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ABSTRACT 
Efficient data access is essential for sharing massive amounts of 
data with many geographically distributed collaborators. Better 
data routing and transfers are possible for large data transfers by 
accurate estimations of the network traffic performance with a 
probabilistic tolerance. Such estimations become non-trivial when 
amounts of network measurement data grow in unprecedented 
speed and volumes, and misspeicifed models are given. We 
present a statistical prediction method for network traffic 
performance by analyzing network traffic patterns and variation 
with the network conditions via the Generalized Linear Mixed 
Models (GLMMs), which relax the distributional assumption to 
that only involving the mean and variance of the errors. The 
method allows “borrowing strength” in the data by adopting fixed 
effects for shared relationship, random effects for subject 
variation, and errors for additional unexplained variation. The 
main contributions of the proposed method include: (1) best 
prediction accuracy even under a model misspecification; and (2) 
least computation time among all existing predicative algorithms 
under the GLMM setting. 

Keywords 
Generalized Linear Mixed Models; Mean squared prediction error 
(MSPE); Model misspecification; LASSO regularization 

1. INTRODUCTION 
The analysis of network traffic is getting more and more 
important today to efficiently utilize the limited resources offered 
by network infrastructure and wisely plan the large data transfers. 
Estimating the network traffic for a given time window with a 
given probabilistic tolerance error enables better data routing and 
transfers, which is particularly important for large scientific data 
movements. Short-term prediction of network traffic guides the 
several immediate scientific data placements. Long-term forecast 
of network traffic evaluates the performance of network and 
enables the capacity planning of the network infrastructure up to 
the future needs.  

The Best Predictive GLMM (Generalize Linear Mixed Model) 
using LASSO fits tightly with the needs of quick generating 
accurate prediction with massive amount of network data from the 
following perspectives. 

First, network data usually has a complicated data structure rather 
than a single time series and shows a complicated distribution 
model. For example, the Netflow data used in this study is a 
multivariate data that a single observation is composed of 12 
variables with different types such as categorical, continuous, 
discrete and time series. Also, Netflow data is multiple time series 
data that measures both start time and end time of each data 
transfer. Moreover, it is a network data that shares some of 
features over the whole network as well as holds unique features 
for each path. Previous researches about network traffic highlight 
the usage of ARIMA model [1, 2] and spectral analysis [3, 4]. 
Those models are feasible with single time series data and 
complicated yet still manageable with multiple time series. 
However, it cannot fit data in one model with time series as well 
as other types of variables, representing the unique as well as the 
shared network structure.  

However, GLMM allows us to represent the complicated 
multivariate structure of Netflow data in the following models: 

y = 𝑔(𝑥𝛽 + 𝑍𝑣) + 𝑒                 (1) 
For example, model (1) can be used to model how the duration  y 
of one data transfer is related to multiple explanatory variables in 
the right hand side of the equation such as transfer size (in bytes), 
the number of packets it contains, the time that the transfer was 
started and also which path the transfer goes through.  
By using more information from the dataset rather than a single 
time series, we can generate more accurate prediction by 
“borrowing strength” from other explanatory variables happened 
in the same network condition. 

Since LM (Linear Models) and GLM (Generalized Linear Models) 
can also handle multivariate cases, a question may arise about the 
advantage of GLMM against LM and GLM. LM and GLM are 
just special cases of GLMM, and the following formula shows 
their relationship clearly: 

GLMM: y = 𝑔 𝑥𝛽 + 𝑍𝑣 + 𝑒,𝐸 𝑒 = 0,𝑉𝑎𝑟 𝑒 = Σ 

GLM:y = 𝑔(𝑥𝛽) + 𝑒,𝐸 𝑒 = 0,𝑉𝑎𝑟 𝑒 = Σ, indicating GLMM 
with 0 random effects 

LM: y = 𝑥𝛽 + 𝑒, 𝑒~𝑁 0, Σ , indicating GLMM with 0 random 
effects, and limiting the error following a Gaussian Distribution. 

It’s obvious that GLMM is more general and flexible than GLM 
and LM at least in two terms: 1. It releases the Gaussian 
assumption of error term, and closely represents the real network 
distribution by modeling it generally with E(e) and Var(e). 2. It 
adopts the random effect that particularly addresses the subgroup 
variance in the data, and it quite fits the real situation of the 
Netflow data that in different transfer path the relationship is 
different as shown in Figure 1.  

 



 4 

 
Figure 1: 3D plot of Bytes (Transfer Size), Duration and link (path 
for the data transfer) of Netflow data. 

In Figure 1, it illustrates the relationship among Bytes (Transfer 
Size), Duration and link (path for the data transfer) in Netflow 
data. Overall, when the transfer size is large, it takes longer to 
finish the transfer. So the plot suggests an upward slope between 
Bytes and Duration. However, it is noticeable for different links 
that the slope rate is different. This means that Netflow data 
cannot be simply represented by LM and GLM considering only 
the universal relationship, but it should be modeled with mixed 
effects by using GLMM to capture shared features among 
network as well unique feature on different path.  

Back to model (1), a GLMM for the relationship in Figure 1 can 
be written as  

y = 𝑥𝛽 + 𝑍𝑣 + 𝑒 
where y is the observed duration time; 

𝑥  represents fixed effects such as the transfer size of the data. The 
influence of bytes 𝑥 to duration y is shown by 𝛽 and in this 
case 𝛽  is positive so larger bytes leads to longer duration; 

𝑍 represents the path for the data transfer. It is an index matrix 
that for each column only the ith position will be nonzero when 
the ith path is used for transfer; 
𝑣 represents random effects that measure the different variation 
rate of duration when transferring data through different link. So 
var v = Ψ estimates the variation led from different transfer 
path; 

𝑒  is the universal variance that measures the background noise in 
the network, 𝐸 𝑒 = 0,𝑉𝑎𝑟 𝑒 = Σ. 

Up to this point, it is shown that GLMM properly models the 
network data with complicated data structure and distribution with 
its mixed effects and generalized distribution assumption. 

On another issue, network data with multivariate data structures 
are usually high-dimensional and massive amount in size, and 
thus the algorithm should be efficient in handling a large amount 
of data. For example, the Netflow data has 18 millions of 
observations in 9 months and each observation has 12 variables 
which interact with each other. Thus GLMM alone is not 
sufficient for efficient selection of the final model, and we include 
LASSO [11]. LASSO selects the model using L1-penalty such as 
|β| in the following expression. The simplest usage of LASSO is 
to select the significant variable based on likelihood and penalty: 

β = 𝑎𝑟𝑔𝑚𝑖𝑛{ 𝑦 − 𝑥𝛽 ! + λ|β|} 

It is proved that insignificant variables will be discarded from the 
final model by shrinking its corresponding coefficient   in  β =
0while the significant ones are kept in the model with its 

estimates β derived from the above expression. LASSO has a 
well-known advantage that it fits and selects the final model at the 
same time. However there are more benefits of LASSO in this 
study. It dramatically decreases the time taken to reach the final 
model. Firstly, since LASSO reaches the final model in one step 
with its shrinkage-to-0 property, it saves time from traditional 
stepwise model selection that takes several rounds of computation 
until the final model is obtained. Secondly, the time is saved by 
reducing dimensions from the original complicated model. In 
section 2 and 3, the computational advantage is shown from both 
theoretical side and simulation work. In our study with Netflow 
data, the final model only requires 5 or 6 significant variables 
such as path, start time and transfer size to be calculated in the 
final computation.  

In order to achieve our goal for predicting network throughput, a 
method with a good prediction and a quick response is needed. 
The traditional parameter estimation of GLMM always focuses on 
the likelihood function. However, our main interest is in the 
prediction of mixed effects, e.g., linear combinations of fixed and 
random effects, under a GLMM.  As an example, a user wants to 
find out the duration of a data transfer with 6e+05 bytes through 
path #1.  

θ = 𝑥𝛽 + R!v 

where  𝑥 are the fixed effects of transfer size, and 𝛽 measure the 
influence of transfer size on duration. R would be a vector to 
indicate with path used. In this case, R! = (1,0,… ,0) and v 
records the variance from different links. 

θ = (6𝑒!!")𝛽+𝑣!  with  𝑣!~N(0,ψ!)   

Therefore, our approach focuses on the predictive accuracy by 
minimization of the mean squared prediction error (MSPE) of the 
mixed effects  θ.  The final model is proved to have the best 
prediction accuracy from theoretical results and simulation results 
(see sections 2 and 3) as well as with the real Netflow data (see 
section 4). 

A main contribution of this study is combining the ideas of best 
predictive estimation with LASSO in order to deal with three 
major features of today’s network prediction problem: 1. 
Algorithm particularly developed for prediction accuracy. 2. 
Model with sufficient efficiency and effectiveness for the 
complicated structure of multivariable and multi-type data. 3. 
GLMM with LASSO in handling the high-dimensional big data.  

2. Best Predictive GLMM using LASSO 
This section defines a best predictive estimator based on GLMM 
using LASSO to do model selection. Moreover, we introduce two 
existing GLMM approaches: Estimation LASSO(LASSO 
selection for estimation purpose) and Backward-Forward 
Selection (Backward-forward Selection based on log-likelihood 
ratio test) to compare with our approach and Predictive LASSO 
(LASSO selection for prediction purpose). Following the 
comparison, two distinctive advantages of Predictive LASSO are 
highlighted: 1. Accurate Prediction immune to model 
misspecification error and 2. Fast computation speed. 

2.1 Generalized Linear Mixed Models 
(GLMMs) 

y = g µμ + v + e 

where y is the observed response variable, E y = g µμ + v  
µμ, v  is  respectively  the  fixed  effects  and  random  effects 
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e  is  the  error  term  with  E e = 0  and  Var e = Σ 

g .  is called a link function and can take forms such as 
log . , logit . , probit . , expit .  And the most common one is 
called identity link that g µμ + v = µμ + v. 

Suppose that the true underlying model is y = 𝜇 + 𝑍𝑣 + 𝑒 

where 𝜇=E(y). Here E without a subscript represents expectation 
with respect to the true distribution, which may be unknown but is 
not model dependent.  

Mixed Models represent the relationship in the data by two types 
of features: fixed effects 𝛽 capture the general linear relationship 
among variables, and random effects v   capture the different 
characteristic of subgroups. Random effects 𝑣  are usually 
categorical variables in the data, and we want to know how the 
response variable y fluctuates while the subgroups change. One 
of its usages is to examine in Netflow data how data transfer’s 
volume and speed fluctuate with a variance ψ!(𝑖 = 1,… ,𝑛)  with 
different choice of path for its transfer. The model estimates the 
general linear relationship from 𝛽 and the variation led from the 
ith subgroup’s behavior as ψ! = 𝑣𝑎𝑟(𝑣!∗) .  Thus for the ith 
group, the relationship can be written as 

y! = 𝑋!𝛽 + 𝑍!∗𝑣!∗ + 𝑒! , i = 1,… n 

Where y! is a vector of (y!",…,y!"!), altogether n! observations 
are collected. In the first term, 𝑋!  is a n!×𝑞 matrix contains 
where each row corresponds to feature vector of one of n! 
observations. 𝛽 is a q×1 vector that measures the fixed effects 
of the q predictors on y! and needs to be estimated. The second 
term represents random effects. 𝑣!∗  is an unobserved random 
effect. It measures the ith group variation/uncertainty. It has 
𝐸(𝑣!∗) = 0  and  Var 𝑣!∗ = ψ! which need to be estimated. 𝑍!∗ is 
an incidence matrix that contains observed information of the 
group category with 0s and 1s. The last term, e is the error term 
that measures the universal variance/background noise in the 
dataset. It has 𝐸 𝑒 = 0  and  Var 𝑒 = Σ. In other words, with 
GLMM, the data’s uncertainty/variation source is modeled more 
deliberately. Var 𝑒 = Σ captures the universal variation in the 
dataset, and Var 𝑣!∗ = ψ!  features the fluctuation led from 
subgroup.  

The model is called unstandardized if ψ! ≠ 𝐼. In order to apply 
LASSO for the mixed effects, the model needs to be standardized 
first, and the transformation can be made with Cholesky 
decomposion on the covariance matrix of random effects. 
ψ = DΓΓ′D  where D  is diagonal matrix 
D = diag d!, d!,… , d!  and Γ is lower triangular matrix with 
1’s on the diagonal.  

In the standardized model where Var 𝑣!∗ = I! , Z!  is 
transformed as  

Z! = 𝑍!∗𝐷Γ, Z = Z∗𝐷Γ   

where 𝐷 = 𝐼! 𝐷 , Γ = 𝐼! Γ.  The ⨂  means kronecker 
product. 

Our interest is prediction of a vector of mixed effects that can be 
expressed as  

θ = F!µμ + R′v                 (2) 

where F and R are known matrices. Selecting F and R enables us 
to predict any combination of fixed and random effects. For 
example, if we want to predict the influence of the jth predictor’s 

fixed effect and ith group’s random effect, we can choose F to be 
a vector with 1 on the jth position and 0s on the rest, and R to be a 
vector with 1 on the ith position and 0s on the rest. In Netflow 
data, if we want to know the behavior of data transfer from a 
particular source IP address i, we can set F = I and R as a 
vector with 1 on the ith position and 0 on the rest. Then θ will be 
the prediction of mixed effect of all fixed effects and random 
effect of the ith source IP address. And, if we want to estimate all 
the possible mixed effects, we can set F = R = I. Then θ=  𝜇 + 𝑣.  

2.2 Mean Square Prediction Error (MSPE) 
under GLMM 
Our focus is on the best prediction accuracy. Thus, the target for 
the minimization is MSPE (mean square prediction error) of θ. 

MSPE 𝜃 = E( 𝜃 − θ
!
)             (3) 

The best predictor (BP) can be expressed as  

𝜃 = E! θ y = 𝐹!𝑋𝛽 + 𝑅!𝐸! 𝑣 𝑦  

= 𝐹!𝑋𝛽 + R!Z!V!!(𝑌 − 𝑋𝛽)       

where E! denotes expectation under the assumed model.  

To simplify the notation, we write 

 B = R!Z!V!!,M = F! − B  and  H = Z!F − R  

then the BP can be expressed in a slightly different way as 

𝜃 = E! θ y = F!y −M(y − X𝛽)           (4) 

By (5) and (8), we have 

𝜃 − θ = H!v + F!e −M(y − X𝛽)                

Thus we have MSPE as 

  MSPE 𝜃 =   E 𝜃 − θ
!
= E H!v + F!e −M y − X𝛽 !   (5)  

2.3 Best Fixed Effects predictors via LASSO 
To learn the fixed effect, we need to obtain the BPE of 𝛽 ̂ in the 
model (3) to minimize the expression inside the expectation of 
MSPE. To prevent over fitting, we utilize LASSO (least absolute 
shrinkage and selection operator) as a regularized least square. 
LASSO prefers models with small L1 norm |𝛽|  while 
minimizing MSPE. That is, LASSO puts L!  penalty for the 
estimates in order to shrinkage the coefficients of insignificant 
predictors to zero. 
Recently, Jiang (2011) [10] shows that 𝛽 is related to the parts of 
terms in MSPE. Here, we show that the claim is still valid for the 
GLMM with LASSO models. 

MSPE 𝜃 = E H!v + F!e ! − 2E v!H + e!F M y − X𝛽  

                                            +E y − X𝛽 !𝑀!𝑀 𝑦 − X𝛽  

                                      = 𝐼! − 2𝐼! + 𝐼!                            

We see that 𝐼! does not related to 𝛽 and neither is 𝐼! since 

𝐼! = 𝐸 𝑣!𝐻 + 𝑒!𝐹 𝑀 𝑦 − 𝑋𝛽  

= 𝐸 𝑣!𝐻 + 𝑒!𝐹 𝑀 𝑦 − 𝜇 + 𝐸 𝑣!𝐻 + 𝑒!𝐹 𝑀 𝜇 − 𝑋𝛽  

= 𝐸 𝑣!𝐻 + 𝑒!𝐹 𝑀 𝑍𝑣 + 𝑒                             
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Thus the BPE of  𝛽 ̂ is obtained by minimizing the expression 
inside the expectation plus the penalty on the coefficients, that is  

𝛽 ̂ = argmin  Q 𝛽 = y − X𝛽 !𝑀!𝑀 𝑦 − X𝛽 + λ |β!|.    

2.4 Best Random Effects predictors via 
LASSO 
Now, we focus on learning random effects. In order to eliminate 
one random effect, it requires the corresponding row and column 
of the covariance matrix having all zero elements. Furthermore, 
due to the fact as a covariance matrix, it needs to be guaranteed to 
be at least non-negative definite after removing the zero row and 
column. In Bondell(2010) [9], it mentions the use of the Cholesky 
decomposition for random effect selection in Linear 
Mixed-effects Models. In this paper, we extend this approach 
under GLMM with a focus on the prediction. 

The approach is to put 𝐿!  penalty on the elements of the diagonal 
matrix D which are (d!, d!,… , d!). When d! shrinks to zero, the 
whole column and row of ψ = DΓΓ′D will be eliminated, and it 
still remains non-negative definite since it is a matrix quadratic 
product. With this setting, we can now using LASSO to select the 
random effect by shrinking the corresponding row and column in 
the covariance matrix of insignificant random effects into 0.  

Again we break the MSPE into three components. 

MSPE 𝜃 = E H!v + F!e ! − 2E v!H + e!F M y − X𝛽  

                                            +E y − X𝛽 !𝑀!𝑀 𝑦 − X𝛽  

                                      = 𝐼! − 2𝐼! + 𝐼!  

𝐼! =   E H!v + F!e ! = 𝐸 H!v + F!e ! H!v + F!e  

        =   𝐸 𝑣!𝐻𝐻!𝑣 + 𝑒!𝐹𝐹!𝑒  

        = tr HH! + tr FF!Σ  

        = tr Z!F − R Z!F − R ! + tr FF!Σ  

= tr Z!FF!Z − Z!FR! − RF!Z + C!              

Note that C! is not related to d. 

𝐼! = E v!H + e!F M y − X𝛽  

= E v!H + e!F M y − µμ + E v!H + e!F M µμ − X𝛽  

=   E v!H + e!F M 𝑍𝑣 + 𝑒  

= 𝐸 𝑣!𝐻𝑀𝑍𝑣 + 𝑒!𝐹𝑀𝑒  

= tr HMZ + tr FMΣ  

= tr Z!FF!Z − Z!FBZ − RF!Z + RBZ + tr(F F! − B Σ) 

= tr Z!FF!Z − Z!FBZ!RF!Z + RBZ − tr FBΣ + C!  

Note that C! is not related to d. 

Thus the BPE of 𝑑 is obtained by minimizing the expression 
inside the expectation plus the penalty on the coefficients, that is  

𝑑 = argmin  Q 𝑑 = y − X𝛽 !𝑀!𝑀 𝑦 − X𝛽 + tr(2HBZ −
HF!Z − Z′FR′) − tr FBΣ + λ |d!|                       

2.5 Two Major Advantages 
We discuss the whole procedure to obtain the Predictive LASSO 
for fixed effect and random effect in the previous sections. To 
summarize, for fixed effects selection, 

𝛽 ̂ = argmin  Q 𝛽 = y − X𝛽 !𝑀!𝑀 𝑦 − X𝛽 + λ |β!| 
where  B = R!Z!V!!,M = F! − B       (6) 
and for random effects selection 

𝑑 = argmin  Q 𝑑 = y − X𝛽 !𝑀!𝑀 𝑦 − X𝛽 + tr(2HBZ −
HF!Z − Z′FR′) − tr FBΣ + λ |d!|. 

where  H = Z!F − R         (7) 
Now we compare this Predictive LASSO with two methods: one 
is the traditional approach Backward and Forward selection that 
estimate the model based on likelihood, 

β, d = argmax    E![𝑙𝑜𝑔𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑!(𝑥!|𝛽,𝑑)]       (8) 

The other is the Estimation LASSO, which inputs LASSO 
selection into likelihood,   

β = argmax    E! 𝑙𝑜𝑔𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑! 𝑥! 𝛽,𝑑 + λ |β!|        (9) 

d = argmax    E! 𝑙𝑜𝑔𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑! 𝑥! 𝛽,𝑑 + λ |d!|      (10) 
Both methods are estimation-oriented, finding the estimates which 
maximize the likelihood while our algorithm is 
prediction-oriented, finding the estimates which minimize the 
prediction error. The MSPE of our approach should be at least as 
good as these two methods. Moreover, while the model is 
misspecified and uncertainty increases, the Predictive LASSO has 
much better prediction accuracy than these two as you will see in 
the simulation study.  

2.5.1 Immune to misspecification error 
The first advantage of Predictive LASSO is immune to 
misspecification error. In other words, even if the assumed model 
is not correctly set or different from the underlying true model, the 
Predictive LASSO still achieves satisfied prediction accuracy, 
while the penalized MLE and Backward-Forward estimators will 
be biased. This is caused by their minimization function. 
For the Estimation LASSO, the estimates are obtained from the 
formulas (9) and (10). It is noticed that the optimization problem 
is related to the assumed model, since the target function E! is 
the expectation under the assumed model. For the 
Backward-Forward Selection, in each step the estimates are 
obtained from the E! function, which is the expectation under 
the assumed model as shown in formula (8). 

Thus, the Estimation LASSO and Backward-Forward Selection 
are obtained by maximized expectation of likelihood function 
under the assumed model. When the assumed model is 
misspecified, the estimators are biased at the same time.   
However, the Predictive LASSO is obtained by minimizing the 
inside part of expectation and thus is not influenced by the model 
–related expectation any more, as shown in (6) and (7).  

The unique derivation of Predictive LASSO makes it superior 
than penalized MLE and Backward-Forward estimators under the 
misspecification case. 

2.5.2 Much fast computation speed  
Another very satisfying achievement of Predictive LASSO is the 
dramatically reduced computational cost. In order to estimate the 
expectation of the likelihood function of the GLMM, we need to 
use the Monte-Carlo Expectation Maximization (MCEM) 
algorithm to iteratively update the likelihood function, due to the 
unobserved random effect. The procedure is first to generate the 
unobserved random effect based on the initial guess of the 
parameters, then to find the estimators of random effect and fixed 
effect that maximize the expectation of the likelihood, based on 
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the new estimators to generate random effect again. The 
iteratively steps stop when it is converged. This MCEM algorithm 
is very time-consuming, and can take days to reach convergence 
due to the curse of dimensionality.  

In the penalized MLE and Backward-Forward estimators, they  
all require MCEM to estimate the expectation of the likelihood of 
the assumed model, and it makes the efficiency of these two 
methods largely decreased. However, the Predictive LASSO does 
not require likelihood function calculation, and the simple 
minimization problem is much less time-consuming than the 
MCEM algorithm. The unique derivation of Predictive LASSO 
makes it desirable in achieving fast computational speed.  

Time Predictive  LASSO = Optimization×1; 

Time Penalized  MLE = MCEM×n  

                                                                                      = (Monte  Carlo + Optimization)×n 

n  is  the  number  of  iteration  before  algorithm  converges, n ≥ 5 

Time (Predictive LASSO) = MCEM× 𝑘!!
!!! n!"

!!
!!!  

𝑘!   is  the  trails  of  reducing  one  dimension  of  the  model 

𝐼  is  the  number  of  steps  before  reaching  to  the  selected  model 

n!" is the number of iteration before MCEM converges for the ith 
trails and the jth variables omitted. 

𝐽! is the number of remaining variables in the model at step i. 

The cost for optimization and that for Monte Carlo are at the same 
level. Thus we can see that the penalized MLE needs to pay at 
least 2n times of the computation cost of Predictive LASSO. For 
the Backward-Forward selection, the cost is even many times 
more than the penalized MLE. Thus it is very clear that the 
Predictive LASSO is computationally advantageous.  

3. Simulation  
In the above section 2, Predictive LASSO is derived along with 
introduction of two existing approaches: Estimation LASSO and 
Backward-Forward Selection. The two main advantages of 
Predictive LASSO claimed in the section 2 are: 1. Prediction is 
immune to model misspecification error, and 2. much faster 
computational speed is supported by the simulation results. The 
simulation compares the efficiency and accuracy of the prediction 
among three approaches in terms of MSPE as well as 
computational cost.  
The simulation data is generated from the true model, 

y = β! + 𝛽!𝑥!"! + 𝛽!𝑥!"! + 𝑧!"!𝑣!! + 𝑧!"!𝑣!! + 𝑒!" 

i = 1,… ,N  and  j = 1,… , n!,𝑁 = 20,𝑛! = 6.   
𝑉𝑎𝑟(𝑣!) = 𝑠𝑑!!,𝑉𝑎𝑟 𝑣! = 𝑠𝑑!! 

ψ = diag sd!!, sd!! , 𝑠𝑑! = 3, 𝑠𝑑! = 2 

var e!" = sd, sd = 1 

Then, as in reality, a model is assumed with redundant fixed effect 
and mixed effects, and this model is misspecified. 

y = β! + 𝛽!𝑥!"! + 𝛽!𝑥!"! + 𝛽!𝑥!"! + 𝛽!𝑥!"! + 𝛽!𝑥!"! + 𝛽!𝑥!"! 

+𝑧!"!𝑣!! + 𝑧!"!𝑣!! + 𝑧!"!𝑣!! + 𝑧!"!𝑣!! + 𝑧!"!𝑣!! + 𝑧!"!𝑣!! 

          +𝑧!"!𝑣!! + 𝑒!" 

 The assumed model is misspecified with redundant variables. 
There are altogether 4 redundant fixed effects and 5 redundant 

random effects. The simulation is carried out in two types: one is 
the best prediction accuracy for fixed effects, and the other is the 
best prediction accuracy for random effects.  

For each type, under three scenarios, the three approaches are 
compared. The first scenario is that changing variance is 
considered because it is crucial to know increasing 
uncertainty/variation/noise in the network data, which reflects the 
high fluctuation existing in the real Netflow data. The Predictive 
LASSO compared to the other two approaches still holds lower 
MSPE and fast computation speed in generating future prediction. 
Since there are multiple ways to categorize the network data such 
as by the source/destination IP addresses, by the network path, by 
the time block of start transfer and by the level of transfer size, we 
need to examine whether Predictive LASSO still holds its two 
advantages no matter how the segmentation is designed. The 
second scenario is that changing observational size in each group 
is considered because it is important to know whether the 
Predictive LASSO is always better than the other two approaches 
no matter how much data is segmented into each sub group. The 
third scenario is that changing number of groups is considered to 
examine whether Predictive LASSO is always superior than the 
other two no matter how many subgroups are used to categorize 
the whole data.  

3.1 Best Predictive Fixed Effects 
First, the prediction accuracy is examined among three 
approaches: Estimation LASSO, Backward-Forward Selection, 
and Predictive LASSO, under three scenarios: changing variance, 
changing observational size in one group, and changing number of 
groups. The MSPE is the criterion to evaluate prediction accuracy 
in Table 1.  

Table 1. MSPE with Increasing Variance 

Variation Est.LASSO  BF Selection Pred.LASSO 

Sd=3 1.08 0.83 0.023 

Sd=5 3.09 2.71 0.026 

Sd=13 8.12 8.12 0.028 

In Table 1, with the increasing variance, it becomes harder to 
achieve a good prediction. For all three methods, the MSPE has 
an increasing trend with larger uncertainty in the data. However, 
among those three methods, Predictive LASSO performs better 
with the smallest MSPE.  Also, while Estimation LASSO and 
Backward-Forward Selection become worse with larger variance, 
Predictive LASSO only slightly increases its MSPE. This suggests 
an advantage of our approach in the real-world applications since 
the variance usually are very large in the data transfers for a large 
volume of data over high-speed network, but it does not decrease 
MSPE for Predictive.  
Table 2. MSPE with increasing observational size in a group 

Sample Size 
(number of 

observations 
in one group) 

Est.LASSO  BF 
Selection Pred.LASSO 

120(𝑛! = 6) 1.08 0.83 0.023 

240(𝑛! = 12) 0.87 0.55 0.0019 

480(𝑛! = 24) 0.54 0.48 0.0011 

In Table 2, with the increasing observational size in one group, 
prediction is more likely to be accurate since there is more 
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information with the larger dataset. Even though all three methods 
improve their accuracy with the varying condition, Predictive 
LASSO certainly performs better. Furthermore, it is noticeable 
that the decreasing speed for prediction model via Predictive 
LASSO is much faster than the other two approaches. There are 
millions of observations in Netflow data, and even though data is 
segmented by seconds, there are thousands of observations within 
one second. An approach like Predictive LASSO greatly improves 
its accuracy with increasing sample size such as in network 
measurement data. 

Table 3. MSPE with increasing groups 

Sample Size 
(number of 

groups) 
Est.LASSO  BF 

Selection Pred.LASSO 

120(𝑁 = 20) 1.08 0.83 0.023 

240(𝑁 = 40) 0.64 0.82 0.0044 

480(𝑁 = 80) 0.07 0.18 0.0015 

In Table 3, with the increasing observational groups, prediction is 
more likely to be accurate since more samples mean more 
available information. Predictive LASSO not only performs better 
than the other two approaches with the minimum MSPE, but also 
reduces the MSPE fastest with increasing number of groups.  

With more available information from network, the data volume is 
increasing from its length and its width. The length is increasing 
when network data can be monitored for a long period. For 
example, the sample data in our study is from the last one year 
with a 1/1000 second frequency. The width is increasing since 
different kinds of variables related to the network condition can be 
monitored and collected from network devices. For example, the 
sample data in our study has 10 variables for each observation and 
allows us to understand the network behavior from different 
perspectives/dimensions. Our approach in Predictive LASSO is a 
preferred method in analyzing network data due to not only its 
best prediction accuracy but also for its dramatic improvement in 
reducing MSPE when more data is available for modeling.  

3.2 Best Predictive Random Effects 
In this section, we examine the best prediction accuracy of 
random effects for the three approaches: Estimated LASSO, 
Backward-Forward Selection and Predictive LASSO. Similarly, 
we test the prediction accuracy based on MSPE under three 
varying conditions: changing variance, changing number of 
observational size in one group, and changing number of groups. 
One thing we note is that because the random effect contains more 
uncertainty than the fixed effect, its MSPE is usually larger. 

Table 4. MSPE with Increasing Variance 

Variance Est.LASSO  BF Selection Pred.LASSO 

Sd=3 284.31 246.15 241.63 

Sd=5 907.80 961.11 904.88 

Sd=13 2923.37 3139.13 2902.16 

In Table 4, with the increasing variance, the prediction accuracy is 
getting worse. It is observed that for all three approaches, MSPE 
is increasing with rising uncertainty in the data. However, among 
the three approaches, our approach performs better than the other 
two with the smallest MSPE. In real-world applications with large 
variation like in the network measurement data, our approach in 

Predictive LASSO performs better in random effect prediction 
with the higher prediction accuracy. 

Table 5. MSPE with increasing observational size in group 

Sample Size 
(number of 

observations 
in one group) 

Est.LASSO  BF 
Selection Pred.LASSO 

120(𝑛! = 6) 284.31 246.15 241.63 

240(𝑛! = 12) 210.32 207.82 190.67 

480(𝑛! = 24) 68.07 64.40 58.26 

In Table 5, while the observational size in one group is increasing, 
more accurate prediction can be produced because of more 
available information. Even though all three approaches improve 
their accuracy with more information, prediction model via 
Predictive LASSO is the best among them in terms of the smallest 
MSPE. As described in the previous simulation regarding fixed 
effect, the network data transfer throughput for a large volume of 
data is needed to be predicted. Acquiring the lowest prediction 
error from Predictive LASSO is beneficial in analyzing and 
predicting the high-speed network. 

Table 6. MSPE with increasing groups 

Sample Size 
(number of 

groups) 
Est.LASSO  BF Selection Pred.LASSO 

120(𝑁 = 20) 284.31 246.15 241.63 

240(𝑁 = 40) 181.09 180.29 165.12 

480(𝑁 = 80) 77.01 76.17 68.64 

In Table 6, as the number of groups is increased in the simulation, 
the prediction accuracy is improved with more information in the 
dataset. Predictive LASSO performs better than the other two 
approaches with the minimum MSPE. With the increasing amount 
of accessible network measurement data, Predictive LASSO 
performs better with its best prediction accuracy, compared to the 
other two existing approaches. 

3.3 Computation Cost 
In sections 3.1 and 3.2, the advantage of Predictive LASSO with 
the accurate prediction is validated by the simulation results, and 
leads us to apply it in the real-world network analysis. The second 
advantage for the computation cost is again compared among 
three approaches: Estimation LASSO, Backward-Forward 
Selection and Predictive LASSO.  

In this simulation, it is examined under two cases: increasing 
sample size and increasing variance, and the computational speed 
for Predictive LASSO is examined compared to the other two 
approaches. The increasing sample size is considered to explore 
the influence of the data volume on the computation cost. The 
increasing variance is considered to examine whether the 
computational advantage of Predictive LASSO always holds 
regardless of how large the uncertainty from the data is. These 
two cases are practical in real-world applications as the network 
data usually comes with a large variation in a massive amount. 

3.3.1 Computation Cost with Increasing Sample Size 
First, the simulation compared three approaches with increasing 
sample size. The consumed time is recorded and plotted in Figure 
2. For the three approaches, the computation cost is increasing 
overall because more calculation is intrigued by more samples. 
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Consistent with the theoretical computation cost in section 2, the 
Backward-Forward estimators are the slowest since it requires not 
only stepwise selection to reach the final model but also MCEM 
in each step with multiple candidate model comparison based on 
likelihood ratio. Thus the computation cost for Backward-Forward 
Selection is very large. The Estimation LASSO is faster due to the 
property of LASSO to fit and select the final model at the same 
time, and reduces the time because MCEM is only needed to be 
computed once. For the Predictive LASSO, it is the fastest 
approach since the only computation required is for the 
minimization and neither MCEM nor iterative steps is needed.  

 
Figure 2. Consumed Time vs. Sample Size 

When predicting the network performance, a large sample size is 
common. From the promising computation cost shown in Figure 2, 
our approach in Predictive LASSO is more beneficial than the 
other two approaches. 

3.3.2 Computation Cost with Increasing Variation 
The second comparison for the computation cost is with different 
levels of uncertainty. In general, with more uncertainties in the 
data, the calculation takes more time to locate the globally optimal 
point since there are more variations in the target function now.  
However, in Figure 3, it is observed that the least time consuming 
algorithm is Predictive LASSO since it doesn’t require MCEM 
and iterative steps. Moreover, it is noticeable that Predictive 
LASSO is least influenced by the increasing uncertainties in the 
data.  

High variation is very likely in the network measurement data. 
Maintaining fast computation speed for Predictive LASSO is 
more crucial in handling network measurement data. While the 
other two approaches perform worse as uncertainty increases, the 
Predictive LASSO ensures that even though high variation exists 
in the Netflow data, its computation cost won’t increase too much.  

 
Figure 3. Computation Cost vs. Uncertainty. 

Overall, the simulation results support the two advantages of our 
Predictive LASSO approach, and are consistent with the 
theoretical derivation in section 2. Predictive LASSO performs 
the best prediction with the minimum MSPE, and requires the 
least computation cost. These advantages are even more obvious, 
when the sample size increases or variation increases in the 
collected data. With these two advantages, our Predictive LASSO 
approach optimizes the network prediction.  

4. Application to Netflow Data 
The sample Netflow data is from ESnet for one year. The data has 
the following features, and Predictive LASSO fits our needs to 
generate the best prediction.  
First, Netflow data is multivariate, and the relationship needs to be 
identified between multiple predictors and the response variables. 
In this case, GLMM provides a suitable form to combine 
influence from many variables. Secondly, the data has a very 
complicated distribution for noise. GLMM compared to the linear 
regression relieves the restriction of Gaussian assumption by only 
requiring the knowledge of the first moment and second moment 
of the noise. Thus the generalization of this model fits the reality 
of the data. Thirdly, the data shows evidences of fixed effect and 
random effect. As in the Left plot of Figure 4, the 3D plot shows 
the relationship among the octets, link (path for the transfer) and 
duration of the transfer. We observed that for every link, the 
general trend is that larger size of transfer takes longer time to 
finish. This is an evidence of the fixed effect of bytes on duration 
that for larger value of octets, we expect longer duration. 
Furthermore, it is observed that for different links, the slope is 
different, which indicates that the relationship between octets and 
duration is different. Also, the spread and variation of data points 
on different links are not the same. Thus it suggests an evidence 
of random effect that for different links, the behavior of the 
relationship is varied, and the grouping effect should be 
considered in the model. In the Right plot of Figure 4, it shows the 
relationship among octets, start time and link. Again, it is 
observed that for different links, the behavior of data points’ 
variation and range is different. It supports the needs of random 
effect in the model, and GLMM is our choice. Fourthly, the data 
has millions of observations, and the dimension of the model is 
very high. Within the data, the directly observed variables are the 
following 12:  

• Time Group: Start time, End time, Duration  
• Transfer Path: Start/Destination Ports, Start/Destination IP   

addresses, Start/Destination Interfaces 
• Octets 
• Packets 
• Frequency of collection 

Figure 4. 3D plots of Netflow data. (Left) Bytes in transfer size, 
duration and network link for the data transfer, (Right) Bytes 
in transfer size, duration and start time for the data transfer. 
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If we consider the interaction and nested terms for both fixed 
effects and random effects, the dimension of the model can reach 
as high as 30 or 40. Therefore, for these large dataset and high 
dimensions, the computational speed of the algorithm becomes 
very crucial. For example, if we need to forecast the next 1 minute 
behavior of the network performance but the algorithm requires 
days to reach the final result, then the result is no longer useful for 
generating instant prediction. The computational advantage of our 
Predictive LASSO approach satisfies the need for the 
short-prediction of network, and it can react much more quickly 
than other methods such as Estimation LASSO and 
Backward-Forward Selection as shown in our simulation study.  

Finally, our goal is to predict the network performance in the 
future, and we require a model with high prediction accuracy 
which means the smallest MSPE. The best prediction accuracy 
from the Predictive LASSO approach against the other approaches 
satisfies our need for network performance prediction.  
The Predictive LASSO approach enables the best network 
performance prediction from the large Netflow dataset with quick 
computational time and flexibility in the model.  
We observed that there are 8 unique interfaces, and an index 
1,2,…,8 is used to represent them. When a data transfer comes out 
from interface 1 and goes into interface 8 on a device, the 
interface path is denoted as 18. In our sample Netflow data, we 
had 10 interface paths, and a variable called interface path is 
composed of 10 possible values. Similarly, we used 1-25 to 
represent the 25 unique IP addresses in our sample Netflow data, 
and built a new variable called IP path with 15 possible values. 

4.1. GLMM on Octets (Bytes) 
The first model is to study the relationship between Octet (traffic 
volume in the network) and the timestamps and path. A prediction 
can be made based on the traffic volume at a certain future time 
point through a certain path, and can be beneficial to know in 
advance whether there will be a traffic congestion. 

The model is y = 𝑋𝛽 + 𝑍!𝑣! + 𝑍!𝑣! + 𝑒 
where y is a N×1  vector of the observed Octets, and N is the 
total number of observations.  
x is a N×q matrix of the observed variables: Start time, End time, 
Duration and Packets. Time variables such as start time and end 
time are modeled with smoothing splines, since linear relationship 
between time variables and Octets are very rare, and certain curvy 
transformation is usually needed.  
𝛽  is a q×1   vector of fixed effect of the variables in x. 
𝑣!  is  a  10×1 vector, the random effect, measuring the variation 
of traffic volume coming through a certain interface path. 
𝑍!  is a N×10   incidence matrices of 0s and 1s to tell the 
corresponding interface path for each observation. 
𝑣!  is  a  15×1 vector, the random effect, measuring the variation 
of traffic volume coming through a certain IP path.   
𝑍!  is a N×15   incidence matrices of 0s and 1s to tell the 
corresponding IP path for each observation. 

With this model, prediction of future network performance 
condition notifies us the congestion situation at certain time 
through a specific link. With this knowledge, we can avoid the 
slow data transfers, and we can also adjust the network 
infrastructure based on the long-term prediction of network 
performance behavior in order to optimize the allocation of the 
limited network bandwidth.  

With Predictive LASSO, the selected predictive model for 
prediction of Octets is the following: 

y = 𝛽!"#$"𝑠 𝑥!"#$" + 𝛽!"#𝑥!"#+𝛽!"#$%&'(𝑠(𝑥!"#$%&'()
+ 𝑍!"!!"#!𝑣!"!!"#! + 𝑒 

As mentioned above, time series variables are usually non-linear 
relative to the bytes. Thus we allow smooth spline transformation 
on the variables of start time and duration to model the possible 
curvy relationship. The smooth spline parameters are chosen by 
the model automatically based on the cross validation.  

From our model, the significant fixed effects chosen by Predictive 
LASSO are start time, duration and number of packets. The 
significant random effect chosen by Predictive LASSO is IP path.  

To address the influence of fixed effects, the coefficients of 
𝛽!"#$" ,𝛽!"#  and 𝛽!"#$%&'(  along with the smoothing function 
𝑠 𝑥!"#$!  and s(𝑥!"#$%&'() are estimated.  

Applying our Predictive LASSO approach to 1-minute snapshot 
of Netflow data, the sample has 2932 observations with start time 
ranging from 0 seconds to 60th seconds, 6 unique IP paths and 6 
interfaces paths. In the following Table 7, Predictive LASSO 
provides the coefficient estimates, and shows that variables start 
time, duration and packets are very significant in predicting the 
octets. As expected, the duration and packets hold positive 
relationships with the transfer size. Large octets are usually 
connected with longer duration to complete transfer and also more 
packets in transfer.  

Table 7. Coefficient estimation for fixed effects 

Fixed effect Estimates std p-value 

Intercept -507.4132 1063.23702 0.6 

Start time -417.6627 28.56410 8e-47 

Duration 683.0074 34.00287   3e-84 

Packets 8479.8077 66.55375 0 

 

The Figure 5 shows the smoothing function, and it is observed 
that from the 1st to the 30th seconds the transfer size is getting 
larger and larger as time goes by. However, after the 30th second, 
octets become smaller. This behavior shows the frequent changes 
in the network traffic volume. The smoothing function on duration 
suggests that a larger data transfer matches with a longer duration 
time even though there is a chance that the transfer takes longer 
time with sudden traffic congestion even for smaller transfers. As 
for packets, we observe that it always holds an upward 
relationship with octets that larger transfer size requires more 
packets.  

 
Figure 5: Smooth function of the fixed effect 

The random effects plot in the next Figure 6 shows that the traffic 
volume varies in different IP paths. In our sample data, there are 
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six paths: 83, 38, 14, 41, 16 and 61. The busiest path is observed 
at 83, and 66% of data transfers in our sample data is through this 
channel. The fluctuation rate on this path is also the highest with a 
standard deviation as high as 64946.04. The second largest 
variance source is through path 38 with standard deviation equal 
to 45446.48. From Figure 6, the uncertainty source for the data 
prediction is very clear. It is also observed that data transfers are 
easy to predict through IP path with low variance such as path 41 
and path 14, but difficult to predict through IP path with high 
variance such as path 83, path 16, path 38 and path 61. Besides 
the uncertainty coming from each IP path, the background 
noise/universal uncertainty has a standard deviation of 17331.42.   

 
Figure 6: standard deviation of the random effect 

Comparing with the other two approaches, Estimation LASSO 
and Backward-Forward Selection, our Predictive LASSO 
approaches shows the best prediction accuracy and least 
computation time, as shown in Table 8.  

Table 8. Comparison of MSPE and Speed to Predict Traffic 
Volume (Octets) 

 Est.LASSO BF 
Selection Pred.LASSO 

MSPE 1.47e+5 1.64e+6 1.84e+4 

Computation(in 
seconds) 3.56e+8 1.53e+12 2.23 

4.2. GLMM on Duration  
The second model is to predict the transfer duration for a certain 
size of the data at a selected path starting at certain time points. A 
prediction can be made based on the expected duration time of 
transfer on given paths and a selected starting time. The data 
transfers can be scheduled according to the prediction by selecting 
the path and starting time with the shortest predicted transfer time. 

The model is y = 𝑋𝛽 + 𝑍!𝑣! + 𝑍!𝑣! + 𝑒 
where y is a N×1  vector of observed duration, and N is the total 
number of observations. 
x is a N×q matrix of the observed variables: Start time, Octets 
and Packets. Time variable such as start time will be modeled 
with smoothing splines since linear relationship is scarcely existed 
with time variable, and curvy trend is close to the reality. 
𝛽 is a q×1  vector of fixed effects of the variables in x. 
𝑣!  is  a  10×1 vector, the random effects, measuring the variation 
of traffic volume coming through a certain interface path.  
𝑍!  is a N×10   incidence matrices of 0s and 1s to tell the 
corresponding interface path for each observation. 
𝑣!  is  a  15×1 vector, the random effects, measuring the variation 
of traffic volume coming through a certain IP path. 

𝑍!  is a N×15   incidence matrices of 0s and 1s to tell the 
corresponding IP path for each observation. 

With this model, the expectation of duration for a data transfer is 
obtained once the path and start time are chosen. This is especially 
useful when the data transfer needs to be completed within a 
certain period of time or to achieve a designated transfer speed. 
With the model, we select the path and start time that satisfy the 
time limits or speed requirement.  

With Predictive LASSO, the selected predictive model for 
prediction of Duration is the following: 

y = 𝛽!"#$"𝑠 𝑥!"#$" + 𝛽!"#𝑥!"# + 𝑍!"!!"#!𝑣!"!!"#! + 𝑒 

As mentioned above, time series variables are usually not linear 
relative to the bytes, and we allow smooth spline transformation 
on the variable of start time, and the smooth spline parameters are 
chosen automatically by the model based on the cross validation.  
The significant fixed effects chosen by our Predictive LASSO 
approach are start time, octets and number of packets. The 
significant random effect chosen by Predictive LASSO is IP path.  
To address the influence of fixed effects, the coefficients of 
𝛽!"#$" ,𝛽!"#   and 𝛽!"#$#%  along with the smoothing function 
𝑠 𝑥!"#$"  are estimated. Applying our approach to 1-minute 
snapshot of Netflow data, the sample has 2932 observations with 
start time ranging from 0 seconds to 60th seconds, 6 unique IP 
paths and 6 interfaces paths.   

In the following Table 9, Predictive LASSO provides the 
coefficient estimates, and shows that variables of start time, octets 
and packets are very significant in predicting the octets. As 
expected, the number of packets holds positive relationship with 
the duration that more packets require longer transfer time to be 
completed. The coefficient estimation for fixed effects is shown in 
Table 9. 

Table 9. Coefficient estimation for fixed effects 

Fixed effect Estimates Std p-value 

Intercept -13.80878104 0.91421760 1e-49 

Start time 0.57404659 0.01694813 2e-212 

Packets 1.11494182 0.03472477 5e-194 

 

The following Figure 7 shows the smoothing functions, and it is 
observed that from the 1st to the 20th seconds, the duration is 
getting larger as time goes by. However, from the 20th to the 40th 
second, duration is reduced probably due to less traffic within this 
time period. After the 40th second, more traffic volume is in the 
network, and data transfer takes longer time during this period. 
This behavior shows the frequent changes in the network traffic 
volume. As for packets, we observed that it always holds an 
upward relationship with duration that larger transfer size requires 
longer delivery time.  
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Figure 7: Smooth function of the fixed effect 

The random effects plot in the following Figure 8 shows that the 
traffic volume varies in different IP paths. In our sample data, 
there are six paths: 83, 38, 14, 41, 16 and 61. The busier paths 
such as paths 83, 38, 41 and 14 have higher fluctuation rates in 
duration, while those paths with less traffic such as paths 16 and 
61 have lower variations. From Figure 8, the uncertainty source of 
the data prediction is very clear. Besides the uncertainty coming 
from each IP path, the background noise/universal uncertainty has 
a standard deviation of 11.2392. 

 
Figure 8: Standard Deviation of the random effect 

The model suggests the importance of variation in random effect 
such as IP path in predicting duration. Besides the path, start time 
selection and assignment of packets are also significant in 
prediction of the duration.  
Compared with the other two approaches in Table 10, Estimation 
LASSO and Backward-Forward Selection, our Predictive LASSO 
approach shows the best prediction accuracy and least 
computation time.  

Table 10. Comparison of MSPE and Speed to Predict 
Duration  

 Est.LASSO BF 
Selection Pred.LASSO 

MSPE 23.06 42.23 12.73 

Computation(in 
seconds) 6.26e+7 5.43e+10 1.42 

 

5. Conclusion 
In this paper, a new approach Predictive LASSO, the best 
predictive GLMM with LASSO, is discussed. The computational 
algorithm of the best predictor is discussed in section 2. Our 
Predictive LASSO approach is more informative in prediction, 
since it is generated based on the analysis of all variables and their 

interactions in the complicated structure of network measurement 
data. With focus on minimizing the Mean Squared Prediction 
Error (MSPE), we showed that the derived predictors are superior 
in acquiring high accuracy of forecast. Moreover, with the 
involvement of LASSO, the new approach is efficient in handling 
high dimensionality and large volume of data with fast 
computation speed. We showed simulations with three scenarios 
with changing variance, observational size in one group and 
number groups. Compared to two existing approaches, 
Backward-Forward Estimators and Penalized MLE, both theory 
and simulation support two distinguished advantages from our 
Predictive LASSO approach: 1. Accurate prediction without 
misspecification error, and 2. Fast computation speed to achieve 
final results. We also applied Predictive LASSO to Netflow 
measurement data in the form of two models. The two models 
have different interests in prediction: one is to predict the 
relationship between Octets (size of the traffic) and the 
timestamps and path, and the other is to predict the transfer 
duration for a certain size of the data volume for a selected path 
and a start time. This statistical prediction for network 
performance captures network traffic patterns and variation with 
the network conditions. 
The advantages of our Predictive LASSO approach include that (1) 
Generalized Linear Mixed Models (GLMMs) fully enables 
utilization of the complicated structure of network data and 
relaxes the distributional assumption to that only involving the 
mean and variance of the errors, (2) “borrowing strength” in the 
data with sophisticate analysis of fixed effects for shared 
relationship, random effects for sub-group variation, and errors for 
background noise, (3) the best prediction accuracy even under a 
model misspecification, and (4) the least computation time among 
existing predicative algorithms under the GLMM setting. 
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