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Motivation 

•  Increasing Data Volume 
•  Efficient resource management and scheduling data 

movement 
•  Predict the network bandwidth utilization between two HPC sites 

•  Challenge 
•  Accurate and fine-grained performance model 

•  Computational complexities and variances/burstiness 
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SNMP Data   

•  Simple Network Management Protocol (SNMP) Data 
•  Collected by ESNet in 2013 and 2014 on each router 
•  Connect a pair of large data facilities 

•  P1 and P2 between NERSC and ORNL 
•  P3 and P4 between NERSC and ANL 
•  P5 and P6 between ORNL and ANL 

•  Univariate time series with bandwidth utilization size 
and time-scale at 30s interval 
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Bandwidth Utilization 

NERSC è ANL (P1) ANL è NERSC (P2) NERSC è ORNL (P3) 

ORNL è NERSC (P4) ANL è ORNL (P5) ORNL è ANL (P6) 
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Our Approach 

•  Seasonal Adjustment 
•  Logit Transformation 
•  Stationarity 
•  Delayed Model Update 
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Prediction Model  

•  Forecast Error 
 
•  Logit Transform  

•  lower bound a, upper bound b 

•  Prediction Models 
•  ARIMA, ETS, and Random Walk 
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Seasonal Adjustment 

•  STL 
•  A sequence of smoothing from Loess (Locally Weighted 

Regression Fitting) 
•  Decomposes the logit transformed SNMP time series into 

the components S, T, and R. 
•  Seasonality S 
•  Trend T 
•  Remainder R  
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Stationarity 

•  Stationarity 
•  The mean or variance of time-series does not change over 

time and does not follow any trends 
•  Burstiness 

•  When there is a sudden bandwidth utilization change, the 
time series can be looked as non-stationary 

•  Keeping the stationary assumption made less prediction 
error in our model 

•  bursty change may not be a long-term change 
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Delayed Model Update  

•  Based on the stationarity, keeping the same model 
and delaying model updates 
•  Instead of refitting, the minimal parts such as auto-

correlation and moving averages are updated from the 
initially fitted ARIMA model 
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Evaluation 

•  Forecast Model Comparison 
•  Logit Transformation 
•  Training Set Size 
•  Stationarity 
•  Delayed Model Update 
•  Forecast Results 
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Forecast Model Comparison 

weeks prior to Feb. 10, 2014. We evaluated the forecast error
by a cross-validation mechanism for time series data proposed
by Hijorth [12]. The original method by Hijorth computes
a weighted sum of one-step-ahead forecasts by rolling the
origin when more data is available. Similarly, we computed
the average forecast error for 1 week by forecasting one target
day (h = 1, · · · , 2880) and rolling 6 more days. We compared
the cross-validation results of the forecast errors as Root Mean
Squared Error (RMSE) in the following sections. RMSE 2 is in

bit/s, and calculated with RMSE(h) = sqrt(

1

h

·
hP

i=1
(e

n

(i))

2
).

After forecasting the first day of the test set (x̂1, · · · , x̂2880),
the forecast error for the first target day RMSE(h

day1) =

RMSE(h) was computed. The forecast error for the second
target day RMSE(h

day2) = MAE(h+ h) was computed by
adding the observations from the first target day to the previous
training set (x1, · · · , xn

,xn+1, · · · ,xn+h). This process was
repeated for the next 5 target days to compute the average of
RMSE for the one-week test set.

B. Seasonality Analysis
The STL model was derived by using the parameters described
in Sec. III-B. The seasonal cycle was evaluated with possible
cyclic periods such as minute, hour, day and week. The
smoothing parameter for the seasonality (n

s

) was evaluated
with possible values such as the same value with n

p

or
multiples or inverse multiples of n

p

. The smoothing parameter
for trend (n

t

) was also evaluated with different values. With
larger n

t

, the Interquartile Range (IQR) of the trend component
got smaller. This is because smoothing from Loess [8] of the
trend component gets smoother with larger n

t

, and this result
is increasing IQR of the remainder component.
Different values of seasonality smoothing window (n

s

) showed
the similar forecast accuracy. The IQR of the seasonal com-
ponent did not change with different n

s

. In addition, trend
smoothing window (n

t

) changed the shape of trend, but did not
change forecast accuracy. As a result, we selected n

s

and n

t

as
the same as n

s

. While the shape and IQR were changed with
different n

t

, the forecast error was still similar. This suggests
that the ARIMA is more crucial component than STL in our
forecast modeling. However, fitting with STL is essential since
it removes seasonal component from the original time series.
Using the Seasonal ARIMA or the ARIMA without STL
appeared to be another possible choice, however, computation
time of the modeling these choices took too long to conduct the
experiments. Only after seasonal adjustment, the computation
time of the ARIMA modeling was viable.
It is well known that Internet traffic has cyclic self-similarity
in daily interval [10]. The average forecast error (RMSE)
with daily seasonality was 4.9% better than that of weekly
seasonality and 2.8% better than that of hourly seasonality.
This result shows that SNMP data has stronger daily self-
similarity than hourly and weekly periods, similar to the
Internet traffic. The average of Hurst parameters [9] from P1
to P6 were 0.92, 0.94, 0.93, 0.89, 0.94, and 0.87 respectively,
which confirms the self-similarity. While the remainder of
STL decomposition did not pass the Ljung-Box test [17] to
check whether autocorrelation still exists, which led us to use

2As the SNMP data is collected in every 30 second interval, the size of
bandwidth utilization is normalized by dividing by 30. Note that RMSE is in
the same order of the bandwidth. MAE and ME are also shown in Table I.

ARIMA to remove existing autocorrelation from the seasonally
adjusted time series.

C. Bandwidth Utilization Forecast
We compared possible modeling choices including parameter
selections. The model was developed based on the Box-Jenkins
methodology [6], using ARIMA on seasonally adjusted SNMP
data by STL. The orders of ARIMA model (p,d,q) were
selected in the automated mechanism in Sec. III-C. After fitting
the forecast model with the selected parameters, Ljung-Box
test was conducted to check whether the overall residuals are
similar to the white noise, and the residuals of the forecast
model passed the test.
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Fig. 1. Forecast Error Comparison for Different Forecast Models on
Seasonally Adjusted Data: The training set duration is 8 weeks. The seasonal
cycle is one week.

Forecast Methodology: We tested the possible forecast meth-
ods on seasonally adjusted time series data by STL. Fig. 1
illustrates the comparison of forecast errors for different
forecast models, ARIMA, Exponential smoothing state space
model (ETS) [13] and Random Walk (RW) [6]. The forecast
error of ARIMA is the lowest, which led us to use ARIMA in
the forecast model.
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Fig. 2. Forecast Error Comparison for Logit Transformation: The training
set duration is 8 weeks. The seasonal cycle is one week.

Logit Transformation: Fig. 2 shows the forecast errors for
the logit transformed data compared to the unmodified data.
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Logit Transformation 

weeks prior to Feb. 10, 2014. We evaluated the forecast error
by a cross-validation mechanism for time series data proposed
by Hijorth [12]. The original method by Hijorth computes
a weighted sum of one-step-ahead forecasts by rolling the
origin when more data is available. Similarly, we computed
the average forecast error for 1 week by forecasting one target
day (h = 1, · · · , 2880) and rolling 6 more days. We compared
the cross-validation results of the forecast errors as Root Mean
Squared Error (RMSE) in the following sections. RMSE 2 is in

bit/s, and calculated with RMSE(h) = sqrt(
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After forecasting the first day of the test set (x̂1, · · · , x̂2880),
the forecast error for the first target day RMSE(h

day1) =

RMSE(h) was computed. The forecast error for the second
target day RMSE(h

day2) = MAE(h+ h) was computed by
adding the observations from the first target day to the previous
training set (x1, · · · , xn

,xn+1, · · · ,xn+h). This process was
repeated for the next 5 target days to compute the average of
RMSE for the one-week test set.

B. Seasonality Analysis
The STL model was derived by using the parameters described
in Sec. III-B. The seasonal cycle was evaluated with possible
cyclic periods such as minute, hour, day and week. The
smoothing parameter for the seasonality (n

s

) was evaluated
with possible values such as the same value with n

p

or
multiples or inverse multiples of n

p

. The smoothing parameter
for trend (n

t

) was also evaluated with different values. With
larger n

t

, the Interquartile Range (IQR) of the trend component
got smaller. This is because smoothing from Loess [8] of the
trend component gets smoother with larger n

t

, and this result
is increasing IQR of the remainder component.
Different values of seasonality smoothing window (n

s

) showed
the similar forecast accuracy. The IQR of the seasonal com-
ponent did not change with different n

s

. In addition, trend
smoothing window (n

t

) changed the shape of trend, but did not
change forecast accuracy. As a result, we selected n

s

and n

t

as
the same as n

s

. While the shape and IQR were changed with
different n

t

, the forecast error was still similar. This suggests
that the ARIMA is more crucial component than STL in our
forecast modeling. However, fitting with STL is essential since
it removes seasonal component from the original time series.
Using the Seasonal ARIMA or the ARIMA without STL
appeared to be another possible choice, however, computation
time of the modeling these choices took too long to conduct the
experiments. Only after seasonal adjustment, the computation
time of the ARIMA modeling was viable.
It is well known that Internet traffic has cyclic self-similarity
in daily interval [10]. The average forecast error (RMSE)
with daily seasonality was 4.9% better than that of weekly
seasonality and 2.8% better than that of hourly seasonality.
This result shows that SNMP data has stronger daily self-
similarity than hourly and weekly periods, similar to the
Internet traffic. The average of Hurst parameters [9] from P1
to P6 were 0.92, 0.94, 0.93, 0.89, 0.94, and 0.87 respectively,
which confirms the self-similarity. While the remainder of
STL decomposition did not pass the Ljung-Box test [17] to
check whether autocorrelation still exists, which led us to use

2As the SNMP data is collected in every 30 second interval, the size of
bandwidth utilization is normalized by dividing by 30. Note that RMSE is in
the same order of the bandwidth. MAE and ME are also shown in Table I.

ARIMA to remove existing autocorrelation from the seasonally
adjusted time series.

C. Bandwidth Utilization Forecast
We compared possible modeling choices including parameter
selections. The model was developed based on the Box-Jenkins
methodology [6], using ARIMA on seasonally adjusted SNMP
data by STL. The orders of ARIMA model (p,d,q) were
selected in the automated mechanism in Sec. III-C. After fitting
the forecast model with the selected parameters, Ljung-Box
test was conducted to check whether the overall residuals are
similar to the white noise, and the residuals of the forecast
model passed the test.
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Fig. 1. Forecast Error Comparison for Different Forecast Models on
Seasonally Adjusted Data: The training set duration is 8 weeks. The seasonal
cycle is one week.

Forecast Methodology: We tested the possible forecast meth-
ods on seasonally adjusted time series data by STL. Fig. 1
illustrates the comparison of forecast errors for different
forecast models, ARIMA, Exponential smoothing state space
model (ETS) [13] and Random Walk (RW) [6]. The forecast
error of ARIMA is the lowest, which led us to use ARIMA in
the forecast model.
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Fig. 2. Forecast Error Comparison for Logit Transformation: The training
set duration is 8 weeks. The seasonal cycle is one week.

Logit Transformation: Fig. 2 shows the forecast errors for
the logit transformed data compared to the unmodified data.
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Training Set Size 

The forecast errors were derived from the forecast models
using STL and ARIMA described in Sec. III-B and Sec. III-C.
The forecast error (RMSE) after the logit transformation
was consistently more accurate for each path. It was 8.5%
better with the logit transformation than without the logit
transformation. This is because the logit transformation sets the
lower and upper bounds in the modeling and fitting procedures,
which helps reduce the potential under-estimation and over-
estimation from the forecast.

D. Training Set Size
Intuitively, there is a tradeoff between less computational
requirement with smaller training set size and better accuracy
with larger training set size. Smaller training set size certainly
requires less CPU time and storage including memory and
disk. Larger training set size does not always guarantee better
forecast accuracy because adding more historical data to the
forecast modeling may not improve forecast accuracy due to
possible deviances on the older history from the recent history.
In addition, past history has lesser degree of impact than recent
history on the forecast models such as ARIMA. To find the
best possible training set size, we have studied the effect of
different sizes of data on forecast accuracy. Fig. 3 shows that
training set size with around 4 weeks results in better forecast
accuracy. We also tested training set sizes of 8, 16, 24, 32, 40,
or 48 weeks. However, the differences of forecast errors when
using larger sizes were marginal.

0e+00

1e+08

2e+08

3e+08

4e+08

P1 P2 P3 P4 P5 P6
Path

R
M
SE

TrainingWeeks 1 2 3 4 5 6 7 8

Fig. 3. Forecast Error for Different Training Set Sizes: The training set size
varies from 1 to 8 weeks until Feb. 9, 2014. The seasonal cycle is one day.

E. Delayed Model Update
Fig. 4 shows the forecast errors for the delayed model update.
We observed that even when KPSS test [15] did not confirm
the stationarity, the time series did not drift significantly. Thus,
we evaluated whether the stationary assumption of SNMP data
was appropriate even when the KPSS test result suggested
non-stationary. We observed that the variances of training
set and sudden bandwidth utilization changes made the test
results inaccurate in some cases. The stationary assumption
results the forecast error (RMSE) 10.9% less than that of
forecast without the assumption. As we observed stationarity
of SNMP data up to 8 weeks in the training dataset, this
observation led to a hypothesis that delaying model updates at
least one week would not degrade the forecast error, instead of

updating and re-fitting the model whenever new measurement
data is available. We updated the minimal parts such as auto-
correlation and moving averages from the initially fitted model.
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Fig. 4. Forecast Error Comparison for Stationary Assumption: The training
set size is 8 weeks until Feb. 9, 2014. The seasonal cycle is one day.
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Fig. 5. Forecast Error Comparison for Delayed Model Update: The training
set size is 4 weeks. The seasonal cycle is one day.

Fig. 5 shows the forecast errors for our delayed model update.
The result shows that the accuracy was not degraded, and it
improved the computation time by 83.2% compared to tradi-
tional approach such as the Box-Jenkins methodology [6] with
updating the models in daily period. The average computation
time from the delayed model update took 158 seconds to
forecast 7 days duration ahead per path compared to 938
seconds from the model updated once for each day.
Fig. 6 shows the forecast result of the delayed model update
for one day test set on Feb. 10, 2014 in P1. It shows that
our blue-colored forecast values are close to the black-colored
observed data. Table I shows the standard deviations of the
training set of 4 weeks and the test set from Feb. 10 to Feb.
16 in 2014. This result validates the efficacy of our forecast
model. When sudden spikes in the bandwidth utilization were
observed from the training set, our forecast model was resilient
to those sudden changes and accurate with RMSE within the
standard deviations of the test sets.
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Stationarity 
The forecast errors were derived from the forecast models
using STL and ARIMA described in Sec. III-B and Sec. III-C.
The forecast error (RMSE) after the logit transformation
was consistently more accurate for each path. It was 8.5%
better with the logit transformation than without the logit
transformation. This is because the logit transformation sets the
lower and upper bounds in the modeling and fitting procedures,
which helps reduce the potential under-estimation and over-
estimation from the forecast.

D. Training Set Size
Intuitively, there is a tradeoff between less computational
requirement with smaller training set size and better accuracy
with larger training set size. Smaller training set size certainly
requires less CPU time and storage including memory and
disk. Larger training set size does not always guarantee better
forecast accuracy because adding more historical data to the
forecast modeling may not improve forecast accuracy due to
possible deviances on the older history from the recent history.
In addition, past history has lesser degree of impact than recent
history on the forecast models such as ARIMA. To find the
best possible training set size, we have studied the effect of
different sizes of data on forecast accuracy. Fig. 3 shows that
training set size with around 4 weeks results in better forecast
accuracy. We also tested training set sizes of 8, 16, 24, 32, 40,
or 48 weeks. However, the differences of forecast errors when
using larger sizes were marginal.
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Fig. 3. Forecast Error for Different Training Set Sizes: The training set size
varies from 1 to 8 weeks until Feb. 9, 2014. The seasonal cycle is one day.

E. Delayed Model Update
Fig. 4 shows the forecast errors for the delayed model update.
We observed that even when KPSS test [15] did not confirm
the stationarity, the time series did not drift significantly. Thus,
we evaluated whether the stationary assumption of SNMP data
was appropriate even when the KPSS test result suggested
non-stationary. We observed that the variances of training
set and sudden bandwidth utilization changes made the test
results inaccurate in some cases. The stationary assumption
results the forecast error (RMSE) 10.9% less than that of
forecast without the assumption. As we observed stationarity
of SNMP data up to 8 weeks in the training dataset, this
observation led to a hypothesis that delaying model updates at
least one week would not degrade the forecast error, instead of

updating and re-fitting the model whenever new measurement
data is available. We updated the minimal parts such as auto-
correlation and moving averages from the initially fitted model.
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Fig. 4. Forecast Error Comparison for Stationary Assumption: The training
set size is 8 weeks until Feb. 9, 2014. The seasonal cycle is one day.
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Fig. 5. Forecast Error Comparison for Delayed Model Update: The training
set size is 4 weeks. The seasonal cycle is one day.

Fig. 5 shows the forecast errors for our delayed model update.
The result shows that the accuracy was not degraded, and it
improved the computation time by 83.2% compared to tradi-
tional approach such as the Box-Jenkins methodology [6] with
updating the models in daily period. The average computation
time from the delayed model update took 158 seconds to
forecast 7 days duration ahead per path compared to 938
seconds from the model updated once for each day.
Fig. 6 shows the forecast result of the delayed model update
for one day test set on Feb. 10, 2014 in P1. It shows that
our blue-colored forecast values are close to the black-colored
observed data. Table I shows the standard deviations of the
training set of 4 weeks and the test set from Feb. 10 to Feb.
16 in 2014. This result validates the efficacy of our forecast
model. When sudden spikes in the bandwidth utilization were
observed from the training set, our forecast model was resilient
to those sudden changes and accurate with RMSE within the
standard deviations of the test sets.
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Forecast Results 

NERSC è ANL ANL è NERSC NERSC è ORNL 

ORNL è NERSC ANL è ORNL ORNL è ANL 
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Historical Forecast Results 
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Forecast Results - RMSE 

PID SD_Train SD_Test RMSE 
P1 4.13 2.36 2.27 
P2 4.51 3.37 3.31 
P3 4.01 2.07 1.88 
P4 3.03 2.06 1.85 
P5 4.64 3.40 3.42 
P6 4.00 2.54 2.42 
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Conclusion 

•  Forecast Model  
•  ARIMA with STL, logit transformation, and stationarity 
•  Forecast errors were within the variances of observed data 
•  Logit transform reduced prediction error by 8.5% 
•  Stationarity assumption reduced prediction error by 10.9% 

•  Contact 
•  Wucherl (William) Yoo, wyoo@lbl.gov 
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Backup - Future Work 

•  Adaptive Model 
•  To adapt the long-term trend changes 

•  Multivariate Performance Prediction Model 
•  To extend the analysis to multivariate data  
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Backup - Seasonal Adjustment 


