
Adaptive Data Transfers that Utilize Policies for
Resource Sharing

Junmin Gu1, David Smith2, Ann L. Chervenak2, Alex Sim1
1 Lawrence Berkeley National Laboratory

Berkeley, CA, USA
{jgu, asim}@lbl.gov

 2 Information Sciences Institute
University of Southern California

Marina del Rey, CA, USA
{smithd, annc}@isi.edu

Abstract—With scientific data collected at unprecedented
volumes and rates, the success of large scientific collaborations
requires that they provide distributed data access with
improved data access latencies and increased reliability to a
large user community. The goal of the ADAPT (Adaptive Data
Access and Policy-driven Transfers) project is to develop and
deploy a general-purpose data access framework for scientific
collaborations that provides fine-grained and adaptive data
transfer management and the use of site and VO policies for
resource sharing. This paper presents our initial design and
implementation of an adaptive data transfer framework. We
also present preliminary performance measurements showing
that adaptation and policy improve network performance.

Index Terms—data transfers, adaptation, resource sharing,
policy, passive performance monitoring.

I. INTRODUCTION
Large-scale science applications are expected to generate

exabytes of data over the next 5 to 10 years. With scientific
data collected at unprecedented volumes and rates, the
success of large scientific collaborations requires that they
provide distributed data access with improved data access
latencies and increased reliability to a large user community.
To meet these requirements, scientific collaborations are
increasingly transferring large datasets over high-speed
networks to multiple sites.

The goal of the ADAPT (Adaptive Data Access and
Policy-driven Transfers) project is to develop and deploy a
general-purpose data access framework for scientific
collaborations that provides fine-grained and adaptive data
transfer management, passive performance monitoring, and
use of site and Virtual Organization (VO) policies for
resource sharing. Passive monitoring mechanisms collect
information about transfer performance from data movement
tools without putting extra loads on shared resources.
Transfer management mechanisms select transfer properties
based on past performance and available resources between
the source and destination, and they adapt those properties
when the observed performance changes due to the dynamic
load on storage, network and other resources. Finally, policy-
driven resource management uses Virtual Organization and
site policies regarding replication and resource allocation to
balance user requirements for data freshness with the load on
resources.

This paper presents our initial design and implementation
of an adaptive data transfer framework. We also present
preliminary performance measurements that demonstrate that
adaptation and policies for resource sharing improve network
performance for multi-client experiments.

II. SYSTEM OVERVIEW
Our approach includes three components: the Data

Movement Service (DMS), the Passive Measurement
Archive (PMA) and the Policy Service (PS). The relationship
among these components is shown Figure 1. The Data
Movement Service (DMS) performs data transfers and
records information about the performance of completed
transfers in the Passive Measurement Archive (PMA).
Before initiating a new data transfer, the DMS requests
advice on parameters for that transfer, such as the
recommended number of parallel streams, concurrency or
buffer size, from the Policy Service (PS). The PS suggests
transfer parameter values that are based on past performance
measurements stored in the PMA (if available), available
system resources, and site or Virtual Organization policies,
which might specify the default parallelism for transfers or
the maximum number of streams that may be allocated
between each source and destination pair. The PS returns this
advice to the DMS, which may modify the recommended
transfer parameters before initiating the transfers. For long-
running, multi-file transfers, the DMS also periodically
requests new advice from the PS and adapts transfer
parameters to accommodate changes in resource availability
and to optimize throughput. When a user community is large
and active, such as Open Science Grid (OSG) [1] or Earth
System Grid Federation (ESGF) [2], the Passive
Measurement Archive should have enough historical
measurements to provide a good basis for transfer advice by
the Policy Service.

III. ARCHITECTURE AND IMPLEMENTATION
In this paper, we describe the initial phase of the ADAPT

project. In this initial design, we modify a commonly used
data transfer client, srm-copy [3], to provide client-side
adaptation that is transparent to the user. Storage Resource
Manager (SRM) client tools, based on the SRM standard [4],
are currently used in production in large-scale scientific
grids, including ESG and OSG. One goal of our approach is

to provide a simple transition from current data movement
practices in Virtual Organizations like OSG and ESG toward
the use of adaptive data movement. In Section V, we
describe our plans for the second phase of the ADAPT
project, which will focus on providing service-oriented
functionality and a more generalized adaptive data transfer
framework.

In the first phase of the ADAPT project, we enhanced the

srm-copy data movement client with an Adaptive Data
Transfer (ADT) library, a Passive Measurement Archive
(PMA), and a Policy library. Our enhancements to the srm-
copy client optimize transfer throughput performance
adaptively. The policy library provides initial advice on
transfer parameters, and the ADT library adapts transfer
parameters to increase the performance of long-running,
multi-file transfers. Such long-running large transfers are
typical of replication and download operations performed in
many distributed science collaborations.

Figure 2 illustrates the use case for the first phase of
ADAPT, where a data movement client (srm-copy) interacts
with a data storage site on a grid running the BeStMan
Storage Resource Manager server [4-7]. This scenario is a
typical OSG use case for data staging, for example, when
one or more large data sets must be staged to an OSG
computational cluster before analysis on those datasets
begins, or when data must be staged off OSG resources once
analysis completes. Next, we describe the components of the
ADAPT design in more detail.

A. Data Movement: Adding Adaptation to srm-copy
We modified the standard srm-copy data movement

client to adapt transfer parameters during the operation of a
transfer using an Adaptive Data Transfer (ADT) library.

Using multiple data transfer streams is a common
technique applied in the application layer to increase network
bandwidth utilization [8-10]. To achieve high throughput, the
number of connections needs to be adjusted according to the
capacity of the underlying environment. Our work builds on
earlier research on an Adaptive Data Transfer (ADT)
algorithm that calculates dynamic transfer parameters such as
the concurrency level from a simple throughput prediction
model with information from current data transfer operations
[11-15]. This is in contrast to predictive sampling proposed
in other research [9, 16], and it does not depend on external
profilers for active measurements.

The ADT library [11-15] increases the number of streams
adaptively and dynamically toward an optimal level. This
method also enables adaptation to varying environmental
conditions for improved system and network resource
utilization. By gradually adjusting the number of streams, the
ADT library is able to identify a near optimal level for the
number of parallel streams without requiring complex
identification of transfer bottlenecks. In this adaptive
algorithm, when a change in the performance is detected
over the course of a long-running, multi-file transfer, the
number of concurrent connections is adjusted accordingly for
subsequent transfers, as shown in Figure 3. Adaptive transfer
management by adjusting the concurrency level dynamically
provides higher throughput, and the ADT algorithm is
applied in user space on application level auto-tuning
methodologies.

Earlier work on ADT [11-15] addressed two challenges

in adaptive data movement: estimating the initial number of
streams and determining the interval between transfer
parameter adjustment points. Network latency directly
affects throughput, and more transfer streams are needed to
occupy the available network bandwidth when latency is
higher. A challenge in ADT is to estimate the initial number
of streams between the source and destination hosts, and a
simple model has been studied for the estimation [12]. This
estimate will then be adjusted gradually within maximum

Fig. 3. Gradual adaptation in total number of streams over time

Fig. 1. Interaction between ADAPT components

Fig. 2. ADAPT use case

resource limits that are determined based on advice from the
Policy module.

While we can measure the instant throughput for each
transfer, it may not be appropriate to adjust the number of
transfer streams after every measurement point. Given the
possibility of minor fluctuations in network throughput, a
threshold value is needed based on some transfer property
such as the transferred data size and time interval before
determining changes in the achievable throughput and
adjusting the number of concurrent streams. As a future
research topic, we plan to experiment the threshold values
using policy rules as well as historical measurements stored
in the Passive Measurement Archive (PMA). For our
experiments presented below, we use a simple metric of
adjusting the transfer parameters for a client after five
transfers have completed.

Our work extends this earlier work and further explores
these challenges within the ADAPT framework.

B. Passive Measurement Archive
The ADAPT architecture is shown in Figure 4. In our

system, the srm-copy data movement clients collect
performance information on data transfers and record the
collected information in the Passive Measurement Archive
(PMA). When an srm-copy client requests advice on transfer
parameters, the Policy library accesses the PMA to obtain
past transfer performance and uses that information in its
policy rules.

In the first phase of the ADAPT project, we implemented
a Passive Transfer Monitor (PTM) module as a library of the
SRM data movement client. Once an srm-copy data transfer

completes, the srm-copy client writes performance
information about that transfer through the PTM into the
Passive Measurement Archive (PMA), which is implemented
as a storage archive. This archive is labeled in Figure 4 as the
PTM log. The performance information recorded by the srm-
copy client includes the transfer rate, total transferred data,
and number of transfer streams used.

Later, the Policy module may retrieve information about
past transfers from the log file via the PTM.

In the second phase of the project, a perfSONAR-based
measurement repository service will be used as the PMA, so
that historical information can be archived and queried
through a common, standardized interface.

C. The Policy Library
We implemented a Policy library for the srm-copy data

movement client that provides advice on transfer parameters
and resource allocations for client sessions. This policy work
builds on earlier work on data staging, placement and policy
[8, 17-22]. Advice generated by the policy engine is based on
historical information from the Passive Measurement
Archive, system resource availability, and Virtual
Organization and site policies that place limits on transfer
parameters and overall research usage. For the first phase of
the ADAPT project, the Policy logic was implemented as a
library module that can optionally be included with the srm-
copy client to provide advice on the number of transfer
streams and other transfer rate parameters to use for the data
transfer request. In the second phase of the ADAPT project,
we plan to provide a hosted Policy Service that can be shared
by multiple data movement clients.

Policy Service Interface API

Policy Memory Policy Rules

Resource Allocation Log

Policy Service
Module

PTM
Log

Passive
Transfer
Monitor

Policy Service

Re
qu

es
t T

ra
ns

fe
r

Ad
vic

e

Receive Transfer
Param

eter M
axim

um
s

Read Statist
ics M

anage policy
objects

Evaluate Policy

Rules

Allocate

Policy Service Interface API

Policy MemoryPolicy Rules

Policy Service
Module

PTM
Log

Passive
Transfer
Monitor

Policy Service

Re
qu

es
t T

ra
ns

fe
r

Ad
vic

e

Receive Transfer
Param

eter M
axim

um
s

Read Statistics

M
anage policy

objectsEv
alu

ate
 P

oli
cy

Ru

les

Allocate

Destination Host

srmcopy 1 srmcopy N

Source Host
Control Transfer 1

Control Transfer N

Fi
le

Tr
an

sfe
r 1

File Transfer N

Fig. 4. Architecture of Policy Service

The overall goal of the ADAPT project is to achieve
higher throughput for data transfers in a distributed
environment. Each data movement client, srm-copy, contains
its own Policy Module. Network administrators at the site
and Virtual Organization (VO) level define the overall
resource limits between pairs of hosts based on their
hardware resources (e.g. memory size, I/O rates, and storage
system bandwidth) and the network bandwidth between
them. These resource limits are included in a configurable
policy file that is provided as input to the policy library.

Within the policy library, an open source policy engine
(Drools [23]) is used to enforce policy rules. The policy
library receives requests from the srm-copy data movement
client for advice on transfer parameters, either for new
transfers or to refresh advice for ongoing transfers. The
policy engine uses the site- and VO-specified policy rules as
well as its knowledge of the resources already allocated to
ongoing transfers (which are recorded in the shared Resource
Allocation Log) and the performance of past transfers
(recorded in the Passive Measurement Archive) to
recommend parameters to the srm-copy client for the current
transfer. After receiving advice from the policy library, the
srm-copy client may modify the transfer parameters based on
additional logic in the Adaptive Data Transfer library. The
srm-copy client then makes another call to the Policy library
to inform it of the transfer parameters that were actually used
for the transfer. The Policy library records the information
about the resources that were actually allocated in the shared
Resource Allocation Log.

The Policy Service Module is implemented as a Java
library that contains the policy logic. The Policy Service
manages policy sessions that contain policy rules and
persistent policy memory, manages a Passive Transfer
Monitor (PTM) instance, and records resource allocation
information in a shared Resource Allocation Log. The Policy
Service Interface API is a Java API used to communicate
with the Policy Service. The Policy rules specify how
transfers should be handled in the system. Policy Memory
retains current knowledge of information stored in policy; its
state persists across transfer requests.

D. Policy Overview
The Policy library for the ADAPT project is implemented

using the Drools open source policy engine [23]. We
implemented a greedy allocation algorithm that enforces
policies related to controlling the number of streams and the
bandwidth allocated between a source and destination pair,
with the goal of increasing the efficiency of data transfers. A
site or Virtual Organization administrator provides as input
to the Policy Service a threshold number of streams and
threshold bandwidth that should be allowed between a source
and destination pair, as well as a default number of streams
and bandwidth for individual transfers.

When a new request comes in for advice on parameters
for a transfer between a source and destination site, the
policy engine first checks its state in the Resource Allocation
Log to determine how many streams or how much
bandwidth have already been allocated for ongoing transfers
between those sites. If there are sufficient streams or

bandwidth remaining below the threshold to satisfy the new
request, then the policy engine returns advice to the srm-
copy client that the transfer should receive the default
number of streams/ bandwidth for the new transfer.

However, if a new transfer allocation will exceed the
threshold set by the site or VO administrator for either
number of streams or bandwidth allocated, then the advice
for the new transfer recommends that the transfer be
allocated fewer resources. If the threshold value has not been
reached, then the policy service will recommend allocating
the remaining number of streams or available bandwidth. If
the threshold value has been reached, then the policy engine
will recommend allocating a minimal number of resources
for the transfer. This avoids starvation of new requests.

The goal of the greedy algorithm is to allocate to all
transfers the default number of streams/bandwidth up to the
point where the specified threshold is reached. After that
point, additional transfers are allowed to proceed with a
minimal number of streams/amount of bandwidth to avoid
starvation. As earlier transfers complete and free up available
streams, those streams may be allocated to other transfers via
the adaptation process already described.

E. Policy Implementation
When the Policy Engine receives a transfer from the srm-

copy client for evaluation, it applies the policies shown in
Table I to each transfer. As described earlier, the policy
service uses information about past transfer performance
stored in the Passive Measurement Archive and about
resources that have already been allocated, which is recorded
in the shared Resource Allocation Log.

TABLE I. ADAPT POLICY RULES (GREEDY ALGORITHM)

Insert a new transfer into policy memory: Adds an object
corresponding to a new transfer to policy memory.
Set default max streams for new transfer when no
Passive Measurement Archive (PMA) record is available
for this source and destination pair: Set the max_streams
property to the default value.
Set default max bandwidth for new transfer when no
PMA record is available for this source and destination
pair: Set the max_rate property to the default value.
Set max streams to number of streams recorded in the
PMA for the new transfer: When the PMA has
measurements from a previous transfer between the source
and destination, set the max_streams property to the value
stored in the PMA if it exceeds the default value. Otherwise,
set max_streams property to the default value.
Set max rate to PMA rate for new transfer: When the
PMA has measurements from a previous transfer between
the source and destination, set the max_rate property to the
value stored in the PMA if it exceeds the default value.
Otherwise, set max_rate property to the default value.
Read the resource allocation log: Read the resource
allocation log to determine how many transfer instances are
utilizing throughput and parallel streams on the sites.
Enforce limit for max_streams_on a transfer using
greedy allocation: If the number of advised streams would
not exceed the maximum streams threshold between the
source and destination, then allocate max_streams. If the

number of advised streams would exceed the maximum
streams threshold between the source and destination, then
allocate only the number of streams that does not exceed the
threshold. If the threshold has been reached or exceeded,
allocate the minimum number of streams for the new
transfer.
Enforce limit for bandwidth on transfer using greedy
allocation: If the amount of advised bandwidth would not
exceed the maximum rate threshold between the source and
destination, then allocate max_rate. If the amount of advised
bandwidth would exceed the maximum rate threshold
between the source and destination, then allocate only the
amount of bandwidth that does not exceed the threshold. If
the threshold has been reached or exceeded, allocate the
minimum rate for the new transfer.
Create resource allocation entry for transfer: Create a
new transfer record in the resource allocation log recording
the max_streams and max_rate properties for the transfer.
Update resource allocation entry for transfer: Update an
existing entry in the resource allocation log with the actual
transfer parameters used for a transfer: adjusted_streams and
adjusted_rate.
Remove resource allocation entry for completed transfer:
Once a transfer is complete, remove the resource allocation
log record for that transfer to reflect that the resources used
in the transfer are available.
Remove resource allocation entry for failed transfer: If a
transfer fails, remove its record from the resource allocation
log and remove the transfer object from policy memory.
Record completed transfer: Record information about a
transfer that completed successfully in policy logs. This
information includes rate, streams, source and destination.
Remove the transfer object from policy memory.

IV. EVALUATION
Next, we present initial performance results for adaptive

data transfers and compare the performance of adaptive
transfers with unmodified srm-copy data transfer clients. We
run these tests between two sites: the Lawrence Berkeley
National Laboratory (LBNL) in Berkeley, California, and the
Open Science Grid site at the University of Nebraska at
Lincoln (UNL).

Our tests are intended to model a common Open Science
Grid use case as in Figure 5, in which OSG users who want
to run an analysis job on OSG compute resources must first
stage data from a remote location to the OSG site. Files used
in our data transfer experiments are from an existing data set
stored at LBNL.

Our experiments are multi-client tests that show transfers
from 6 srm-copy clients running at LBNL that stage data to
UNL. Table II shows the number of files and file sizes
transferred by each client. These files from an existing data
set at LBNL are either 132 MB or 957 MB in size. Multiple
clients transferring files of different sizes is a realistic data
staging use case.

Figure 6 shows the number of streams allocated to each
client over time using the adaptive srm-copy client with the
greedy allocation algorithm. In this experiment, the overall
threshold for the streams that may be allocated between the

source and destination sites was 100. The requested default
allocation for any transfer was 80 streams. At the start of the
experiment, the srm-copy client for client 1 requests advice
on the allocation of streams for its transfer session and
receives the requested allocation of 80 streams, since no
other resources have been allocated. As the graph shows,
client 1 begins transferring data with its minimum allocation
of 4 streams, and the adaptive algorithm adjusts over time
toward the maximum allocated value of 80 streams. The
current allocation is the sum of all concurrent file transfers
for that client. When srm-copy client 2 requests advice on its
session allocation, it is given an allocation of 20 streams,
which is the value remaining under the allowed threshold of
100 streams. Again, client 2 begins its session with the
minimum allocation of 4 streams and adjusts over time
toward its allowed allocation of 20 streams.

TABLE II. DATA TRANSFERRED BY EACH CLIENT

Client

Total data
transferred

Total
files

File sizes

1 45749 MB 84 45 files of size 957MB,
39 files of size 132MB

2 43571 MB 80 40 files of size 957MB,
40 files of size 132MB

3 21786 MB 40 20 files of size 957MB,
20 files of size 132MB

4 33768 MB 62 31 files of size 957MB,
31 files of size 132MB

5 31589 MB 58 29 files of size 957MB,
29 files of size 132MB

6 33768 MB 62 31 files of size 957MB,
31 files of size 132MB

Clients 3 through 6 also request advice from the policy

engine and, since the threshold number of streams has been
allocated to the first two clients, they receive the minimum
allocation of 4 streams for their sessions. This allows
transfers for those clients to proceed and avoids starvation of
requests.

Fig. 5. Test use case that is common in Grid environment

Figure 6 shows the progression of these transfers over
time and how adaptation affects the number of streams
allocated for each client session. In practice, we do two types
of adaptation: one that uses the srm-copy client's adaptation
library to adjust the number of streams for client transfers
within the client's current maximum stream allocation, and
one that periodically consults the policy engine to determine
whether new resources have become available that increase
the maximum stream allocation for the client's session. In our
experiments, the adaptation algorithm is executed every time
five transfers from a client complete; the adaptation
gradually increases or decreases the use of streams within the
allocated maximum to find the stream allocation that gives
the highest throughput (which is often achieved by allocating
more streams). The adaptation module also periodically
consults the policy module for fresh advice on the stream
allocation limit for a client session. If the stream allocation
limit changes, the adaptation module then adjusts the number
of streams for subsequent transfers within this new allocation
limit. This allows the adaptation logic to take advantage of
resources as they become available, for example, when
earlier transfers complete and free up available streams.

Performing adaptation after a fixed number of completed
transfers is the reason for the step-wise increase in the
number of streams shown in the graph. Client 1 increases its
bandwidth toward its maximum allocation of 80 streams
(eventually reaching 52 streams), and Client 2 acquires
additional streams until it reaches its maximum allocation of
20 streams at around 1000 seconds of elapsed time.

Once the transfers associated with client 1 complete at
around 2500 seconds, the resources associated with that
client are freed and can be allocated to other clients during
adaptation. When the adaptation module requests fresh
advice from the policy module, the policy engine applies its
policy rules, including checking the Resource Allocation Log
to determine whether additional resources have become
available. Based on its rules, the policy engine then
recommends the allocation of those freed resources to other
client sessions.

Thus, after the completion of client 1’s transfers, client 2
consults the policy module and acquires a larger stream
allocation. The graph shows the subsequent adaptation as the
total number of streams for client 2 increases from its
original allocation of 20 streams to a total of 36 streams.
Similarly, following the completion of client 1’s transfers,
client 4 adapts to increase its number of allocated streams
toward a total of 28 streams. The graph shows that this
process continues for the remaining clients, with client 5
increasing its stream allocation after client 2 completes its
transfers and frees up its resources. Client 6 increases its
stream allocation after client 4 completes its transfers, etc.

Figure 7 shows the throughput achieved by each client in
this multi-client adaptation experiment. As would be
expected based on Figure 6, the first two clients achieve the
highest bandwidth because of their greater allocation of
streams. Once each client completes its transfers, the
remaining clients achieve higher throughput as they acquire
resources that have been freed. Because our policy rules
avoid starvation by allocating a minimum of four streams to

Fig. 6. Total number of streams for each ADAPT-enhanced client when multiple clients are running.

each client, all clients in this experiment achieve throughput
of at least 3.7 MB/sec between LBNL and UNL.

For comparison, Figure 8 shows the performance of
standard srm-copy clients that do not use the adaptation or
policy logic that we developed. 6 clients transfer the same
files from LBNL to UNL. Figure 8 shows the throughput
achieved by each client, where each client requests an
allocation of 80 streams at the start of the transfer. The
network resources quickly become oversubscribed, and the

clients cannot adapt, so the overall throughput goes down
significantly. When some of the client transfers complete, the
rest of the clients achieve a throughput increase. Overall, the
non-ADAPT srm-copy clients took 30% more time than
ADAPT-enhanced client to complete the same transfers in
our experiments. These early results demonstrate the
potential advantages of adaptation and policy for improving
transfer performance.

V. SUMMARY AND FUTURE PLANS

In this paper, we have described the design and
implementation of the first phase of data transfer adaptation
for the ADAPT project. This phase of the project has focused
on modifying a commonly used data transfer client, srm-
copy, to provide client-side adaptation that is transparent to
the user. The goal of this approach is to provide a simple
transition from current data movement practices to adaptive
data movement.

Our early performance results show significant benefits
in using adaptation and resource allocation policies to
improve the performance of multi-file data transfers in wide
area environments.

Our plans for the second phase of the project include
enhancing the data movement client integrated with ADT as
a library module; deploying the policy logic as a Policy
Service that can easily be shared by multiple data movement
clients; integrating perfSONAR as the Passive Measurement
Archive; and conducting extensive performance and
scalability tests with multiple data movement clients moving

data among multiple storage sites. We also plan to integrate
adaptation and policy logic into other data movement tools,
such as the Bulk Data Mover (BDM) and Data Mover Lite
(DML) tools.

We will also conduct research to explore richer policies
for managing transfer resources and supporting the needs of
site administrators and Virtual Organizations. We will
conduct an experimental evaluation to determine which of
these policies are most effective in reducing transfer times
and increasing overall throughput.

Finally, we plan to work more closely with application
communities to assist them in deploying and using the
transfer adaptation software to improve the performance of
distributed scientific collaborations that replicate and
download large amounts of data.

VI. ACKNOWLEDGMENTS
This work was supported in part by the National Science

Foundation Office of Cyberinfrastructure under award
1127101 (USC/ISI) and award 1127039 (LBNL).

Fig. 7. Throughput performance of each ADAPT-enhanced client when multiple clients are running.

REFERENCES
[1] . Open Science Grid. Available: http://www.opensciencegrid.org/
[2] . The Earth System Grid (ESG). Available:

http://www.earthsystemsgrid.org
[3] . SRM Clients. Available: http://sdm.lbl.gov/srmclients/
[4] A. Sim, A. Shoshani, et al., "The Storage Resource Manager Interface

Specification Version 2.2," in GFD.129, ed: Open Grid Forum, 2008.
[5] . Berkeley Storage Manager (BeStMan).
[6] L. Abadie, P. Badino, J. P. Baud, E. Corso, M. Crawford, S. De Witt,

et al., "Storage resource managers: Recent international experience on
requirements and multiple co-operating implementations," in 23rd
IEEE Symposium on Mass Storage Systems and Technologies (MSS
'07), 2007, pp. 47-59.

[7] A. Shoshani, A. Sim, and J. Gu, "Storage Resource Managers:
Essential Components for the Grid," in Grid Resource Management:
State of the Art and Future Trends, J. Nabrzyski, J. M. Schopf, and J.
Weglarz, Eds., ed: Kluwer Academic Publishers, 2003.

[8] M. Balman and T. Kosar, "Data Scheduling for Large Scale
Distributed Applications," in the 9th International Conference on
Enterprise Information Systems Doctoral Symposium (DCEIS 2007),
2007.

[9] T. Dunigan, M. Mathis, and B. Tierney, "A TCP tuning daemon," in
Proceedings of the 2002 ACM/IEEE conference on Supercomputing
(Supercomputing '02), 2002, pp. 1-16.

[10] T. Ito, H. Ohsaki, and M. Imase, "On parameter tuning of data
transfer protocol gridftp in wide-area grid computing," in Second
International Workshop on Networks for Grid Applications
(GridNets), 2005.

[11] M. Balman and T. Kosar, "Dynamic Adaptation of Parallelism Level
in Data Transfer Scheduling," in International Conference on
Complex, Intelligent and Software Intensive Systems 2009 (CISIS
'09), 2009, pp. 872 - 877

[12] A. Sim, M. Balman, D. Williams, A. Shoshani, and V. Natarajan,
"Adaptive Transfer Adjustment in Efficient Bulk Data Transfer
Management for Climate Datasets," in the 22nd International
Conference on Parallel and Distributed Computing and Systems
(PDCS 2010), 2010.

[13] M. Balman, Data Placement in Distributed Systems: Failure
Awareness and Dynamic Adaptation in Data Scheduling: VDM
Verlag, 2009.

[14] M. Balman. (2011). Dynamic Adaptation for High-Performance Data
Transfers. Available: csc.lsu.edu/~balman/pdfs/DynamicAdaptation-
Balman.pdf

[15] M. Balman, "Data Transfer Scheduling with Advance Reservation
and Provisioning," Louisiana State University, 2010.

[16] E. Yildirim, M. Balman, and T. Kosar, "Dynamically Tuning Level of
Parallelism in Wide Area Data Transfers," in 2008 international
workshop on Data-aware distributed computing (DADC '08), 2008,
pp. 39-48.

[17] A. Chervenak, E. Deelman, M. Livny, M. Su, R. Schuler, S. Bharathi,
G. Mehta, K. Vahi, "Data Placement for Scientific Applications in
Distributed Environments," in 8th IEEE/ACM International
Conference on Grid Computing (Grid 2007), Austin, Texas, 2007.

[18] S. Bharathi and A. Chervenak, "Data Staging Strategies and Their
Impact on the Execution of Scientific Workflows," presented at the
Proceedings of the Second International Workshop on Data-Aware
Distributed Computing (DADC), in association with High
Performance Distributed Computing (HPDS) Conference, Garching,
Germany, 2009.

[19] M. Amer, W. Chen, and A. L. Chervenak, "Improving Scientific
Workflow Performance using Policy Based Data Placement," in IEEE
International Symposium on Policies for Distributed Systems and
Networks (POLICY 2012), Chapel Hill, North Carolina USA, 2012.

[20] J. Feng, L. Cui, G. Wasson, and M. Humphrey, "Policy-Directed Data
Movement in Grids," in 12th International Conference on Parallel
and Distributed Systems (ICPADS 2006), 2006, pp. 12-15.

Fig. 8. Throughput performance of each Non-ADAPT client when multiple clients are running.

[21] T. Kosar and M. Livny, "A framework for reliable and efficient data
placement in distributed computing systems," J. of Parallel and
Distributed Computing, vol. 65, pp. 1146-1157, 2005.

[22] T. Kosar and M. Livny, "Stork: making data placement a first class
citizen in the grid," in 24th International Conference on Distributed
Computing Systems, 2004, pp. 342-349.

[23] Drools project, "Drools, http://www.jboss.org/drools/," ed.

