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SUO-SAS AND Urban fighting

Source DARPAwebsite

Wl F@R ER




DASADA project
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IBM

= Complex computing systems should have autonomic
properties

" |ndependently take care of the regular maintenance and
optimization tasks

= Reduce workload on the system administrators

= Distilled four properties of a self-managing (i.e. autonomic)
system:
— Self-configuration: adapting to dynamically changing environments

— Self-optimization: tuning resources and balancing workloads to
maximize use of IT resources

— Self-healing: discovering, diagnosing, and acting to prevent disruptions

— Self-protecting: anticipating, detecting, identifying, and protecting
against attacks
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Autonomic element
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Multi-tier model
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Dynamic job scheduling policies
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Anomaly detection
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Tune performance of storage systems
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DeepMind Al Reduces Google Data Centre Cooling
Bill by 40%
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Challenges

= ML methods have promise as a means of creating
autonomous modules for computer systems

= Coexistence of several autonomous modules is required in
order to handle multiple concerns - requires coordination

= Assystems scale toward exascale, many resources will
become increasingly constrained

= Some resources have historically been allocated explicitly,
others such as N/W BW, 1I/0 BW, and power are not

= As systems continue to evolve, we expect many such
resources will need to be explicitly managed

= Autonomous management of resources and coordination to
achieve higher-level goals even more important



Autonomous science infrastructure architecture
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Architecture of an individual autonomous system
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Autonomous science infrastructure architecture
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Autonomous performance module for DTN
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Concurrent transfers
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Smart data transfer node
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Autonomous science infrastructure architecture
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Experiment monitoring and steering

Reconstruction | BackProjection(..)

Stream {ForwardProjection(.-)i ParLocalSynch(..) D @
1

Controller

be T

Multi-

cbuf | £, —> rep,

hi

a | & —>rep,

o == )

V.V.V

vV V

ReconstructionSpace

________________ 1 | GroupSynch(..)

21005
Auejiwuis

b b

W [T e

i+1

‘| | Similarity
=l [ score
|/ threshold

Data Acquisition

& Distribution : >-\ | rnl -l i
A lSignaI

0.995

Autonomous stream processing system O
that allows data streamed from beamline 3 o5
computers to be processed in real timeon £ 0
©

a remote supercomputer with a control g

° o 2 0.8
feedback loop used to make decisions

0.6 . ‘ N
during experimentation 40 60 80 100 120 140 160 180"
— Reduce data acquisition time by 22-44% for the # Streamed Proiections Reconstructed
datasets considered in our experiments ) Image Sequence

Image Quality with respect to Streamed Projections



Autonomous power module for DTN
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Autonomous DTN
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