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§ Complex computing systems should have autonomic 
properties

§ Independently take care of the regular maintenance and 
optimization tasks 

§ Reduce workload on the system administrators 
§ Distilled four properties of a self-managing (i.e. autonomic) 

system: 
– Self-configuration: adapting to dynamically changing environments
– Self-optimization: tuning resources and balancing workloads to 

maximize use of IT resources 
– Self-healing: discovering, diagnosing, and acting to prevent disruptions 
– Self-protecting: anticipating, detecting, identifying, and protecting 

against attacks
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DeepMind AI Reduces Google Data Centre Cooling 
Bill by 40%
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Challenges

§ ML methods have promise as a means of creating 
autonomous modules for computer systems

§ Coexistence of several autonomous modules is required in 
order to handle multiple concerns - requires coordination 

§ As systems scale toward exascale, many resources will 
become increasingly constrained 

§ Some resources have historically been allocated explicitly, 
others such as N/W BW, I/O BW, and power are not

§ As systems continue to evolve, we expect many such 
resources will need to be explicitly managed

§ Autonomous management of resources and coordination to 
achieve higher-level goals even more important 



Autonomous science infrastructure architecture



Architecture of an individual autonomous system
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Autonomous science infrastructure architecture
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Autonomous performance module for DTN
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Concurrent transfers



Smart data transfer node
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• Data transfer parameters. A transfer tool may have multiple tunable parameters, whose value not
only a↵ects transfer performance but also decides DTN occupancy. The overall DTN performance,85

e.g., total bytes transferred per day, is highly related with its load. Improper schedule of tasks make
the DTN overloaded and operate in an ine�cient way [6].

In this preliminary work, we consider the last item, which directly determines DTN state and load, to
make a DTN continuously operate in its optimal point.

3. Smart data transfer node90

The smartness of a DTN is achieved by using its self-awareness ability. The self-awareness includes actively
sensing the current state of the environment and discover knowledge about the cost and benefits of its
configurations. Figure 3 demonstrates the work process of a smart DTN. A ‘chunk’, which is a portion of a
file, is the scheduling unit for KE. KE determines the size of each chunk and the tunable parameters to be
used for each chunk. It also determines the number of concurrent chunks to be transferred at any instance.95

It determines these values adaptively based on the current state of the system. Since the state of the system
varies dynamically, KE uses chunk as a scheduling unit instead of the entire file. Depending on the perceived
frequency of variation, KE will vary the chunk size dynamically as well.
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Figure 3: The work process of a smart DTN. The architecture of KE and step 6 are detailed in Figure 4.

As the “brain” of a smart DTN, the KE maintains information about the current state and knowledge
about data transfer behavior. As shown in Figure 3, we explain the work process of a smart DTN and its100

self-learning process as follows.
1 A file transfer tool requests a file to transfer from the KE. The KE 2 checks the current DTN state and
3 responds to the transfer tool with a chunk of file and corresponding optimal transfer parameters (the
steering action). 4 The transfer tool transfers the associated chunk with the parameters and monitors the
aggregate DTN throughout during this transfer. 5 Once completed, DTN’s average aggregate throughput105

is reported to the KE as a reward for its actions. 6 Based on the reward (encourage or discourage), the
KE updates its internal model parameters to improve its decision policy.

(details are shown in Figure 4).
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Autonomous science infrastructure architecture



Autonomous stream processing system 
that allows data streamed from beamline 
computers to be processed in real time on 
a remote supercomputer with a control 
feedback loop used to make decisions 
during experimentation
– Reduce data acquisition time by 22–44% for the 

datasets considered in our experiments
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Autonomous power module for DTN
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Autonomous DTN
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Questions


