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Abstract—With scientific data collected at unprecedented 
volumes and rates, the success of large scientific collaborations 
requires that they provide distributed data access with 
improved data access latencies and increased reliability to a 
large user community. The goal of the ADAPT (Adaptive Data 
Access and Policy-driven Transfers) project is to develop and 
deploy a general-purpose data access framework for scientific 
collaborations that provides fine-grained and adaptive data 
transfer management and the use of site and VO policies for 
resource sharing. This paper presents our initial design and 
implementation of an adaptive data transfer framework. We 
also present preliminary performance measurements showing 
that adaptation and policy improve network performance.  

Index Terms—data transfers, adaptation, resource sharing, 
policy, passive performance monitoring. 

I. INTRODUCTION 
Large-scale science applications are expected to generate 

exabytes of data over the next 5 to 10 years. With scientific 
data collected at unprecedented volumes and rates, the 
success of large scientific collaborations requires that they 
provide distributed data access with improved data access 
latencies and increased reliability to a large user community. 
To meet these requirements, scientific collaborations are 
increasingly transferring large datasets over high-speed 
networks to multiple sites. 

The goal of the ADAPT (Adaptive Data Access and 
Policy-driven Transfers) project is to develop and deploy a 
general-purpose data access framework for scientific 
collaborations that provides fine-grained and adaptive data 
transfer management, passive performance monitoring, and 
use of site and Virtual Organization (VO) policies for 
resource sharing. Passive monitoring mechanisms collect 
information about transfer performance from data movement 
tools without putting extra loads on shared resources. 
Transfer management mechanisms select transfer properties 
based on past performance and available resources between 
the source and destination, and they adapt those properties 
when the observed performance changes due to the dynamic 
load on storage, network and other resources. Finally, policy-
driven resource management uses Virtual Organization and 
site policies regarding replication and resource allocation to 
balance user requirements for data freshness with the load on 
resources. 

This paper presents our initial design and implementation 
of an adaptive data transfer framework. We also present 
preliminary performance measurements that demonstrate that 
adaptation and policies for resource sharing improve network 
performance for multi-client experiments. 

II. SYSTEM OVERVIEW 
Our approach includes three components: the Data 

Movement Service (DMS), the Passive Measurement 
Archive (PMA) and the Policy Service (PS). The relationship 
among these components is shown Figure 1. The Data 
Movement Service (DMS) performs data transfers and 
records information about the performance of completed 
transfers in the Passive Measurement Archive (PMA). 
Before initiating a new data transfer, the DMS requests 
advice on parameters for that transfer, such as the 
recommended number of parallel streams, concurrency or 
buffer size, from the Policy Service (PS). The PS suggests 
transfer parameter values that are based on past performance 
measurements stored in the PMA (if available), available 
system resources, and site or Virtual Organization policies, 
which might specify the default parallelism for transfers or 
the maximum number of streams that may be allocated 
between each source and destination pair. The PS returns this 
advice to the DMS, which may modify the recommended 
transfer parameters before initiating the transfers. For long-
running, multi-file transfers, the DMS also periodically 
requests new advice from the PS and adapts transfer 
parameters to accommodate changes in resource availability 
and to optimize throughput. When a user community is large 
and active, such as Open Science Grid (OSG) [1]  or Earth 
System Grid Federation (ESGF) [2], the Passive 
Measurement Archive should have enough historical 
measurements to provide a good basis for transfer advice by 
the Policy Service. 

III. ARCHITECTURE AND IMPLEMENTATION 
In this paper, we describe the initial phase of the ADAPT 

project. In this initial design, we modify a commonly used 
data transfer client, srm-copy [3], to provide client-side 
adaptation that is transparent to the user. Storage Resource 
Manager (SRM) client tools, based on the SRM standard [4], 
are currently used in production in large-scale scientific 
grids, including ESG and OSG. One goal of our approach is 



to provide a simple transition from current data movement 
practices in Virtual Organizations like OSG and ESG toward 
the use of adaptive data movement. In Section V, we 
describe our plans for the second phase of the ADAPT 
project, which will focus on providing service-oriented 
functionality and a more generalized adaptive data transfer 
framework. 

  
In the first phase of the ADAPT project, we enhanced the 

srm-copy data movement client with an Adaptive Data 
Transfer (ADT) library, a Passive Measurement Archive 
(PMA), and a Policy library. Our enhancements to the srm-
copy client optimize transfer throughput performance 
adaptively. The policy library provides initial advice on 
transfer parameters, and the ADT library adapts transfer 
parameters to increase the performance of long-running, 
multi-file transfers. Such long-running large transfers are 
typical of replication and download operations performed in 
many distributed science collaborations. 

Figure 2 illustrates the use case for the first phase of 
ADAPT, where a data movement client (srm-copy) interacts 
with a data storage site on a grid running the BeStMan 
Storage Resource Manager server [4-7]. This scenario is a 
typical OSG use case for data staging, for example, when 
one or more large data sets must be staged to an OSG 
computational cluster before analysis on those datasets 
begins, or when data must be staged off OSG resources once 
analysis completes. Next, we describe the components of the 
ADAPT design in more detail.  

A. Data Movement: Adding Adaptation to srm-copy 
We modified the standard srm-copy data movement 

client to adapt transfer parameters during the operation of a 
transfer using an Adaptive Data Transfer (ADT) library.  

Using multiple data transfer streams is a common 
technique applied in the application layer to increase network 
bandwidth utilization [8-10]. To achieve high throughput, the 
number of connections needs to be adjusted according to the 
capacity of the underlying environment. Our work builds on 
earlier research on an Adaptive Data Transfer (ADT) 
algorithm that calculates dynamic transfer parameters such as 
the concurrency level from a simple throughput prediction 
model with information from current data transfer operations 
[11-15]. This is in contrast to predictive sampling proposed 
in other research [9, 16], and it does not depend on external 
profilers for active measurements.  

The ADT library [11-15] increases the number of streams 
adaptively and dynamically toward an optimal level. This 
method also enables adaptation to varying environmental 
conditions for improved system and network resource 
utilization. By gradually adjusting the number of streams, the 
ADT library is able to identify a near optimal level for the 
number of parallel streams without requiring complex 
identification of transfer bottlenecks. In this adaptive 
algorithm, when a change in the performance is detected 
over the course of a long-running, multi-file transfer, the 
number of concurrent connections is adjusted accordingly for 
subsequent transfers, as shown in Figure 3. Adaptive transfer 
management by adjusting the concurrency level dynamically 
provides higher throughput, and the ADT algorithm is 
applied in user space on application level auto-tuning 
methodologies. 

 

 
Earlier work on ADT [11-15] addressed two challenges 

in adaptive data movement: estimating the initial number of 
streams and determining the interval between transfer 
parameter adjustment points. Network latency directly 
affects throughput, and more transfer streams are needed to 
occupy the available network bandwidth when latency is 
higher. A challenge in ADT is to estimate the initial number 
of streams between the source and destination hosts, and a 
simple model has been studied for the estimation [12].  This 
estimate will then be adjusted gradually within maximum 

 
Fig. 3.  Gradual adaptation in total number of streams over time 

 
Fig. 1.  Interaction between ADAPT components 

 
 

Fig. 2.  ADAPT use case 



resource limits that are determined based on advice from the 
Policy module. 

While we can measure the instant throughput for each 
transfer, it may not be appropriate to adjust the number of 
transfer streams after every measurement point. Given the 
possibility of minor fluctuations in network throughput, a 
threshold value is needed based on some transfer property 
such as the transferred data size and time interval before 
determining changes in the achievable throughput and 
adjusting the number of concurrent streams. As a future 
research topic, we plan to experiment the threshold values 
using policy rules as well as historical measurements stored 
in the Passive Measurement Archive (PMA). For our 
experiments presented below, we use a simple metric of 
adjusting the transfer parameters for a client after five 
transfers have completed.  

Our work extends this earlier work and further explores 
these challenges within the ADAPT framework.  

B. Passive Measurement Archive 
The ADAPT architecture is shown in Figure 4. In our 

system, the srm-copy data movement clients collect 
performance information on data transfers and record the 
collected information in the Passive Measurement Archive 
(PMA). When an srm-copy client requests advice on transfer 
parameters, the Policy library accesses the PMA to obtain 
past transfer performance and uses that information in its 
policy rules.  

In the first phase of the ADAPT project, we implemented 
a Passive Transfer Monitor (PTM) module as a library of the 
SRM data movement client. Once an srm-copy data transfer 

completes, the srm-copy client writes performance 
information about that transfer through the PTM into the 
Passive Measurement Archive (PMA), which is implemented 
as a storage archive. This archive is labeled in Figure 4 as the 
PTM log. The performance information recorded by the srm-
copy client includes the transfer rate, total transferred data, 
and number of transfer streams used.  

Later, the Policy module may retrieve information about 
past transfers from the log file via the PTM.  

In the second phase of the project, a perfSONAR-based 
measurement repository service will be used as the PMA, so 
that historical information can be archived and queried 
through a common, standardized interface. 

C. The Policy Library 
We implemented a Policy library for the srm-copy data 

movement client that provides advice on transfer parameters 
and resource allocations for client sessions. This policy work 
builds on earlier work on data staging, placement and policy 
[8, 17-22]. Advice generated by the policy engine is based on 
historical information from the Passive Measurement 
Archive, system resource availability, and Virtual 
Organization and site policies that place limits on transfer 
parameters and overall research usage. For the first phase of 
the ADAPT project, the Policy logic was implemented as a 
library module that can optionally be included with the srm-
copy client to provide advice on the number of transfer 
streams and other transfer rate parameters to use for the data 
transfer request. In the second phase of the ADAPT project, 
we plan to provide a hosted Policy Service that can be shared 
by multiple data movement clients.  
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Fig. 4.  Architecture of Policy Service 



The overall goal of the ADAPT project is to achieve 
higher throughput for data transfers in a distributed 
environment. Each data movement client, srm-copy, contains 
its own Policy Module. Network administrators at the site 
and Virtual Organization (VO) level define the overall 
resource limits between pairs of hosts based on their 
hardware resources (e.g. memory size, I/O rates, and storage 
system bandwidth) and the network bandwidth between 
them. These resource limits are included in a configurable 
policy file that is provided as input to the policy library.  

Within the policy library, an open source policy engine 
(Drools [23]) is used to enforce policy rules. The policy 
library receives requests from the srm-copy data movement 
client for advice on transfer parameters, either for new 
transfers or to refresh advice for ongoing transfers. The 
policy engine uses the site- and VO-specified policy rules as 
well as its knowledge of the resources already allocated to 
ongoing transfers (which are recorded in the shared Resource 
Allocation Log) and the performance of past transfers 
(recorded in the Passive Measurement Archive) to 
recommend parameters to the srm-copy client for the current 
transfer. After receiving advice from the policy library, the 
srm-copy client may modify the transfer parameters based on 
additional logic in the Adaptive Data Transfer library. The 
srm-copy client then makes another call to the Policy library 
to inform it of the transfer parameters that were actually used 
for the transfer. The Policy library records the information 
about the resources that were actually allocated in the shared 
Resource Allocation Log.  

The Policy Service Module is implemented as a Java 
library that contains the policy logic. The Policy Service 
manages policy sessions that contain policy rules and 
persistent policy memory, manages a Passive Transfer 
Monitor (PTM) instance, and records resource allocation 
information in a shared Resource Allocation Log. The Policy 
Service Interface API is a Java API used to communicate 
with the Policy Service. The Policy rules specify how 
transfers should be handled in the system. Policy Memory 
retains current knowledge of information stored in policy; its 
state persists across transfer requests.  

 

D. Policy Overview 
The Policy library for the ADAPT project is implemented 

using the Drools open source policy engine [23]. We 
implemented a greedy allocation algorithm that enforces 
policies related to controlling the number of streams and the 
bandwidth allocated between a source and destination pair, 
with the goal of increasing the efficiency of data transfers. A 
site or Virtual Organization administrator provides as input 
to the Policy Service a threshold number of streams and 
threshold bandwidth that should be allowed between a source 
and destination pair, as well as a default number of streams 
and bandwidth for individual transfers.  

When a new request comes in for advice on parameters 
for a transfer between a source and destination site, the 
policy engine first checks its state in the Resource Allocation 
Log to determine how many streams or how much 
bandwidth have already been allocated for ongoing transfers 
between those sites. If there are sufficient streams or 

bandwidth remaining below the threshold to satisfy the new 
request, then the policy engine returns advice to the srm-
copy client that the transfer should receive the default 
number of streams/ bandwidth for the new transfer.  

However, if a new transfer allocation will exceed the 
threshold set by the site or VO administrator for either 
number of streams or bandwidth allocated, then the advice 
for the new transfer recommends that the transfer be 
allocated fewer resources. If the threshold value has not been 
reached, then the policy service will recommend allocating 
the remaining number of streams or available bandwidth. If 
the threshold value has been reached, then the policy engine 
will recommend allocating a minimal number of resources 
for the transfer. This avoids starvation of new requests. 

The goal of the greedy algorithm is to allocate to all 
transfers the default number of streams/bandwidth up to the 
point where the specified threshold is reached. After that 
point, additional transfers are allowed to proceed with a 
minimal number of streams/amount of bandwidth to avoid 
starvation. As earlier transfers complete and free up available 
streams, those streams may be allocated to other transfers via 
the adaptation process already described.  

E. Policy Implementation 
When the Policy Engine receives a transfer from the srm-

copy client for evaluation, it applies the policies shown in 
Table I to each transfer. As described earlier, the policy 
service uses information about past transfer performance 
stored in the Passive Measurement Archive and about 
resources that have already been allocated, which is recorded 
in the shared Resource Allocation Log.  

TABLE I.  ADAPT POLICY RULES (GREEDY ALGORITHM) 

Insert a new transfer into policy memory: Adds an object 
corresponding to a new transfer to policy memory. 
Set default max streams for new transfer when no 
Passive Measurement Archive (PMA) record is available 
for this source and destination pair: Set the max_streams 
property to the default value.  
Set default max bandwidth for new transfer when no 
PMA record is available for this source and destination 
pair: Set the max_rate property to the default value.  
Set max streams to number of streams recorded in the 
PMA for the new transfer: When the PMA has 
measurements from a previous transfer between the source 
and destination, set the max_streams property to the value 
stored in the PMA if it exceeds the default value. Otherwise, 
set max_streams property to the default value.  
Set max rate to PMA rate for new transfer: When the 
PMA has measurements from a previous transfer between 
the source and destination, set the max_rate property to the 
value stored in the PMA if it exceeds the default value. 
Otherwise, set max_rate property to the default value.  
Read the resource allocation log: Read the resource 
allocation log to determine how many transfer instances are 
utilizing throughput and parallel streams on the sites.  
Enforce limit for max_streams_on a transfer using 
greedy allocation: If the number of advised streams would 
not exceed the maximum streams threshold between the 
source and destination, then allocate max_streams. If the 



number of advised streams would exceed the maximum 
streams threshold between the source and destination, then 
allocate only the number of streams that does not exceed the 
threshold. If the threshold has been reached or exceeded, 
allocate the minimum number of streams for the new 
transfer. 
Enforce limit for bandwidth on transfer using greedy 
allocation: If the amount of advised bandwidth would not 
exceed the maximum rate threshold between the source and 
destination, then allocate max_rate. If the amount of advised 
bandwidth would exceed the maximum rate threshold 
between the source and destination, then allocate only the 
amount of bandwidth that does not exceed the threshold. If 
the threshold has been reached or exceeded, allocate the 
minimum rate for the new transfer. 
Create resource allocation entry for transfer: Create a 
new transfer record in the resource allocation log recording 
the max_streams and max_rate properties for the transfer.  
Update resource allocation entry for transfer: Update an 
existing entry in the resource allocation log with the actual 
transfer parameters used for a transfer: adjusted_streams and 
adjusted_rate. 
Remove resource allocation entry for completed transfer: 
Once a transfer is complete, remove the resource allocation 
log record for that transfer to reflect that the resources used 
in the transfer are available.  
Remove resource allocation entry for failed transfer: If a 
transfer fails, remove its record from the resource allocation 
log and remove the transfer object from policy memory.  
Record completed transfer: Record information about a 
transfer that completed successfully in policy logs. This 
information includes rate, streams, source and destination. 
Remove the transfer object from policy memory. 

 

IV. EVALUATION  
Next, we present initial performance results for adaptive 

data transfers and compare the performance of adaptive 
transfers with unmodified srm-copy data transfer clients. We 
run these tests between two sites: the Lawrence Berkeley 
National Laboratory (LBNL) in Berkeley, California, and the 
Open Science Grid site at the University of Nebraska at 
Lincoln (UNL).  

Our tests are intended to model a common Open Science 
Grid use case as in Figure 5, in which OSG users who want 
to run an analysis job on OSG compute resources must first 
stage data from a remote location to the OSG site. Files used 
in our data transfer experiments are from an existing data set 
stored at LBNL.  

Our experiments are multi-client tests that show transfers 
from 6 srm-copy clients running at LBNL that stage data to 
UNL. Table II shows the number of files and file sizes 
transferred by each client. These files from an existing data 
set at LBNL are either 132 MB or 957 MB in size.  Multiple 
clients transferring files of different sizes is a realistic data 
staging use case. 

Figure 6 shows the number of streams allocated to each 
client over time using the adaptive srm-copy client with the 
greedy allocation algorithm. In this experiment, the overall 
threshold for the streams that may be allocated between the 

source and destination sites was 100. The requested default 
allocation for any transfer was 80 streams. At the start of the 
experiment, the srm-copy client for client 1 requests advice 
on the allocation of streams for its transfer session and 
receives the requested allocation of 80 streams, since no 
other resources have been allocated. As the graph shows, 
client 1 begins transferring data with its minimum allocation 
of 4 streams, and the adaptive algorithm adjusts over time 
toward the maximum allocated value of 80 streams. The 
current allocation is the sum of all concurrent file transfers 
for that client. When srm-copy client 2 requests advice on its 
session allocation, it is given an allocation of 20 streams, 
which is the value remaining under the allowed threshold of 
100 streams. Again, client 2 begins its session with the 
minimum allocation of 4 streams and adjusts over time 
toward its allowed allocation of 20 streams.  

 

 

TABLE II.  DATA TRANSFERRED BY EACH CLIENT  

 
Client 

Total data 
transferred 

Total 
files 

 
File sizes  

1 45749 MB 84 45 files of size 957MB,  
39 files of size 132MB 

2 43571 MB 80 40 files of size 957MB,  
40 files of size 132MB 

3 21786 MB 40 20 files of size 957MB,  
20 files of size 132MB 

4 33768 MB 62 31 files of size 957MB,  
31 files of size 132MB 

5 31589 MB 58 29 files of size 957MB,  
29 files of size 132MB 

6 33768 MB 62 31 files of size 957MB,  
31 files of size 132MB 

 
Clients 3 through 6 also request advice from the policy 

engine and, since the threshold number of streams has been 
allocated to the first two clients, they receive the minimum 
allocation of 4 streams for their sessions. This allows 
transfers for those clients to proceed and avoids starvation of 
requests.  

 
Fig. 5.  Test use case that is common in Grid environment  



 

 
 

Figure 6 shows the progression of these transfers over 
time and how adaptation affects the number of streams 
allocated for each client session. In practice, we do two types 
of adaptation: one that uses the srm-copy client's adaptation 
library to adjust the number of streams for client transfers 
within the client's current maximum stream allocation, and 
one that periodically consults the policy engine to determine 
whether new resources have become available that increase 
the maximum stream allocation for the client's session. In our 
experiments, the adaptation algorithm is executed every time 
five transfers from a client complete; the adaptation 
gradually increases or decreases the use of streams within the 
allocated maximum to find the stream allocation that gives 
the highest throughput (which is often achieved by allocating 
more streams). The adaptation module also periodically 
consults the policy module for fresh advice on the stream 
allocation limit for a client session. If the stream allocation 
limit changes, the adaptation module then adjusts the number 
of streams for subsequent transfers within this new allocation 
limit. This allows the adaptation logic to take advantage of 
resources as they become available, for example, when 
earlier transfers complete and free up available streams.  

Performing adaptation after a fixed number of completed 
transfers is the reason for the step-wise increase in the 
number of streams shown in the graph. Client 1 increases its 
bandwidth toward its maximum allocation of 80 streams 
(eventually reaching 52 streams), and Client 2 acquires 
additional streams until it reaches its maximum allocation of 
20 streams at around 1000 seconds of elapsed time.  

Once the transfers associated with client 1 complete at 
around 2500 seconds, the resources associated with that 
client are freed and can be allocated to other clients during 
adaptation. When the adaptation module requests fresh 
advice from the policy module, the policy engine applies its 
policy rules, including checking the Resource Allocation Log 
to determine whether additional resources have become 
available. Based on its rules, the policy engine then 
recommends the allocation of those freed resources to other 
client sessions.  

Thus, after the completion of client 1’s transfers, client 2 
consults the policy module and acquires a larger stream 
allocation. The graph shows the subsequent adaptation as the 
total number of streams for client 2 increases from its 
original allocation of 20 streams to a total of 36 streams. 
Similarly, following the completion of client 1’s transfers, 
client 4 adapts to increase its number of allocated streams 
toward a total of 28 streams. The graph shows that this 
process continues for the remaining clients, with client 5 
increasing its stream allocation after client 2 completes its 
transfers and frees up its resources. Client 6 increases its 
stream allocation after client 4 completes its transfers, etc.    

Figure 7 shows the throughput achieved by each client in 
this multi-client adaptation experiment. As would be 
expected based on Figure 6, the first two clients achieve the 
highest bandwidth because of their greater allocation of 
streams. Once each client completes its transfers, the 
remaining clients achieve higher throughput as they acquire 
resources that have been freed. Because our policy rules 
avoid starvation by allocating a minimum of four streams to 

 
Fig. 6.  Total number of streams for each ADAPT-enhanced client when multiple clients are running. 



each client, all clients in this experiment achieve throughput 
of at least 3.7 MB/sec between LBNL and UNL.  

For comparison, Figure 8 shows the performance of 
standard srm-copy clients that do not use the adaptation or 
policy logic that we developed. 6 clients transfer the same 
files from LBNL to UNL. Figure 8 shows the throughput 
achieved by each client, where each client requests an 
allocation of 80 streams at the start of the transfer. The 
network resources quickly become oversubscribed, and the 

clients cannot adapt, so the overall throughput goes down 
significantly. When some of the client transfers complete, the 
rest of the clients achieve a throughput increase. Overall, the 
non-ADAPT srm-copy clients took 30% more time than 
ADAPT-enhanced client to complete the same transfers in 
our experiments. These early results demonstrate the 
potential advantages of adaptation and policy for improving 
transfer performance.  

 

 
 

V. SUMMARY AND FUTURE PLANS 
 

In this paper, we have described the design and 
implementation of the first phase of data transfer adaptation 
for the ADAPT project. This phase of the project has focused 
on modifying a commonly used data transfer client, srm-
copy, to provide client-side adaptation that is transparent to 
the user. The goal of this approach is to provide a simple 
transition from current data movement practices to adaptive 
data movement.  

Our early performance results show significant benefits 
in using adaptation and resource allocation policies to 
improve the performance of multi-file data transfers in wide 
area environments.  

Our plans for the second phase of the project include 
enhancing the data movement client integrated with ADT as 
a library module; deploying the policy logic as a Policy 
Service that can easily be shared by multiple data movement 
clients; integrating perfSONAR as the Passive Measurement 
Archive; and conducting extensive performance and 
scalability tests with multiple data movement clients moving 

data among multiple storage sites. We also plan to integrate 
adaptation and policy logic into other data movement tools, 
such as the Bulk Data Mover (BDM) and Data Mover Lite 
(DML) tools.  

We will also conduct research to explore richer policies 
for managing transfer resources and supporting the needs of 
site administrators and Virtual Organizations. We will 
conduct an experimental evaluation to determine which of 
these policies are most effective in reducing transfer times 
and increasing overall throughput. 

Finally, we plan to work more closely with application 
communities to assist them in deploying and using the 
transfer adaptation software to improve the performance of 
distributed scientific collaborations that replicate and 
download large amounts of data.  
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Fig. 7.  Throughput performance of each ADAPT-enhanced client when multiple clients are running. 
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