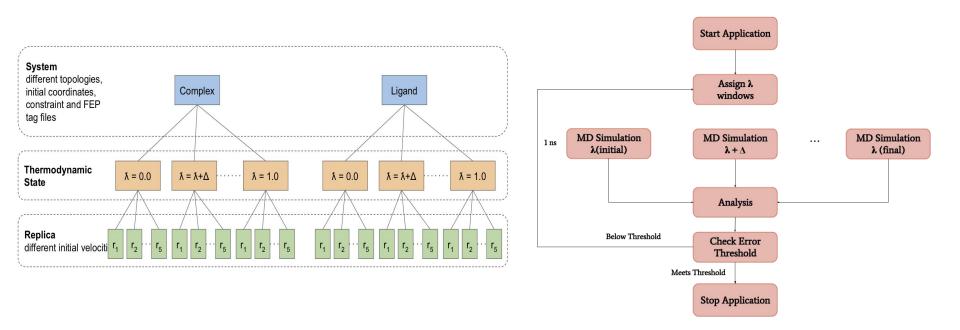
Towards Building Blocks for Autonomous Science Infrastructure

Shantenu Jha Brookhaven National Laboratory & Rutgers University.

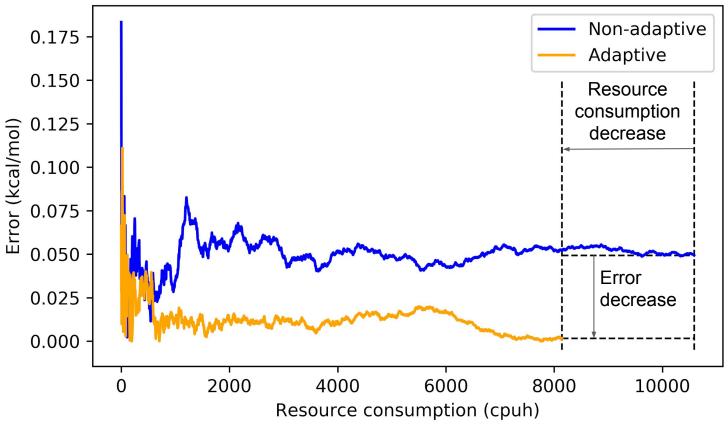
http://radical.rutgers.edu

Science vs Commercial Infrastructure

- Different types of "scale", optimization, customization
 - Science: Scaling single applications/workflows
 - Commercial: Scaling the number of users
- Autonomous Capabilities (Objectives)
 - System Performance based vs "abstract" science based
 - System-level vs user-level autonomous functionality
- Software systems to support autonomous capabilities
 - Self-* systems: Used in data centers; few application / algorithm
 - Diverse "design points"; unlikely "one size fits all"; last mile distinction


Three Examples

- Autonomic Workload Management Systems: Distributed
 - Automated mapping of heterogeneous tasks to resources
 - Yields improvement in system response time and system utilization.
- Autonomic Workload Management Systems: HPC
 - "Performance Portability" is ultimate goal. "Shapeshifting resources" to provide weaker guarantees on performance is acceptable!
- Support for Optimal Execution Strategies at Scale
 - Not how much you use, but what you do with it
 - Bigger is not automatically better. Bigger but also better!
 - Middleware and workflow systems for Adaptive Execution @ Exascale


TIES Protocol for Binding Free Affinity

TIES (alchemical **protocol**) employs enhanced sampling at each lambda window to yield relative binding affinities.

Adaptive quadrature algorithm adds additional simulations or modified lambda values to reduce error on binding free affinity.

Observed accuracy of adaptive vs. non-adaptive in same simulation duration (6ns)

