yet:
• What functions are we NOT going to support?
• What about limit of pin extensions

Network/Disk optimization
 Definitions:
 Incoming: writing into the disk
 Outgoing: reading out of the disk

• Entities needed: dynamic per disk or per partition
o Number of gridftp granted to be read from the disk (outgoing)

§ Buffer size, number of parallel
o Number of gridftp writing into the disk (incoming)

§ Buffer size, number of parallel
o Previous gridftp transfer rates (for all incoming) : moving averaged
o Number of MSS retrieving processes (incoming, writing into the disk)

§ Previous MSS transfer rates for all incoming : moving averaged
o Number of MSS archiving processes (outgoing, reading from the disk)

§ Previous MSS transfer rates for all outgoing : moving averaged
o Number of total users
o Number of total requests
o Number of total files

• Entities needed: static or near static
o Max number of HTTP connection for requests
o Max number of MSS transfers
o Max number of incoming network transfers initiated by SRM

§ (all gridftp, ftp, http, bbftp, etc…)
o Max number of outgoing network transfers initiated by the clients
o Number of disks or partitions

§ Number of directories does not count
o Max bandwidth of the hosted network
o Buffer size of the gridftp server on the host
o Number of CPUs
o Physical memory size

Queue Management and Memory Usage

• When the request comes in, we do NOT want to create File objects because of the memory
usage. Instead, File information should be kept around until round-robin with quota takes the
turn on the request for additional files to be processed.

• There should be a limit to the size of all queues.

BeStMan-G: Simple SRM Gateway

Introduction
With a growing need of SRM in storage services, a simple but compatible and interoperable SRM
interface gateway layer is necessary. BeStMan-G could be implemented as G stands for Gateway.

Idea
Leave only very necessary responses to the client calls from the BeStMan. We can also provide the
skeleton version of BeStMan that people can implement their own internal processing.

Steps
We first make a separate package with independent software installations. When the client calls, most
interfaces when it is compiled as is would return SRM_NOT_SUPPORTED but returns proper return
structures. We need to require srmPing to retain “BeStMan-G” as part of the name. In the next steps,
we need to add minimum implementations on what users/VOs need.
BeStMan-G would be in efficiency and high performance.

New design of BeStMan for the next generation

1. Introduction	

Berkeley Storage Manager was born officially in March 1, 2007. There are more than 30 deployments
in the last one year through Virtual Data Toolkit and Open Science Grid, and we expect to grow to
more deployments in another year. Simplicity and adaptability as well as efficiency and scalability of
BeStMan Gateway mode has been a success, and we see different storage and file systems in the
backend of Gateway mode. We mostly see BeStMan deployments in Full mode in Earth System Grid
and on a few other handfuls of sites. BeStMan SRM client tools are being recognized in many
communities as the well-supported SRM clients, and being used actively. Our SRM tester is also
recognized as the supported SRM functional testing tool. As our BeStMan and SRM clients and tester
are being widely deployed and assume their roles in a storage and file system access gateway, we need
to plan our future developmental efforts and our next generation design for other research projects.

2. BeStMan	
 server	

	

One	
 of	
 the	
 main	
 improvements	
 to	
 be	
 released	
 is	
 the	
 tomcat	
 based	
 bestman	
 server,	
 both	
 in	
 Full	
 mode	
 and	

Gateway	
 mode.	
 This	
 will	
 eliminate	
 our	
 dependency	
 on	
 Globus	
 container,	
 and	
 it	
 will	
 have	
 us	
 move	
 forward	

without	
 dependency	
 on	
 Globus	
 3.2	
 libraries	
 for	
 httpg.	
 It	
 has	
 been	
 a	
 security	
 concern,	
 and	
 performance	

issues	
 have	
 been	
 brought	
 up	
 in	
 the	
 past.	
 Our	
 dependency	
 on	
 Globus	
 will	
 remain	
 on	
 cog-­‐jglobus,	
 the	
 java	

library,	
 which	
 does	
 not	
 depend	
 on	
 Globus	
 3.2.	
 This	
 version	
 will	
 also	
 need	
 to	
 support	
 https	
 in	
 the	
 future	
 as	

SRM	
 collaboration	
 agreed	
 in	
 May	
 2009.	
 We	
 plan	
 our	
 tomcat	
 based	
 BeStMan	
 server	
 and	
 our	
 improved	
 SRM	

clients/tester	
 by	
 the	
 end	
 of	
 2009,	
 as	
 bestman2.	
 	
 This	
 version	
 would	
 include	
 VOMS	
 validation	
 support	
 and	

new	
 GUMS	
 XACML	
 server	
 support.	

	

We	
 might	
 have	
 a	
 few	
 new	
 research	
 projects	
 that	
 would	
 use	
 BeStMan	
 in	
 full	
 mode	
 in	
 the	
 next	
 2	
 years.	

While	
 we	
 describe	
 the	
 new	
 research	
 projects,	
 we	
 also	
 describe	
 our	
 needs	
 of	
 the	
 new	
 design	
 of	
 next	

generation	
 of	
 BeStMan.	
 	
 	
 There	
 are	
 a	
 few	
 requirements	
 in	
 the	
 new	
 project	
 direction:	

1. Scalability	
 in	
 managing	
 a	
 few	
 10s	
 of	
 millions	
 of	
 files	
 in	
 requests	
 and	
 in	
 the	
 managed	
 cache,	
 	

2. Robust	
 request	
 status	
 and	
 history	
 management,	
 	

3. Consideration	
 of	
 scalable	
 deployment	
 of	
 BeStMan	
 servers,	
 	

4. Access	
 Control	
 List	
 management	
 on	
 “controlled”	
 files	
 and	
 directories,	
 	

5. Virtualized	
 space	
 management,	
 in	
 separation	
 from	
 the	
 file	
 system,	
 so	
 that	
 managed	
 cache	
 could	

have	
 the	
 same	
 directory	
 structure	
 as	
 clients	
 directs	
 under	
 a	
 certain	
 directory	
 level,	

6. Transfer	
 optimization	
 for	
 channel	
 caching	
 and	
 pipelining,	
 dynamic	
 adjustment	
 of	
 parallelism	
 and	

concurrency,	

7. Modular	
 design	
 for	
 all	
 different	
 possibilities	
 such	
 as	
 policies,	
 protocols,	
 i/o,	
 security,	
 etc.	
 For	

example,	

a. Transfer	
 server	
 selection	
 module	
 for	
 TURL,	

b. Transfer	
 optimization	
 module,	

c. Transfer	
 protocol	
 support	
 module,	

d. Mass	
 storage	
 system	
 support	
 module,	

e. Security	
 policy	
 module,	

f. Custom	
 i/o	
 for	
 underlying	
 storage	
 or	
 file	
 system,	

g. Call-­‐outs	
 for	
 additional	
 feature	
 process,	
 e.g.	
 checksum	
 calculation	
 at	
 the	
 end	
 of	
 a	
 large	

request,	

8. Administrative	
 interface	
 support	

9. Additional	
 Project	
 interface	
 support	

10. Easy	
 adaptability	
 to	
 SRM	
 v3.0	
 specification	
 when	
 available	

Possibility of a few new research projects in the coming years involving BeStMan:
1. Network	
 and	
 Storage	
 Provisioning	
 	

Working	
 with	
 BNL’s	
 Terapath,	
 BeStMan	
 would	
 have	
 a	
 capability	
 to	
 reserve	
 network	
 and	
 storage	

bandwidth	
 for	
 end-­‐to-­‐end	
 file	
 transfers.	
 BeStMan	
 may	
 work	
 directly	
 on	
 OSCARS.	

2. High-­‐bandwidth	
 network	

BeStMan	
 would	
 coordinate	
 underlying	
 file	
 system	
 and	
 100	
 Gbps	
 network.	
 We	
 need	
 scalable	

deployments	
 and	
 coordination	
 to	
 accommodate	
 100Gbps	
 network	
 connectivity	
 with	
 underlying	

distributed	
 file	
 systems.	

3. 	
 BeStMan	
 for	
 DB	

BeStMan	
 would	
 be	
 a	
 gateway	
 for	
 Relational	
 Database	
 for	
 database	
 entries	
 to	
 be	
 replicated	
 to	
 other	

sites	
 selectively.	
 Instead	
 of	
 files	
 management,	
 DB	
 entries	
 are	
 manageable	
 entities.	
 	

Details of the new design for BeStMan would be further discussed in the future.

