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Abstract. Since the distributed scientific collaborations and data vol-
ume grow, it has become more challenging to discover network usage
patterns on a high-bandwidth, high-speed networks. It is computation-
ally challenging due to the high frequency, large volume in the network
measurements. To detect the patterns in the network measurements,
we have selected and applied change point detection methods. These
methods are computationally efficient and have adjustable parameters to
decide the frequencies of resulted pattern changes. The detected changes
can provide insights about the network usage patterns about many large
data transfers or hardware/software failures.
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1 Introduction

Network usage patterns in high bandwidth networks provide insights about
network characteristics and traffic trends. Analyzing changing patterns in the
network utilization can also give useful information about large data transfers,
hardware/software failures, and anomaly behavior, as well as long/short term
bandwidth prediction models.

While change point detection methods have been extensively studied pre-
viously, it is challenging to directly use them to discover usage patterns in
high bandwidth networks. This is because of the high frequency, large volume
in today’s high speed network measurements. It requires high computation to
compute change point detection methods for this measurement data. Therefore,
the change point detection methods need to be computationally efficient.
We select three change point detection methods: Bayesian Change Point
(BCP) [7] [3], Sequential Change Point (SCP) [11], and Pruned Exact Linear
Time (PELT) method [8]. These methods include an adjustable parameter such
as posterior probability, penalty, or threshold. The adjustable parameter is
essential to detect changing patterns so that the we can decide the frequency
of pattern changes. Other change detection methods are not selected for this
application due to the lack of adjustable parameter or high computational
requirements.



In our experiments, we detected changing patterns in the network measure-
ments on Oct/1/2014 (GMT) from Energy Sciences Network (ESnet) [1]. By
adjusting the parameter in each selected method, the number of detected change
points were similar among different methods. We compared the computation
time and results from the change point detection methods. The rest of paper
is organized as follows. Sec. 2 presents related work. Sec. 3 demonstrates how
to find changing patterns from change point detection methods. Sec. 4 presents
experimental evaluation of the changes detection model, and Sec. 5 concludes.

2 Related Work

Change detection has been studied in time series model for outlier detection
and prediction model [13] [5]. There have been several proposed works to detect
anomalies by using change point detection methods. Brutlag et al. propose to
use time series forecast model to focuses on short-term anomalies [4]. Barford
et al. [2] propose wavelet-based signal analysis to focus on high-frequency
components of the network traffic signal. These methods are difficult to be
directly applied to large size data from massive data flows due to their required
computation. Sketch-based approach [9] [12] were proposed to overcome the
computation challenge. However, sketch-based approach is difficult to backtrack
the information from detected anomalies due to hashing operations in sketch.

Several previous works were proposed to use change detection in other
applications. Orion [6] uses change detection in network traffic delay to
automatically discover the dependencies of network application. Mercury [10]
uses rank-baed change detection to compare performance after network changes.
We have applied the change point detection methods to discover usage patterns
in high bandwidth network. It is more computationally efficient to overcome the
challenges of analyzing large size data.

3 Changing Pattern Detection

Change point detection is the process to identify single or multiple points within
a dataset where the statistical properties such as mean and variance change
over time. From the previously studied change point methods, we select to use
Bayesian Change Point (BCP) [7] [3], Sequential Change Point (SCP) [11], and
Pruned Exact Linear Time (PELT) method [8]. The criteria of this selection was
1) the method is computationally efficient on a large data volume; 2) the method
has an adjustable parameter to control the number of change points depending
on the characteristics of data and the detected changing frequencies.

BCP uses Markov Chain Monte Carlo method to find the probability of a
change point at each location in a data sequence. The posterior probability of
each point can be an adjustable parameter to control the number of detected
change points. Setting higher posterior probability can decrease the number
of detected change points. SCP is a nonparametric sequential change point
detection method. Mood’s median test is used for comparing changes in scale.



The average run length is the average number of observations before a false
positive detection occurs in a certain probability. Setting higher threshold can
decrease the number of detected change points. We use PELT to detect changes
in both mean and variance. The asymptotic penalty (type 1 error) in PELT is an
adjustable parameter to control the number of detected change points. Setting
a lower penalty value can decrease the number.

After detecting change points, changing usage patterns can be discovered.
For instance, with a large data transfer, higher throughput measurements can
be found for a significantly long time, and the event can be discovered with
the changing point detection method. Denoting the change window as a pair
of change points, we can calculate the average bandwidth utilization within a
change window. By comparing the difference between the average of the previous
change window and that of the current change window, we can identify changing
usage patterns. By setting a threshold for the differences in the averages of change
windows, we can adjust the frequency of detected changing patterns.

4 Experimental Results

4.1 Experimental Setup

In the experiments, we used 6 directional paths connecting two sites on ESnet [1]
in the USA. The paths include 6 or 7 links in the wide area network among
National Energy Research Scientific Computing Center (NERSC) in California,
Oak Ridge National Laboratory (ORNL) in Tennessee and Argonne National
Laboratory (ANL) in Illinois. We denote PID as the path identification: P1 and
P2, directional paths between NERSC and ORNL, P3 and P4, those between
NERSC and ANL, and P5 and P6 between ORNL and ANL. The measured
Simple Network Management Protocol (SNMP) data shows the aggregated
bandwidth utilization for 30 second interval at the routers. The bandwidth
utilization time series data were constructed by selecting the maximum value
in the links of each path during the interval. This 30 second interval represents
one timestamp in the time series. We conducted the experiments on a machine
with AMD Opteron 6128 CPU and 64 GB memory.

4.2 Evaluation

Fig. 1 shows the detected change points from the aforementioned methods (BCP,
SCP, and PELT). The data includes 2880 timestamps of 30 second interval on
Oct. 1 GMT 2014 for the P5 (from ORNL to ANL). To compare these methods,
we adjust the parameter for the posterior probability of BCP, the penalty of SCP
and the threshold of PELT so that the number of detected change points are
similar to each other. These parameters were selected to show smaller number of
change points but sufficiently sensitive to discover the changes with the higher
and lower bandwidth usages.

As shown in Fig. 1a, BCP detects several short-lived spikes as change points
in five instances, which is not desirable for the detection of large data transfers.



(a) BCP (b) SCP

(c) PELT

Fig. 1: Change Point Detection: The change points are detected from different
methods (BCP, SCP, and PELT). The x axis is the timestamp for each 30 second
interval on Oct. 1, GMT 2014. (2880 timestamps) The y axis is the bandwidth
utilization (bit/s). The red colored line represents the average bandwidth
utilization within the change window.



As shown in the first half of timestamps in Fig. 1a, BCP was less sensitive to
detect the usage changes. If we adjust the penalty parameter of BCP, it can
match the sensitivity of SCP and PELT. However, it will detect more change
points, and more spikes will be detected. As shown in Fig. 1b and Fig. 1c, SCP
also detects spikes as change points in two instances. This result is better than
BCP but worse than PELT (0 instance) to detect large data transfers.

Table 1: The number of detected change points.
P1 P2 P3 P4 P5 P6

BCP 20 18 75 58 18 20

SCP 18 20 27 27 21 21

PELT 19 19 75 18 19 20

The average computation times for one-day measurements on 6 paths were
respectively 4.833, 0.287, 0.054 (s) for BCP, SCP, and PELT. The computational
efficiency is crucial for handling large high-frequency measurement data. Tab. 1
shows the number of detected change points from the three methods. BCP and
PELT detected 75 change points in P3, however SCP only detected 27. Our
examination confirmed more variances and more changes in P3, which showed
the less sensitivity from SCP. In addition, BCP detected 58 change points in P4,
however our examination confirmed that BCP unnecessarily detected short-lived
spikes as change points. We observed that the PELT method showed the least
computation time with similar or better detection results from SCP. Although
SCP showed higher computation time in order of magnitude than PELT, it
is applicable to online sequential detection for streaming data because PELT
requires entire dataset for the computation. In other words, PELT can be used
in offline batch computation when full dataset is already stored and available.

4.3 Discussion

(a) Oct/5/2014, 12pm GMT (b) Oct/6/2014, 12pm GMT

Fig. 2: Bandwidth Utilization Predictions: Blue is the prediction of one day ahead
from the starting time. Red is the observed data of the same duration.



Fig. 2 shows the prediction of bandwidth utilization for P2 on Oct/5/2014,
12pm GMT in Fig 2a and on Oct/6/2014, 12pm GMT in Fig 2b [14]. Compared
to Fig 2a, Fig 2b shows more prediction errors due to the large data transfers
started around on Oct/6, 1pm GMT. With the detected change point on the
large data transfer, we can adjust the prediction by adding the difference of the
average bandwidth utilization of change windows due to the large data transfer.
This adjustment of the prediction will decrease the prediction error.

Fig. 2 also shows that there is a strong daily seasonality, e.g. Fig 2a and
Fig 2b show peaks and troughs in the similar times. We observed that these
periodic changes were detected with the change point detection methods. Since
these periodic changes are normal usage patterns, the seasonal adjustment for the
changing pattern detection is necessary to avoid detecting the periodic changes
as change points. We leave this as future work.

5 Conclusions

We apply the change point detection methods to discover usage patterns in
high bandwidth network. We select BCP, SCP, and PELT methods because
they have an adjustable parameter to control the number of change points and
show computational efficiency. Among them, PELT shows the least computation
time, resilient to sudden spikes. While PELT can do batch processing, SCP
can do sequential (streaming) processing with the order of magnitude higher
computation time. We believe that we can detect usage change patterns in our
streaming measurement dataset by setting appropriate threshold between the
differences of change windows. In addition, we believe that the usage pattern
detection can be applicable to other measurement datasets such as system
performance profiling data. As future work, we plan to investigate finding
an optimal threshold to detect changing patterns and how to use detected
changing patterns to improve the other analysis such as the bandwidth utilization
prediction model. We also plan to incorporate seasonality adjustment in the
changing pattern detection.
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