IDEALEM

Implementation of Dynamic Extensible Adaptive Locally Exchangeable Measures

Scientific Data Management Research Group Computational Research Division Lawrence Berkeley National Laboratory

Motivation

- Large streaming data needs a lot of storage.
- Statistical analysis is needed on big data.
- Exact compression of big streaming data is intractable, in general.
 - Alternative: Linear random sampling, e.g. 1 out of 1000 records
 - It is not scalable for high-rate multiple streaming data
 - There is no guarantee of reflecting the underlying data distribution

Observations

- Large streaming data tend to show redundant data patterns.
- Many conventional statistical methods are based on a specific assumption (exchangeability).

- IDEALEM (Implementation of Dynamic Extensible Adaptive Locally Exchangeable Measures)
- Relaxing order of values opens up new horizon on data compression
 - Information loss due to compression has been generally measured by Euclidean distance (L²-norm) between original data and reconstructed data with MSE/SNR criteria
 - High entropy (nearly random) data and floating-point values are hard to compress
 - Limitation: order of values not preserved
 - Is the order of values really important?
 - Devices such as sensors often measure random fluctuations
 - Exact reproduction of random fluctuations is not necessary

- Exchangeable RVs: a set of RVs which are interchangeable among others. $P(x_1, \dots, x_n) = P(x_{\pi(1)}, \dots, x_{\pi(n)})$ π : a permutation
- Exchangeability is already exploited and utilized in many applications such as image & video retrieval and network analysis.
- Examples
 - Image & video matching: exchangeable image features
 - Econometrics: a set of exchangeable portfolio (in risk analysis)
 - The Netflix prize: groups of users & groups of movies

An example: Netflow data from ESnet

 Checking exchangeable blocks by building cumulative histograms

rrrrr

BERKE

Statistical hypothesis testing by KS test to check exchangeable blocks

Measures distributional distance/similarity of two random variables •

•
$$KS(D_t, D_{t+1}) = \max_l (|F_{D_t}(l) - F_{D_{t+1}}(l)|)$$

KS score • $F_D(l) = \frac{1}{N} \sum_{\substack{x_i \in X \text{ s.t. } 1 \{x_i \leq l\}\\ 1 \leq i \leq |D|}}$
Empirical Cumulative Density Function (ECDF)
• $\int_{u} \int_{u} \int$

How IDEALEM works

data

- Two broad classes of data compression
- Lossless compression
 - gzip, 7-zip, PNG: work on repeated byte patterns
 - Floating-point values compression
 - FPC [Burtscher and Ratanaworabhan, 2009]: predictor+corrector
 - Difficult to compress because the lower order bits typically change

Lossy compression

- Common techniques: JPEG, MP3
- Floating-point values compression techniques:
 - ISABELA [Lakshminarasimhan, et al, 2011]: sort + b-spline
 - Scalar Quantization Encoding [Iverson, et al, 2012]
 - zfp [Lindstrom 2014]
 - SZ [Di, et al, 2016]

• Challenges in compressing many scientific measurements:

- Floating-point numbers are known to be hard to compress
- "Random" fluctuations are hard to compress

IDEALEM Achieves CR>100

Nov. 14, 2016

Compression ratio vs. Reconstruction Quality

SDM, CRD, LBNL

IDEALEM

Nov. 14, 2016

An Application: µPMU for Monitoring Electric Power Grid

Monitoring Electric Power Grid

DARP

Tennessee

- Archiver / Database
- Stores (T, V) pairs
- Nanosecond precision
- Fault tolerant
- Highly scalable
- Unique abstraction
 - query range (ver)
 - insert values => ver
 - delete range => ver
 - query statistical (ver)
 - compute diff(v1, v2)

Sandia

PG&E LBNL/CEC

LBNL/NSA

Riverside SCE

EALEM

- Data management challenges: Immense time series data distributed around the US
 - Grid monitoring: 1,700 PMUs in North America generate 2M insertions per second (ips)
 - Grid usage data: 300M smart meters generate 0.33M ips
 - Analytics: 120M queries per second
 - Stream ALL the data to the cloud

Analytics challenges:

- Distillation infrastructure with extremely fast change set identification
- On-the-Fly statistical summaries over a multi-resolution store
- Multi-resolution search and process: e.g., find 'needle' events in immense haystacks instantly; drill down exponentially to analyze

- Numerical values: voltage, current, phase angles for voltage and currents
- Typically have a lot of "random" "small" fluctuations that are considered normal for the electric power grid system
- Occasionally, has relatively "large" changes that require attention or intervension

- Data compression is the science (and art) of representing information in a compact form
 - Widely used in Internet, digital TV, mobile communication
- For µPMU data,
 - Compression will reduce the data volume to be sent around the data network
 - Compression will remove redundant information and make it easer to locate the interesting information

• Previous compression approaches

- Top and Breneman (PES-GM 2013)
 - Lossless compression, CR around 2~3 (szip)
- Gadde et al. (IEEE T. Smart Grid 2016)
 - Lossy compression (spatial and temporal redundancies), CR around 20
 - Feature for power system disturbance detection (NERC PRC 002)
- IDEALEM for µPMU data

IDEALEM IDEALEM for µPMU Measurements (1)

IDEALEM for µPMU Measurements (2)

Nov. 14, 2016

Nov. 14, 2016

19 / 28

IDEALEM for µPMU Measurements (4)

.....

BERKE

IDEALEM IDEALEM for µPMU Measurements (5)

Nov. 14, 2016

Three Key Parameters in IDEALEM

SDM, CRD, LBNL

IDEALEM

power grid monitoring data

- Two parameters on compression ratio (CR)
 - CR ↑ with threshold for KS test ↓
- Effect of block length (BlkLen) is not immediately apparent
- Small memory usage: 128KB for BlkLen=32 and 255 buffers

EALEM

- Given a block length n, the maximum achievable CR of IDEALEM encoder with multiple buffers is 8⁻n
 - assuming double precision floating-point format (8 bytes)
- Large BlkLen n potentially increases CR, but it also increases difficulty of passing the KS test

- Statistical analysis enables estimating future events in various applications. For example,
 - Financial market analysis
 - Environmental study (e.g. extreme weather, climate change)
 - Energy usage analysis
 - Social network media analysis
 - Traffic analysis
 - System performance monitoring analysis
- IDEALEM
 - Enables efficient data reduction on the large streaming data
 - Provides accurate statistical analysis without loosing the underlying data distribution
 - Can also be applicable to large data archives (offline data)

IDEALEM is a new class of compression methods

- measures distance based on statistical similarity
- not traditional Euclidean distance (L²-norm)
- IDEALEM can reduce data volume by more than 100-fold, while retaining key features from original data
 - Application to large, high frequency streaming data as well as large offline data archives
- Fast enough execution time and small memory footprints to be used on resource limited devices for real time compression

SC'16 demo info including IDEALEM iOS 10 demo app

- http://sdm.lbl.gov/asim/idealem.html
- Software downloads
 - Available for commercial and non-commercial use
 - http://datagrid.lbl.gov/idealem
- License info
 - http://ipo.lbl.gov/lbnl2013-133/
 - U.S. Patent pending, serial no. 14/555,365
- Email SDMSupport@LBL.Gov
- SDM Group http://sdm.lbl.gov
- LBNL http://www.lbl.gov