

Network Bandwidth Utilization Forecast Model on High Bandwidth Networks

Scientific Data Management Group Computational Research Division Lawrence Berkeley National Laboratory Wucherl (William) Yoo, Alex Sim

Motivation

- Increasing Data Volume
 - Efficient resource management and scheduling data movement
 - Predict the network bandwidth utilization between two HPC sites
- Challenge
 - Accurate and fine-grained performance model
 - Computational complexities and variances/burstiness

- Simple Network Management Protocol (SNMP) Data
 - Collected by ESNet in 2013 and 2014 on each router
 - Connect a pair of large data facilities
 - P1 and P2 between NERSC and ORNL
 - P3 and P4 between NERSC and ANL
 - P5 and P6 between ORNL and ANL
- Univariate time series with bandwidth utilization size and time-scale at 30s interval

Bandwidth Utilization

- Seasonal Adjustment
- Logit Transformation
- Stationarity
- Delayed Model Update

- Forecast Error $e_n(h) = x_{n+h} - \hat{x}_n(h)$
- Logit Transform
 - lower bound **a**, upper bound **b**

$$y = \operatorname{logit}(x) = \operatorname{log}(\frac{x-a}{b-x})$$
$$\hat{x}_h = (b-a) \cdot \frac{\exp(\hat{y}_h)}{1 + \exp(\hat{y}_h)} + a$$

- Prediction Models
 - ARIMA, ETS, and Random Walk

Seasonal Adjustment

STL

- A sequence of smoothing from Loess (Locally Weighted Regression Fitting)
- Decomposes the logit transformed SNMP time series into the components S, T, and R.
 - Seasonality S
 - Trend T
 - Remainder R

$$\mathbf{y} = \mathbf{y}_{t} = \mathbf{S}_{t} + \mathbf{T}_{t} + \mathbf{R}_{t}$$

- Stationarity
 - The mean or variance of time-series does not change over time and does not follow any trends

Burstiness

- When there is a sudden bandwidth utilization change, the time series can be looked as non-stationary
- Keeping the stationary assumption made less prediction error in our model
 - bursty change may not be a long-term change

- Based on the stationarity, keeping the same model and delaying model updates
 - Instead of refitting, the minimal parts such as autocorrelation and moving averages are updated from the initially fitted ARIMA model

- Forecast Model Comparison
- Logit Transformation
- Training Set Size
- Stationarity
- Delayed Model Update
- Forecast Results

Forecast Model Comparison

.....

BERKELEY LAB

lui

Logit Transformation

Training Set Size

W. Yoo, CRD, LBNL

Stationarity

W. Yoo, CRD, LBNL

Forecast Results

NERSC -> ANL

ANL → NERSC

NERSC -> ORNL

ORNL → NERSC

ANL → ORNL

ORNL → ANL

Historical Forecast Results

W. Yoo, CRD, LBNL

.....

BERKELEY LAB

Ш

Forecast Results - RMSE

PID	SD_Train	SD_Test	RMSE
P1	4.13	2.36	2.27
P2	4.51	3.37	3.31
P3	4.01	2.07	1.88
P4	3.03	2.06	1.85
P5	4.64	3.40	3.42
P6	4.00	2.54	2.42

- Forecast Model
 - ARIMA with STL, logit transformation, and stationarity
 - Forecast errors were within the variances of observed data
 - Logit transform reduced prediction error by 8.5%
 - Stationarity assumption reduced prediction error by 10.9%
- Contact
 - Wucherl (William) Yoo, wyoo@lbl.gov

- Adaptive Model
 - To adapt the long-term trend changes
- Multivariate Performance Prediction Model
 - To extend the analysis to multivariate data

Backup - Seasonal Adjustment

W. Yoo, CRD, LBNL