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Abstract—With the increasing number of geographically dis­
tributed scientific collaborations and the scale of the data 
size growth, it has become more challenging for users to 
achieve the best possible network performance on a shared 
network. We have developed a forecast model to predict expected 
bandwidth utilization for high-bandwidth wide area network. The 
forecast model can improve the efficiency of resource utilization 
and scheduling data movements on high-bandwidth network 
to accommodate ever increasing data volume for large-scale 
scientific data applications. Univariate model is developed with 
STL and ARIMA on SNMP path utilization data. Compared 
with traditional approach such as Box-Jenkins methodology, our 
forecast model reduces computation time by 83.2%. It also shows 
resilience against abrupt network usage change. The accuracy 
of the forecast model is within the standard deviation of the 
monitored measurements.
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I . IN TRO DUCTIO N

With advances in large scale experiments and simulations, 
the data volume of scientific applications has rapidly grown. 
Even with advances in network technology, it has become 
more challenging to efficiently coordinate network resources 
and to achieve best possible network performance on a shared 
network. It is also challenging to build a forecast model 
for network bandwidth utilization with accurate and fine­
grained forecast due to computational complexities. To support 
efficient resource management and scheduling data movement 
for ever increasing data volume in extreme-scale scientific 
applications, we have developed an analytical model in order to 
characterize and forecast1 bandwidth utilization on high-speed 
wide area network (WAN). This forecast model can improve 
the efficiency of network bandwidth resource utilization. In 
addition, it can help to find efficient resource scheduling and 
path finding for data transfers.

The forecast model can improve the efficiency of network 
bandwidth resource utilization. In addition, it can help efficient 
resource scheduling and path finding for data transfers. The 
goal of this paper is to model the network bandwidth utilization 
between two sites to support data flow timing and parameter 
decisions as well as network topology or link planning. Our

Tn general, forecast is a subset of prediction. In this paper, we explicitly 
make a distinction between forecast and prediction. We use forecast as 
estimation of future values based on the analytical model built from past 
observations. We use prediction as estimation of values based on analytical 
model when forecast is inappropriate to use, e.g., 1) forecast of network traffic 
of tomorrow based on time series model of past observations 2 ) prediction of 
present network traffic using observations from packet probes.

modeling efforts can help systematic data transfer parameter 
decisions without over/under-provision. One of our previous 
works proposed a network reservation framework to provide 
guaranteed bandwidth on ESNet [5], Our forecast model can 
complement this type of reservation system or a system to 
select alternate paths for large data transfer.

It is better for the model to be computationally efficient 
and comparably accurate in order to forecast multiple paths of 
users’ interests. We select a size of an appropriate training set 
that shows relatively accurate forecast error with manageable 
computational requirement. In addition, we have studied the 
effect of variability of the bandwidth usage on the forecast 
accuracy and the appropriate threshold to make our model 
resilient against the abrupt usage change.

The experimental data on SNMP link utilization has been 
collected by ESnet [1] in 2013 and 2014 on each router. 
Our experiments use SNMP data from 6 directional paths 
connecting a pair of large data facilities described in Sec. IV-A. 
The SNMP data consists of the size of bandwidth utilization 
and time-scale as 30 seconds interval. The maximum size of 
bandwidth utilization is extracted at each interval from the 
routers in each path, which represents bandwidth utilization 
in the path. It is well known that Internet traffic has cyclic 
self-similarity in daily interval. We show this daily seasonality 
is also present in the SNMP data in Sec. IV-B. Our analysis 
focuses on the traffic for large-scale scientific data movement 
instead of Internet traffic.

We have developed the forecast model as a univariate time 
series model. The first step is to remove the seasonality in 
the measurement data, and we use Seasonal Decomposition of 
Time Series by Loess (STL) [9], STL decomposes the SNMP 
data into the time series of seasonality, trend and remainder. 
We seasonally adjust the SNMP data by deducting seasonality 
component. Then, we use AutoRegressive Integrated Moving 
Average (ARIMA) on the seasonally adjusted time series. 
The orders of ARIMA model are selected in an automated 
mechanism based on the assumption of stationary time series 
about the SNMP data. We have observed that there is no 
significant changes in the average bandwidth utilization in 
the training dataset window (up to 8 weeks) throughout 2013 
and 2014. We show that our assumption is appropriate for 
the SNMP data in Sec. IV-C. Our forecast model reduces 
computation time for forecast by 83.2% compared to the 
traditional approach such as Box-Jenkins methodology [7] [8] 
to find the best fit forecast model using ARIMA. In addition, 
our model shows more resilience against abrupt network usage 
change.



The rest of paper is organized as follows. Sec. II presents 
related work. Sec. Ill demonstrates the model design and 
implementation. Sec. IV presents experimental evaluation of 
the forecast model, and Sec. V concludes.

II. R e l a t e d  W o r k

The studies have shown self-similarity of network traffic 
in LAN [21], WAN [26], and World Wide Web [12], The self­
similarity of network traffic allows to use past history to fore­
cast near-term future. Qiao et al. [28] presented an empirical 
study of the forecast error on different time-scales, showing 
that the forecast error does not monotonically decrease with 
smoothing for larger time-scale.

Benson el al. [6] studied network traffic patterns in data 
centers using SNMP data. Yin el al. [35] proposed a mecha­
nism to predict application-layer data throughput. Balman et 
al. [5] proposed a network reservation framework to provide 
guaranteed bandwidth. Our forecast model complements these 
works by providing traffic forecast information.

Available bandwidth can be estimated by sending probe 
packets as proposed from measurement tools: Pathload [18], 
pathChirp [29], IGI [16], and Spruce [34], Shriram et al. [32] 
conducted a comparison study available bandwidth estimation 
from various measurement tools in network simulator (ns2) [2], 
Croce et al. [11] proposed bandwidth estimation techniques 
from large-scale distributed systems. Aceto et al. [3] proposed 
end-to-end available bandwidth measurement infrastructure. 
Our forecast model focuses on the prediction of available 
bandwidth using passive measurements from routers instead 
of estimation from probing packets.

Several prediction models of TCP data transfers have been 
proposed. Throughput prediction models were proposed for 
large TCP transfers [14] [23]. Mirza et al. [24] used a machine 
learning mechanism to predict TCP throughput. While these 
works are restricted to predict TCP data transfers, our forecast 
model forecasts aggregated network throughput for a network 
path.

Several models have been proposed to forecast network 
traffic. Sang et al. [30] proposed short-term (a few minutes) 
forecast model using ARMA with 1 sec time-scale data. 
Papagiannaki et al. [25] proposed long-term (1 year) forecast 
model of Internet backbone traffic using ARIMA with 1 week 
time-scale data. Krithikaivasan et al. [19] proposed mid-term (1 
day) forecast model using ARCH model with 15 minute time- 
scale data. Our model focuses on mid-term (1 day) forecast 
of the bandwidth utilization using 30 second time-scale data. 
Since the number of forecast points ( ^  dthrPa\TmR?IiiRecast) is 
order of magnitude larger than these models, our forecast 
model requires more computation and accuracy than these 
proposed models. Our model overcame these challenges by 
seasonal adjustment and stationary assumption, which were 
not discussed in these models.

III. M o d e l  D e v e l o p m e n t

We have developed the forecast model as a univariate time 
series model. A forecast model estimates the future values 
using the observed SNMP data up to time n  (x i; x 2, • • • , x n). 
The forecast of h steps ahead is denoted as x n {h) at time

n  + h. When the observed value (xn+h) is available at time 
n +  h, we calculate the forecast error denoting en (h) as:

en (h) = x n+h -  x n (h) (1)

A. Logit Transformation

The theoretical maximum value of possible traffic size of 
the SNMP is 1010 bits and the minimum value is 0 bit within 
one second in 100G bit/second bandwidth of the current ESnet. 
As the SNMP data is collected in every 30 second interval, the 
traffic size per 30 second unit time is normalized by dividing 
by 30. Logit transformation is applied to the SNMP data x  
to set the lower and upper bounds based on these limits. 
Time series data x  containing n  observations is transformed 
to time series data y  with lower bound a and upper bound b 
(1010 bit/second) as denoted in Eq. 2 The lower bound a is
approximated to 1 bit/second instead of 0 bit/second. While
there are very few cases observed when no transfer occurs, 
approximating to 1 bit/second is ignorable in the lOOGbps 
network.

x  =  time series x t =  x i, X2 • • • , x n 
y =  time series y t = y i, y 2 ■ ■ ■ ,y n

y =  l o g i t ( x ) = l o g ( ^ )  (2)
b — x

B. Seasonal Adjustment

After the logit transformation defined in Eq.2, the trans­
formed SNMP data y  is seasonally adjusted. Removing sea­
sonal components from the time series allows analysis of the 
non-seasonal trend of the time series. This is essential to build 
forecast model that can project the trend and the seasonality of 
past history to future values. We use Seasonal Decomposition 
of Time Series by Loess (STL) [9] for this seasonal adjustment. 
STL decomposes the logit transformed SNMP data into the 
components of seasonality S , trend T , and remainder R  as 
denoted in Eq. 3.

y  =  yt =  St +  Tt +  R t  (3)

STL applies a sequence of smoothing from Loess (Locally 
Weighted Regression Litting) [10]. This smoothing sequence 
progressively refines and improves the estimates of the sea­
sonal and trend components. There exist several parameters to 
derive the STL model. The seasonal cycle is evaluated with 
possible choices such as minute, hour, day and week. The 
smoothing windows for the seasonality (n s) for trend (n t) 
are evaluated with different values. After the decomposition, 
we seasonally adjust SNMP data by deducting seasonality 
component denoted as yt = y t t = y t — S t = Tt + R t .

After the decomposition, we seasonally adjust SNMP data 
by deducting seasonality component denoted in Eq. 4.

V  = y d  = Vt -  S t = T t + R t (4)

C. Bandwidth Utilization Prediction

The forecast model is developed by using AutoRegressive 
Integrated Moving Average (ARIMA) on the seasonally ad­
justed time series, yt. ARIMA model consists of the orders of 
autoregressive process (p), the number of differences (d), and



the number of moving average (</). The orders of ARIMA 
model (p,d,q) are selected in an automated mechanism as 
follows. First, the stationarity of the time series is confirmed 
by KPSS test [20], When the stationary is confirmed, the order 
of differences d is selected as 0. Otherwise, d is selected as 
1, which is enough to make the non-stationary time series to 
stationary in the experiments. We use Akaike’s Information 
Criterion (AIC) [4] to automatically select the modeling 
parameters as shown in the Box-Jenkins methodology [7] [8], 
AIC represents the sum of the maximum log likelihood for 
the estimation and the penalty from the orders of selected 
model. This combination allows simpler models with less 
numbers of orders unless the possible model shows severely 
low likelihood for the estimation. We calculate AIC with 
different combinations of p  and q incrementing from 1 until the 
sum of p  and q reaches to a certain maximum value. The model 
choice from AIC converges and is asymptotically equivalent 
to that of cross-validation [33] [31], The best model with p  
and q is chosen with the least value of AIC.2 In our case, 
the maximum sum of p  and q is 10, and this is the smallest 
size that selects the modeling parameters result in reasonably 
accurate forecast from the experimental data.

After the the orders of the ARIMA model are selected, 
we fit the model with the seasonally adjusted time series 
(y iz, t/2 z, ••• ■ n„f ) and the training set of n  observed data 
( x i , x 2, * * * . -I', ,). The ARIMA model fitting is to estimate 
the parameters with the orders of autoregressive process and 
moving average process (after the orders of differencing if 
d >  0). The forecast of h time steps ahead is computed from 
the fitted model (yhO- Then, the seasonality component is 
added to these forecast values (yh) as in Eq 5. The seasonality 
forecast (Sji+i, S n+2, • • • , S n+h) can be estimated by simply 
repeating cyclic period in the decomposed seasonal component 
(S i, S 2, ■ ■ ■ , S n).

Vh =  j//i/ T  Sn+/t (5)

IV. E x p e r i m e n t a l  R e s u l t s

A. Experimental Setup

Table I describes 6 directional paths used in the experi­
ments.3 These paths connect two sites on ESnet in the US. 
Each path consists of 6 or 7 links connected with the routers 
in the path. PID is the path identification and will be used to 
distinguish the paths. We constructed the bandwidth utilization 
time series data by selecting the maximum value on a link in 
each path, for a given data collection interval. The experiments 
were conducted on a machine with 8-core CPU, AMD Opteron 
6128 and 64 GB memory. To reduce overall execution time, 
we parallelized the computational tasks of parameter searching, 
fitting and calculating the forecast error.

The resolution of SNMP data can be decreased by 30 
second time unit into larger scales and aggregating the traffic 
size, e.g., aggregating and normalizing the traffic into 1 minute, 
5 minutes, 10 minutes, 30 minute, 1 hour, or 1 day time unit. 
As decreasing resolution of network traffic results in reducing 
the variances of the traffic, it can show less forecast error [28], 
It also leads to less computation time due to the decreased data 
size with lower resolution. However, we did not decrease the 
resolution of the SNMP data since it could forecast the most 
fine-grained level from the given the SNMP data. The forecast 
error with decreasing resolution showed better accuracy by 
sacrificing the granularity of the forecast, which was confirmed 
in our experiments.4

TABLE I: Description of Paths.

PID Source Destination # of I.inks

PI N E R S C A N L 7
P2 A N L N E R S C 7
P3 N E R S C O R N L 7

P4 O R N L N E R S C 7
P5 A N L O R N L 6

P6 O R N L A N L 6
Then, these forecast values are converted to the original scale 
using the reverse logit transformation as in Eq. 6.

x h = ( b - i exp (yh)
1 + e x p  (yh ) (6)

We evaluate the forecast error by a cross-validation mecha­
nism for time series data proposed by Hijorth [15], The original 
mechanism by Hijorth computes a weighted sum of one- 
step-ahead forecasts by rolling the origin when more data is 
available. Similarly, we compute the average forecast error for 
1 week by forecasting one target day (h  =  1, • • • , 2880) and 
rolling 6 more days. We compare this cross-validation results 
of the forecast errors as Root Mean Squared Error (RMSE) 
in Sec. IV, where RMSE is calculated with R M S E (h )  =

VrE1 n|,:))2-
2AIC is combined with the positive value of penalty from the orders and 

negative log-likelihood.

Fig. 1 shows the plots of bandwidth utilization of the paths 
in Table I from Feb. 10, 00:00:00, GMT 2014 to Feb. 16, 
23:59:30, GMT 2014. 5 We used the SNMP data during this 
time period as test set, and evaluated the forecast error using 
cross-validation. We computed the forecast error as Root Mean 
Squared Error (RMSE) from n  observations (x \. x 2, • • • , x n) 
based on the Eq. 1. After deriving forecast values for the first 
day of the test set ( x \ . • • • , f  28so), the forecast error for the
first target day R M S E ( h day i) =  R M S E (h )  was computed. 
The forecast error for the second target day R M S E ( h day2) =  
M A E { h  + h) was computed by adding the observations from 
the first target day to the previous training set (au, x 2, • • • , x n , 
x n+ i , x n+2, • • • , x n+h). This processes were repeated for the 
next 5 target days from the third target day. Then, the average 
of forecast errors for the 7 target days was the forecast error 
for the test set.

3We anonymize specific site names on a path for the data policy.
4 This paper does not include the result from decreasing resolution.
5We use Greenwich Mean Time (GMT) to resolve ambiguity in the 

transition time between PST and PDT. The date and the time are used in 
this paper in GMT.
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Fig. 1: Bandwidth Utilization Graphs for Experimental Paths: The size of traffic is shown in vertical axis as bit/s. The horizontal 
axis shows the time from Feb. 10, 00:00:00, GMT 2014 to Feb. 16, 23:59:30, GMT 2014.

B. Seasonality Analysis

Fig. 2 shows the seasonally adjusted SNMP data by STL. 
The STL model was derived by using the parameters described 
in Sec. III-B. The seasonal cycle was evaluated with possible 
cyclic periods such as minute, hour, day and week. The 
smoothing parameter for the seasonality (ns) was evaluated 
with possible values such as the same value with np or 
multiples or inverse multiples of np. The smoothing parameter 
for trend n t was also evaluated with different values. With 
larger n t, the Interquartile Range (IQR) of the trend component 
got smaller. This is because smoothing from Loess [10] of the 
trend component gets smoother with larger n t, and this result 
is increasing IQR of the remainder component.

Different values of seasonality smoothing window (n s) 
showed the similar forecast accuracy. The IQR of the seasonal 
component did not change with different n s . In addition, trend 
smoothing window (n t ) changed the shape of trend, but did not 
change forecast accuracy. As a result, we selected n s and n t as 
the same as n s . While the shape and IQR were changed with 
different n t , the forecast error was still similar. This suggests

that the ARIMA is more crucial component than STL in our 
forecast modeling. However, fitting with STL is essential since 
it removes seasonal component from the original time series. 
Using the Seasonal ARIMA or using the ARIMA without STL 
appeared to be another possible choice, however computation 
time of the modeling these choices took too long to conduct the 
experiments. Only after seasonal adjustment, the computation 
time of the ARIMA modeling was viable. Fig. 3 shows the 
forecast errors when using different seasonal cycles. It is 
well known that Internet traffic has cyclic self-similarity in 
daily interval. The average forecast error (RMSE) with daily 
seasonality was 4.9% better than that of weekly seasonality and 
2.8% better than that of hourly seasonality. This result shows 
that SNMP data has stronger daily self-similarity than hourly 
and weekly periods, similar to the Internet traffic. The average 
of Hurst parameters [12] from P I  to P6 were 0.92, 0.94, 
0.93, 0.89, 0.94, and 0.87 respectively, which confirms the self­
similarity. While the remainder of STL decomposition did not 
pass the Ljung-Box test [22] to check whether autocorrelation 
still exists, which led us to use ARIMA to remove existing 
autocorrelation from the seasonally adjusted time series.
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Fig. 2: Seasonally Adjusted Components: The top plot in each graph is from the raw SNMP measurement data. The second plot 
is for the seasonal component. The third plot is for the trend component. The bottom plot is for the remainder. The horizontal 
axis shows the time as days and the duration is 8 weeks from Jan. 20, 00:00:00, GMT 2014 to Feb. 9, 23:59:30, GMT 2014.

C. Bandwidth Utilization Prediction

We compared possible modeling choices including param­
eter selections. The model was developed based on the Box- 
Jenkins methodology [7], using ARIMA on seasonally adjusted 
SNMP data by STL. The orders of ARIMA model (p,d,q) were 
selected in the automated mechanism in Sec. III-C. After fitting 
the forecast model with the selected parameters, Ljung-Box 
test was conducted to check whether the overall residuals are 
similar to the white noise, and the residuals of the forecast 
model passed the test.

Forecast Methodology: We tested the possible forecast 
methods on seasonally adjusted time series data by STL. 
Fig. 4 illustrates the comparison of forecast errors for different 
forecast models, ARIMA, Exponential smoothing state space 
model (ETS) [17] and Random Walk (RW) [7], The forecast 
error of ARIMA is the lowest, which led us to use ARIMA in 
the forecast model.

Logit Transformation: Fig. 5 shows the forecast errors 
for the logit transfonned data as in Eq. 6, compared to the 
unmodified data. The forecast errors were derived from the 
forecast models using STL and ARIMA described in Sec. III-B 
and Sec. III-C. The forecast error (RMSE) after the logit 
transfonnation was consistently more accurate for each path. 
The average forecast error was 8.5% better with the logit 
transfonnation than without the logit transfonnation. This is 
because the logit transfonnation sets the lower and upper 
bounds in the modeling and fitting procedures, which helps 
reduce the potential under-estimation and over-estimation from 
the forecast.

Training Set Size: Fig. 6 shows the forecast enors for 
different sizes of training sets. Although the forecast accuracy 
was the best with 16 weeks, this was marginally better than 
other training set sizes. Since smaller training set required less 
computational resources, we used 8 weeks of training set size 
in the following experiments. This shows that increasing the 
training set size does not guarantee better forecast accuracy.
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Fig. 3: Forecast Error Comparison with Different Seasonal 
Cycles: The size of traffic is shown in vertical axis as bit/s. 
The training set size is 8 weeks (n =  80640). The number of 
observations per seasonal cycle is one hour, one day, and one 
week.

Model  A R I M A E T S  RW

Path

Fig. 4: Forecast Error Comparison for Different Forecast 
Models on Seasonally Adjusted Data: The training set duration
is 8 weeks. The seasonal cycle is one week.

Even the smaller training set than 8 weeks was effective in the 
delayed model update, shown in the next Section (Sec. IV-D).

D. Delayed Model Update

We observed that even when KPSS test [20] did not confirm 
the stationarity, the time series did not drift significantly. Thus, 
we evaluated whether the stationary assumption of SNMP data 
was appropriate even when the KPSS test result suggested 
non-stationary. We think that the variances of training set and 
sudden bandwidth utilization changes made the test results

P1 P 2  P 3  P 4  P 5  P 6
Path

Fig. 5: Forecast Error Comparison for Logit Transfonnation: 
The training set duration is 8 weeks. The seasonal cycle is one 
week.
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Path

Fig. 6: Forecast E nor Comparison for Different Training Set 
Sizes: The training set size is 8, 16, 24, 32, 40, or 48 weeks. 
The number of observations per seasonal cycle is one day.

inaccurate in some cases. The stationary assumption results 
the forecast enor (RMSE) 10.9% less than that of forecast 
without the assumption. As we observed stationarity of SNMP 
data up to 8 weeks in the training dataset, this observation 
led to a hypothesis that delaying model updates at least one 
week would not degrade the forecast enor, instead of updating 
and re-fitting the model whenever new measurement data 
is available. We updated the minimal parts such as auto- 
conelation and moving averages from the initially fitted model.

Training Set Size: We re-evaluated the forecast enors for 
different training set sizes when using the stationary model.
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Fig. 7: Forecast Error Comparison for Different Training Set 
Sizes: The training set size is from 1 to 8 weeks. The seasonal 
cycle is one day.

Fig. 7 shows that training set size with around 4 weeks resulted 
in better forecast accuracy.
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Fig. 8: Forecast Error Comparison for Different Seasonal 
Smoothing Window: The training set size is 8 weeks. The 
number of observations per seasonal cycle is one day.

Seasonal Smoothing Window: Fig. 8 shows the forecast 
errors for different sizes of seasonal smoothing windows (n s) 
with the stationary model. Different values of n s showed the 
similar forecast accuracy. The IQR of the seasonal component 
did not change with different n s . In addition, trend smoothing 
windows (n t ) changed the shape of trend, but did not change 
forecast accuracy. As a result, we selected n s and n t as 
the same as n s . While the shape and IQR were changed 
with different n t, the forecast error was still similar. This 
suggests that the ARIMA is more crucial component than

STL in forecast. However, fitting with STL is essential since 
it removes seasonal component from the original time series. 
Using the Seasonal ARIMA or using the ARIMA without STL 
appeared to be another possible choice, however computation 
time of the modeling these choices took too long to conduct the 
experiments. Only after seasonal adjustment, the computation 
time of the ARIMA modeling was viable.

D ata  |  Filtered Unfiltered

Path

Fig. 9: Forecast Error Comparison for Hampel Outlier Filter: 
The training set size is 8 weeks. The number of observations 
per seasonal cycle is one day.

Hampel Filter: We applied Hampel filter [27] to evaluate 
whether removing outliers helps the forecast accuracy. Hampel 
filter is a moving window nonlinear data cleaning filter that can 
remove outliers based on Hampel identifier [13]. Outliers were 
removed with t-value above 3 or -3, based on 3-sigma rule [27] 
and moving window length of 6 hours. We observed that these 
parameters were sufficient to remove the most of outliers from 
the SNMP data measured in 2013 and 2014. Fig. 9 shows the 
forecast error when Hampel filter was applied. The forecast 
error is slightly improved, but it is very marginal. Therefore, 
we decided not to use Hampel filter in our forecast model.

Delayed Model Update: Fig. 10 shows the forecast errors 
for our delayed model update. As we observed stationarity of 
SNMP data, this led to a hypothesis that restricting model 
updates would not degrade the forecast error. Instead of 
updating and re-fitting the model for the daily forecast with 
cross-validation, we kept the same model. We updated the 
minimal parts such as auto-correlation and moving averages 
from the initially fitted model. The result shows that the 
accuracy was not degraded, and it improved the computation 
time by 83.2% compared to traditional approach such as the 
Box-Jenkins methodology [7] [8] with updating the models in 
daily period. The average computation time from the delayed 
model update took 158 seconds to forecast 7 days duration per 
path compared to 938 seconds from the model updated daily.

Fig. 11 shows the forecast result of the delayed model 
update for one day test set on Feb. 10, 2014. It shows that 
our blue-colored forecast values are close to the black-colored
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Fig. 10: Forecast Error Comparison for Delayed Model 
Update: The training set size is 4 weeks. The seasonal cycle 
is one day.

observed data. Table II shows the variances of the training set 
of 4 weeks and the test set from Feb. 10, 2014 to Feb. 16, 
2014. The cross-validation results of forecast error as RMSE 
are within the variances of the test set. This result validates 
the efficacy of our forecast model. When sudden spikes in the 
bandwidth utilization were observed from the training set, our 
forecast model was resilient to those sudden changes. It was 
also accurate to have RMSE within the variances of the test 
sets.

Since Mean Error (ME) is much closer to 0 than Mean 
Absolute Error (MAE) in Tab. II, the forecast would be 
more accurate for large data transfers. ME is denoted as

h
M E ( h )  = jt • J2 e„(i),  and MAE is denoted as M A E ( h )  =

i= 1
h

i  • J2 l£n(*)|- This is because the forecast errors are mixed
i= 1

with positive and negative values. When the transfer time is 
longer than 30 seconds (10 TB transfer takes 800 seconds at 
theoretical maximum throughput speed on lOOGbps network.), 
the aggregated forecast errors from the large data transfer 
would decrease. With the same reason, increasing time-scale 
by smoothing would increase the forecast errors.

TABLE II: Forecast Error Metrics. The values are expressed 
as Gbps (108 bit/second). S D Train is the standard deviation 
of the training set. S D Test is the standard deviation of the test 
set. RMSE, MAE, ME is the different types of forecast errors 
of cross-validation.

PID S D Train S DT es t RMSE MAE ME
PI 4.13 2.36 2.27 1.72 0.29
P2 4.51 3.37 3.31 2.59 -0.58
P3 4.01 2.07 1.88 1.45 0.47
P4 3.03 2.06 1.85 1.46 0.10
P5 4.64 3.40 3.42 2.74 -1.04
P 6 4.00 2.54 2.42 1.79 0.30

E. Discussion and Future Work

Although we did not consider holiday effect and summer 
time transition in our model, we believe these effects would 
not significantly change our analysis results. We used a central 
storage server for the network monitoring measurements, and 
the construction and estimation of forecast model were con­
ducted on another server. Distributing the loads of the storage 
and computation to other servers would help scalability to 
forecast more paths simultaneously. The future work includes 
developing a distributed system for the forecast models, and 
developing an adaptive model to detect and adjust the modeling 
parameters when the long-tenn trend of bandwidth utilization 
is changed.

V . C o n c l u s i o n s

We present a network bandwidth utilization forecast model, 
which can support efficient network resource utilization, effi­
cient scheduling and alternate path finding, and planning on 
network link/bandwidth provision for high-bandwidth network. 
Since data sharing opportunities over the wide-area network 
increase for large-scale scientific data applications which 
generate large volume of data, it is challenging to efficiently 
coordinate network resources on a shared network. In addition, 
sudden bandwidth utilization change makes forecast more 
challenging. We observe that the network traffic behavior 
for the large scientific data movement shows stationarity 
and self-similarity in daily periodicity. Logit transfonnation 
and stationary assmnption show effectiveness in reducing the 
forecast enor by 8.5% and 10.9% respectively. Our experi­
mental results show that the delayed model update reduces 
the computation time by 83.2% compared to the traditional 
Box-Jenkins approach. It does not show the degradation of 
the forecast enor when reducing the frequency of the model 
updates, and it shows the resiliency when there is a sudden 
network bandwidth utilization change. Our forecast model is 
accurate to have Root Mean Squared E nor (RMSE) within 
the variances. The future work includes the adaptive forecast 
model based on the long-tenn trend changes of bandwidth 
utilization and the application of the forecast model to the 
network provisioning.
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