
High-Throughput Neuroanatomy and Trigger-Action Programming: A Case Study in Research Automation

Ryan Chard, Rafael Vescovi, Ming Du, Hanyu Li, Kyle Chard, Steve Tuecke, Narayanan Kasthuri, Ian Foster

Data management challenges as volumes increase

LSST data distribution and analysis pipeline

Archive

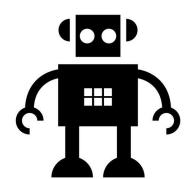
Experimental Science

Data management issues are particularly evident in large scale experimental science

Researchers are allocated short periods of instrument time

- Must maximize experiment efficiency and output data quality/accuracy

Inefficiencies mean less science is performed and researchers may have to wait months for another chance.

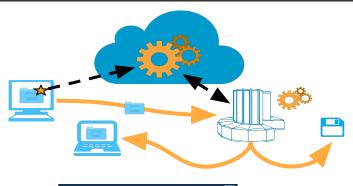

Solution: Automation

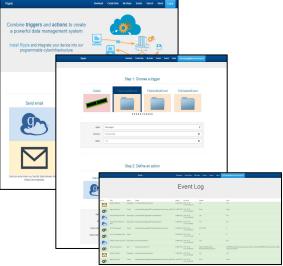
Goal: Automate data manipulation tasks from transfer and sharing to acquisition, publication, indexing, analysis, and inference

Requirements: A platform that...

- Can automate best practices
- Is data driven -- responds to data events
- Can be applied across arbitrary storage and compute infrast
- Can be dynamically programmed to respond to new events
- Enable non-expert users to define automations

Approach: Ripple



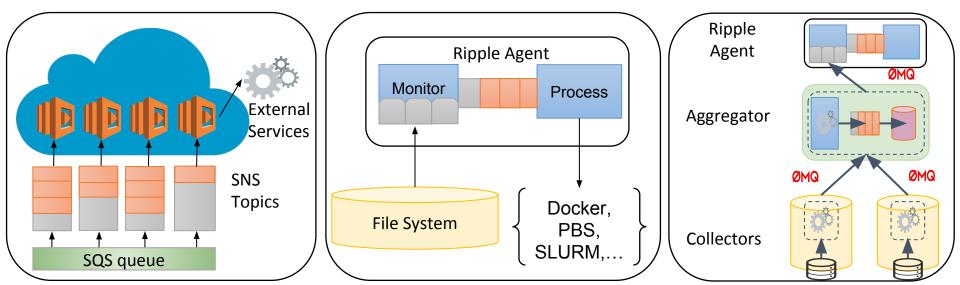

Ripple: Software Defined Cyberinfrastructure

A Trigger-Action platform for data

- Users define Trigger-Action rules
- Ripple engine processes data triggers and reliably executes actions in response
- Can daisy-chain multiple Trigger-Action rules into complex flows

Ripple

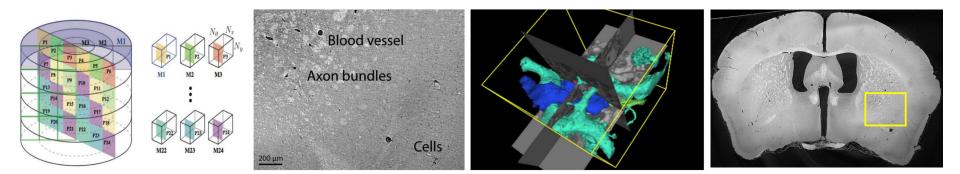
Service


- Process events and orchestrate execution of actions
- Reliably manage event and execution lifecycle
- Perform cloud-based actions (Globus, email, ECS) and remote execution

Agents

- Deployed locally to monitor file system events -
- Detects, evaluates, and reports events of interest to the cloud service
- Performs actions on a user's behalf

Events

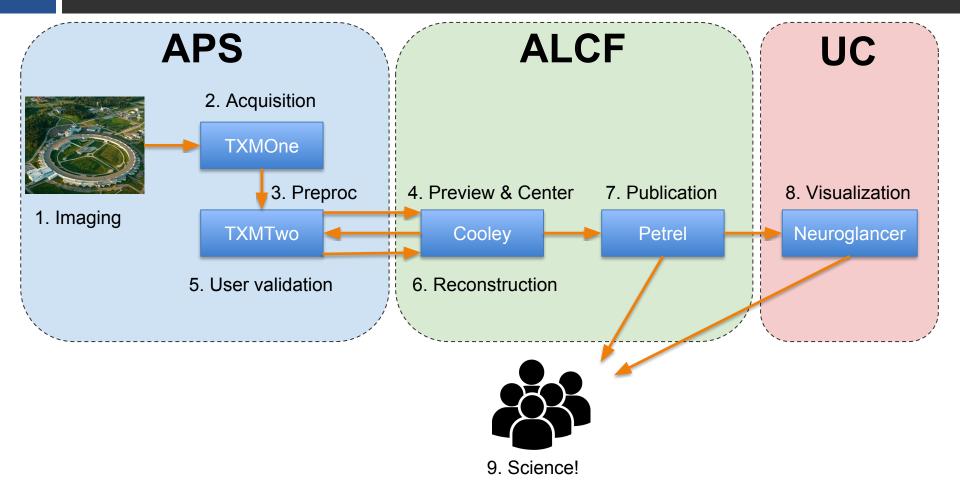

- File create, modify, delete, close
- Supports multiple event notification tools (e.g., inotify, kqueue, etc.) and services (e.g. Globus)
- Scalable monitoring solution for large parallel Lustre stores

A Neuroanatomy Use Case

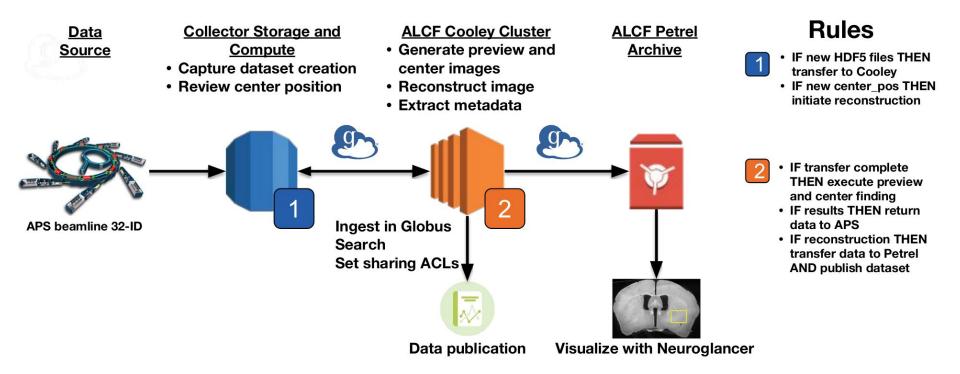
UChicago's Kasthuri Lab study brain aging and disease

- Construct connectomes -- mapping of neuron connections
- Use synchrotron (APS) to rapidly image brains (and other things)
- Given beam time once every few months
- Generate segmented datasets/visualizations for the community
- ~20GB/minute for large (cm) unsectioned brains
 Perform semi-standard reconstruction on all data across HPC resources

Advanced Photon Source


1 km

5 usec



Argonne Leadership Computing Facility .

Neuroanatomy Reconstruction Pipeline

Neuroanatomy Research with Ripple

Full Set of Ripple Rules

Step 1: Transfer to ALCF

 $\frac{\text{Trigger: FileCreated, .*.h5}}{\text{Action: GlobusTransfer, $FILE, APS \rightarrow ALCF}}$

Step 2: Organize HDF5

 $\frac{\text{Trigger: } TransferComplete, .h5, APS \rightarrow ALCF, User: Brainimaging}{Action: Bash, bash automo_organize.sh}$

Step 3: Create batch file

Trigger: *FileCreated*, data.h5 <u>Action</u>: *Bash*, echo ... >> \$PATH/batch_job.qsub

Step 4: Submit batch file

Trigger: *FileCreated*, batch_job.qsub Action: *Cobalt*, qsub \$FILE

Step 5: Return center

 $\frac{\text{Trigger: } FileCreated, \text{ center_pos.txt}}{\text{Action: } GlobusTransfer, \$PATH, ALCF \rightarrow APS}$

Step 6: Transfer verified center

Trigger: *FileCreated*, real_center_pos.txt <u>Action</u>: *GlobusTransfer*, \$FILE, APS→ALCF

Step 7: Create batch reconstruction file

Trigger: TransferComplete, real_center_pos.txt, APS→ALCF Action: Bash, echo ... >> \$PATH/recon_job.qsub

Step 8: Submit batch reconstruction file

Trigger: *FileCreated*, recon_job.qsub <u>Action</u>: *Cobalt*, qsub \$FILE

Step 9: Publish results

Trigger: *FileCreated*, recon_0000.tiff <u>Action</u>: *GlobusTransfer*, \$PATH, ALCF→Petrel

Step 10: Catalog results

Trigger: *TransferComplete*, recon_0000.tiff, ALCF→Petrel Action: *Bash*, python catalog_data.py \$PATH

TAP Neuroanatomy

It works! http://tomofish.kasthurilab.com

Increased throughput, improved productivity, automated analysis + best practices (publication/replication/ACL/catalog)

Happy scientists!

TAP Neuroanatomy

However...

Reflecting on Ripple Automation

Ripple is designed for tigger-action pairs

- Almost all our use cases rely on multi-step flows

Workflows comprised of cascading rules

- Can be unreliable (will retry, but success may not raise required event)
- Easy to debug with 10s of executions, difficult with 1000s

Existing pipelines don't always map well to TAP

- Force specific outputs to trigger next rule

TAP == easy, correct TAP == hard

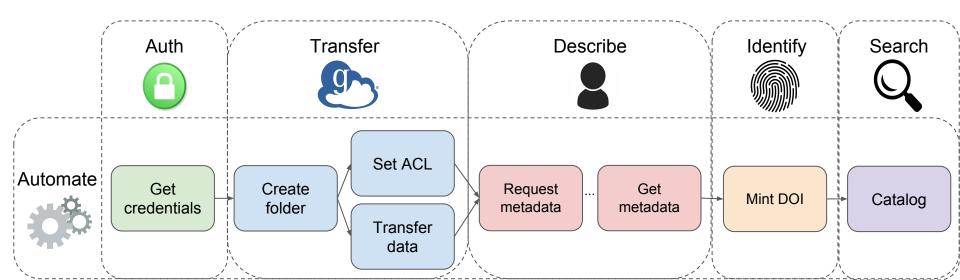
- Unforeseen consequences (Ur et al.). Misunderstood file triggers (create vs mod)
- Exaggerated with multi-step flows

Can't easily contribute actions to Ripple

- Difficult to add custom triggers & services e.g., human-in-the-loop

Additional Requirements

What else we need from an automation platform:


- Flexible, workflow-oriented automation
- Scalable, secure, fault tolerant flows
- Simplified application of TAP automation to common science problems
- Support for asynchronous, human-in-the-loop tasks
- Facilitates user contributed trigger sources & action services

A Vision for Service-Based Automation

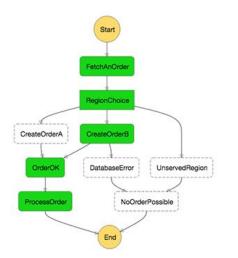
Specialized services to perform common tasks

A reliable automation platform to link them together

Uses TAP to associate trigger conditions that initiate flows

Automate: An Initial Prototype

Cloud service to compose and execute data manipulation flows


Built on AWS Step Functions

- Simple JSON-based state machine language
- Facilitates branching, loops, etc.
- Propagates state through the flow

Standardized API to integrate arbitrary trigger & action services

Secured with Globus Auth

Automate Prototype: The Service

Users combine action services to create flows by submitting a flow definition and input data JSON documents

- Definition based on state machine language
- Input data is combined with event info on submission

Associate a trigger condition -- event data is passed in when executed

We provide a polling SFN activity that halts a flow until an action_id has completed

Automate Prototype: Actions

Any service can expose the Action API

- /automate/v1/action/run, status, cancel, introspect, ...
- .../status used to enable polling
- We give the service an action_id on invocation

When registering an action we make an internal lambda function that calls your service's url

- Makes an ARN for it and maps to a user-friendly name for use in flows

Introspect tells us what input the action accepts -- used during flow creation

The action can then be stepped to in a flow

Automate Prototype: Events

Any service can expose the Events API

- /automate/v1/event/register, poll, introspect, ...

Automate polls each event interface and adds responses to a reliable Simple Queue Service queue

- Events processed by lambda functions

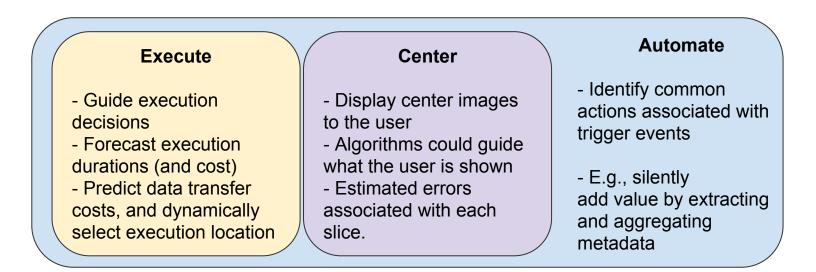
Integrates Ripple as an event source

- Can be driven by data events

An Ecosystem for Automation

Initial services include:

(Auth	Transfer	Execute	Center
	Provide Globus credentials to access	Thin wrapper around Globus Transfer	A service around the Parsl library	Human-in-the-loop
	services	Pass it source/dest	Enables secure	Async task halts flow
	First step of a flow	and data location	remote execution	Users enter center of rotation value then
(Polls until success		flow resumes



Autonomous Automation

Automate will provide a fabric for smart, autonomous computing

New opportunities to integrate ML

Next Steps

Test Automate -- beam time last weekend

Add more services

Find more use cases

Integrate autonomous decision making

Thanks!

Questions?