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Presentation Qutline

& Brief Overview of Ongoing CAC Research Activities
& Motivation — Why Composable Data Centers?

® What are challenges of Designing Composable Data Centers
& UA Approach to Build a Composable System:
— Just iln Time Architecture (JIA)

— Prelinary Analysis and Evluation

& Conclusions
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On Going UA CAC Projects

« Autonomic Cyber Security (ACS)
— Tactical Cyber Immune System (TCIS)

— Autonomic Monitoring, Analysis and Protection (AMAP)

— Anomaly based Detection of Attacks on Wireless Ad Hoc Networks
* Resilient Cloud Services

« Hacker Web: Securing Cyber Space: Understanding the Cyber Attackers
and Attacks via Social Media Analytics

* loT Security Framework
« Big Data Analytics
» Big Data Cybersecurity
* High Performance Machine Learning Framework (HPMLF)
« Heart Modeling, Analysis, Diagnosis and Prediction
* High Performance Distributed Computing and Applications

— Just-In-Time Architecture (JITA) for Composable High Performance Data Centers
— Heart Cyber Expert System (HeartCyPert)

— Oil Well Data Analytics and Protection (OWDAP)
— Hurricane Continuous Modeling and Simulation Environment

N —~

v v
Cloud and Autonomic

Computing Center




N\ THE UNIVERSITY OF ARIZONA,

Credit to

Dr. Chung-Sheng Li
IEEE Fellow &

IBM Academy of Technology Leadership Team

Director, Commercial Systems
IBM Research Division




Cloud evolution — systems point of view

Cloud 1.0 Cloud 2.0

Homogene Software Composable

ous, Defiity Systems Cloud 3.0
Virtualized Environm ‘ |
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Systems of Insight Systems of Insight Systems of Insight
workloads create high workloads often workloads often have
east-west datacenter require large, low wide spectrum of memory
Eiile latency storage requirements

» Remotely attached storage incur
long latency and throughput

bottleneck

» Locally attached SSD &
storage could be inflexible 0 50 100
and expensive
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Composable systems take advantage of rapid progress on
network speed and acceleration

High bandwidth network and interconnect Increased focus on east-west traffic
speed is expected to be comparable to accelerate adoption of 2-tier (spine-leaf)
PCle speed by 2015-2017 and 1-tier DCN architectures

Network Design Choices

Network compared with System 1/0O
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Innovation platform: Agile, composable, disaggregated,
heterogeneous, cloud-scale

Enabled by significant reduction in cost of bandwidth and virtualization advances.

Self-tuning could
Datacenter Scale achieve 75% of optimal

GPU
(Genomics, TMS SSD
"Healthcare) (FSS, loT)

Disaggregated fully
non-blocking spine-leaf
data center network
based on SDN is

available now (2014)
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Why Disagdgreqation?

Resource Modularity

= Easier to build & evolve
— Resources have different

cycles/trends/constraints.
— Disaggregation enables independent evolution,

the biggest driving force from vendor’s viewpoint

= Fine-grained resource provisioning _
— Current practice: replace/buy an entire server,

rack, or even datacenter.
— Go buy some CPU blades at Best Buy® and

plug them in.

» Operational efficiency
— Datacenter as a single giant computer

— Higher utilization with statistical multiplexing

» Reduces the need to optimize for “locality” of data to
processing and hence lessens the need for careful

placement of data & workload

= Physical resource pooling: allows fail in place
and reduce/lessen the need for field maintenance

(especially when coupled with software defined
everything)

Traditional Datacenter

Server 1 Server N

QPI
Oy pu g MHC = Hw]
QPIQPI . PR, QPIQPI
PC SATA SATA

PCle !
NIC

Shared disaggregated
memory

CORE NETWORK
[INTERNET

Storage
Devices

Specialized Hardware



What are the challenges?

» Network: How fast should the network be? How much latency
could workload tolerate?

= Scalability: \What is the right (sweet spot) scale of the
disaggregation? (chassis, rack, pod, datacenter)

» Quality of Service/Resiliency: \What is the impact on the RAS?
Are there new opportunities resulting from physical resource
pooling?

= Circuit switching vs. Packet Switching: Can we leverage
optical circuit switching (OCS)?

* Unified control plane/scheduler: How can we make sure the
scheduling and placement of workload do not create conflicting
data flow within the network due to disaggregation”?



What are the appropriate interconnect technologies for

disaggregation?
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Amin Vahdat (Google) in his keynote at 2014 Open Network Summit
presented the case that the cross-sectional BW needs to be 100+ Tb/s and
end-to-end latency < 10 us to support disaggregated SSD and large

MapReduce workloads

Intra Pod &

Intra Datacenter
Network

« Amdahl’s rule of thumb: every MHz of CPU
needs to pair with 1 Mb/s of I/O
*16 core @2.5GHz = 40 Gb/s
«32 core @2.5GHz = 80 Gb/s

*«SSD: 100K+ IOPS, 100 us access
latency (cf. HDD: 50 IOPS, 10ms
access latency)

* Implications: 1000 VMs require 40 Tb/s
bisection, 10 us access latency (port to port)

* MapReduce/Hadoop and large graph
implementations within BigData, Analytics,
and NoSQL generate large volume of east-
west traffic among Hadoop clusters

» Cross-sectional BW: Azure Pb/s, GCE 100
Tb/s

Network requirements: Cross-sectional BW: 100+ Th/s, end-to-

end latency <10 us



Integration Methodology for Disaggregated Physical Resource in
the system Stack

Partially Disaggregated Datacenter

Server 1 Server N
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Datacenter Network
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Shared
distributed GPUs

Storage

Devices
Shared

distributed .
Memory

Application & Service

RAMCloud
Memory as a
Service, Flash as
a Service

API

Cloud (e.g.
OpenStack)

Transparent to app
(e.g. Swap
RamDisk, RDMA)
Transparent to
app/OS/hypervisor

0S
Hypervisor

Bare Metal

Microservice/Application based: expose disaggregation

details and resource remoteness directly to applications

Hardware based, transparent to applications .
and OS/hypervisor
* Access as an I/O device based on direct
integration through PCle over Ethernet
* Global shared memory for disaggregated
memory

* Direct attached memory through Centaur
(Power), CAPI (Power), and QPI (Intel)

Hypervisor/container based: transparent to
applications and guest OS

« getMemory: e.g. remote swap RamDisk
« getGPU: e.g. through PCle over Ethernet

Resources exposed via high-level APlIs (e.g. put/get
for memory) using built-in processing element
* GetMemory (e.g. Memory as a Service) as
one of the OpenStack service

* Openstack service sets up channel
between host and memory pool service
over RDMA.

+ GetGPU instance

* Locate available GPU from GPU pool &
host from host pool

+ Establish channel between host and
GPU through RDMA/PCle and expose to
applications via library or virtual device.

Cloud-born applications already built using such APls



UA Approach to Develop

Composable Datacenters:
JITA—=Justin Time

Architecture

Collaborators
UA: Ali Akoglu, lvan Djordjevic, and Cihan Tunc

Colorado State University: H. J. Siegel
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Research Issues

& How to build disaggregated or composable data
centers on the fly?

& How to develop software architecture and resource
management that can be customized dynamically to meet
application SLO?

— Virtual Data Center (VDC)
& How to leverage emerging optical interconnect
technologies?

& How to model and validate the performance of
composable data centers?
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JITA Technologies and Tools

“ -

JITA Systems

Complex HPC Applications & Resources

I(\:/IOlIJtplﬁd T Fusion Simulations
Aiefgtrtes Stockpile stewardship
Multiscale Nuclear Simulations

Large Scale (exascale) Earth and Weather Sciences
Compute/Data Intensive
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Research Thrusts

& Thrust 1: JITA Design Approach

& Thrust 2. Optical Interconnect Infrastructure

& Thrust 3: Modeling, Analysis, and Simulation of JITA
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Thrust 1: JITA Design
Approach




Just-In-Time Architecture (JITA)

Large Scale HP Applications [¢=p

v Application
JITA Middleware =%  Aware
Datacenter
v Management

Virtual Data Center |em=p{ SYSteM
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JITA Example HP Systems
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Scalable Architecture
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Autonomic Computing

~JEMPERATURE

& Analogous to Human

TEARS - "PURIIE

autonomic nervous DILATION
system BTN
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diagnoses the managed R K RRESSURE
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system behavior and

then takes proactive
actions
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Autonomic Component Architecture

Anomaly Sensors
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Cross-layer Autonomic Management
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Value of Service (VoS)

v(Task,t)

Vias (Task,. t)

Viin (Task,t)

objective
Th,_,,,(Task,,t) Th“,dirask, t)

« Utility functions have been shown to be effective metrics in
resource management, especially in an oversubscribed
environment.

* A primary difference of our VoS metric from utility techniques 1s
the fact that the value metric allows us to consider the value of

performing resource management at a particular time of the day or
night as well as the actual operational costs of using the allocated
resources at a given time.

=
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VoS Examples

& Value of Service (VoS) with respect to Performance and
energy

;'[Tack,.l] volTask, ¢)

Voeas I_T(lsk,,lfl W, (Task, 1,
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Completion
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Energy value vs energy consumed

(a) Peak time, (b) Non-peak time
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JITA Scheduling Algorithm

Our algorithm is based on the resource allocation choices that provide the highest task
value divided by the amount of resources used, to better utilize the resources
Maximum Value-per-Total Resource (Maximum VPTR).

Algorithm 1. Pseudo-code for the Max VPTR heuristic.
1 while the set of mappable tasks is not empty

2 for each task in the set of mappable tasks

3 find the allowable VM configuration maximizing task VPTR
4 select task/VM pair that gives the highest VPTR

5. if selected task can start execution immediately

6. then
7

8

9

1

1

assign selected task to VMs

else

: create a place-holder for selected task using its resource allocation choice
0. remove selected task from mappable tasks

1 end while

S ~~
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JITA Scheduling Simulation
Results

m Simple
m Simple w/ place-holders
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JITA Experiment Results
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JITA Experimental Results
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Thrust 2: Optical
Infrastructure Design
Approach
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Optical Cell Design

Active vertical coupler (AVC)
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Optical Space Switch
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JITA Optical Interconnect
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End of Row (EOR) Topology

End of Row Network Connectivity Architecture

Rack

Chassis/
LoL M Server Aggregation

Switch
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Optical End of Row (OE0R) Topology
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Optical Top of Rack (OToR) Topology
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Performance Modeling, Analysis
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and Simulation
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Summary: Composable datacenter scale systems expose
many more system knobs and need to be self-optimized

Many areas requires Manual optimization of Terasort took Self-tuning could achieve 75% of
performance tuning 18 maonths optimal performance within minutes

02/10/2012 Bottleneck TeraSort in Hadoop

Hardware Configurations 47 minutes CPU

CPU & Cache o
minutes pj
%gr%toﬁMT4 for DISk Io 5 1200
Prefetch from 22 minutes Memory 8
L2/L3/memory to D-L1 g 1000
HAgR AR Gache: 19 minutes Disk 10 2
bandwidth s
Storage 15 minutes 0
Software RAID over
A9 Rgg storage i3 . CPUMem
Symphony round-robin 48 seconds "Y' but
SC_PedU ]nﬁ algorithm to software mapred.reduce.tasks 400 0 io.sort.record.percent
utilize disk arrays (on p730) stack
JVM 078/03{201 2  inefficent WordCO’l”J‘l‘»ﬂ: ‘in Hadoop
GC and jitting policy minutes I
Heap size 44 seconds 800
Enable Huge Page (on 7R2) 7504
02/05/2013 groo
Platfgﬂ#e%(é?ﬁgg rt]g reduce 7 minutes 650
10 50 seconds I\CIIPU/ E ool
Smart scheduling (on 7TR2) kel Bes0
essko Fgg lZ&Iﬁg},)é\tion g 500
450
Compression Algorithm it 400
Gzip - LZO 6 minutes
->SNAPPY ->L74 41 seconds cpyy/
(on 7R2) Memory io.sort.record.percent io.sort.mb

38 Source: Duke Univ.
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JITA Example Workload Profile

DoD Applications Requirements & Capabilities )
- ey > Workload Profiler &
Management Console

OS Resource Requirements & Capabilities
+

senvice Level Qbiectives @ Workload provisioned

VDM
offer

accepted

Application
workload

request

Cross-layer Autonomic Management

 Aggregation
VDC aggregated &

* Orchestration BE et
» Policy enforcement SEneTE

monitors & customize

VDMS resources as
needed to enforce policies

Storage Compute/Memory

Decision Making System Resources Pool

Computing Center



Conclusions

& Autonomic computing can paly an important role in
designing composable data centers

& Software Defined Infrastructures are a key technology to be
leveraged in the development of software architecture and
middleware

& Optical Interconnect technology must be leveraged

& Automated configuration and tuning are key design
parameters
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