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Abstract—Many science applications increasingly make use of 
data-intensive methods that require bulk data movement such as 
staging of large datasets in preparation for analysis on shared 
computational resources, remote access to large data sets, and 
data dissemination. Over the next 5 to 10 years, these datasets 
are projected to grow to exabytes of data, and continued 
scientific progress will depend on efficient methods for data 
movement between high performance computing centers. We 
study two techniques that improve the use of available resources 
for large, long-running, multi-file transfers. First, we show the 
effect of adaptation of transfer parameters for multi-file 
transfers, where the adaptation is based on recent performance. 
Second, we use Virtual Organization and site policies to influence 
the allocation of resources such as available transfer streams to 
clients. We show that these techniques improve completion times 
for large multi-file data transfers by approximately 20% over 
resource constrained infrastructure.  

Keywords—bulk data transfer; performance-based adaptation; 
policy-based resource allocation; resource constrained; throughput 

I. INTRODUCTION 
Scientific activities are generating data at unprecedented 

volumes and rates. Over the next 5 to 10 years, applications in 
many domains are expected to generate exabytes of data. Many 
of these science domains include unique experimental facilities 
that generate large data sets, such as the Large Hadron Collider 
(LHC) [1], the Large Synoptic Survey Telescope (LSST) [2], 
and the Laser Interferometer Gravitational Wave Observatory 
(LIGO) [3]. Other domains generate large amounts of 
simulation data that must be shared, compared and analyzed. 
For example, the climate modeling community has published 
multiple petabytes of data produced by the Coupled Model 
Intercomparison Project (CMIP) through the Earth System 
Grid Federation (ESGF) [4, 5]; based on current growth rates, 
the climate community estimates that its model data will 
exceed 100 exabytes by 2020 [6]. 

For science to progress, the large and steadily increasing 
amount of data originating from instruments and simulations 
must be efficiently accessed by scientists and disseminated 
throughout a scientific collaboration or Virtual Organization 
(VO) [7] for analysis, simulation, and storage. While many 
large collaborations have access to high-performance networks, 
the growth in data volumes and demand for data movement 
increasingly stress networks and file transfer services. In 
particular, spikes in bulk data movement requests, when 
uncoordinated, can easily overwhelm file transfer resources,  
causing them to become sluggish and unresponsive, and may 
ultimately lead to bulk file transfer failures. A key unmet 

challenge for high-performance, data-instensive 
cyberinfrastructure is to coordinate bulk data movement to 
facilitate efficient transfer performance across a scientific 
collaboration. 

Among large-scale scientific collaborations, key bulk data 
access operations include: 
• staging of large data sets to computational resources before 

execution of a large analysis, as is typical for scientific 
workflows running on the Open Science Grid (OSG) [8] or 
XSEDE [9] computing environments;  

• support for remote data access to large data sets stored at 
archive sites, for example, when a workflow running on a 
commercial cloud infrastructure remotely accesses data 
stored at science archives at NASA or the ESGF;  

• data replication and dissemination operations, which copy 
data generated at an instrument or simulation site to sites 
around the world based on a VO’s data dissemination 
policies (e.g., distributing data sets from the LHC to Tier 1 
and Tier 2 sites in the LHC community [10]); and 

• bulk data access requests by scientists within the VO 
across shared resources.  

Our goal is to improve transfer throughput and latency for 
bulk data transfer operations. We study two techniques to 
improve the performance of long running, multi-file data 
transfers in resource constrained environments: policy-based 
allocation of data transfer resources based on Virtual 
Organization (VO) and site level policies and client-side 
adaptation of transfer parameters based on recent transfer 
performance. Using a testbed that models wide-area, bulk data 
staging over high-performance networks to a supercomputing 
facility, we measure the performance of these techniques 
separately and in combination and demonstrate that they 
provide significant throughput and completion time 
improvements when there is contention for  resources.  

This paper extends our previous work [11, 12] with the 
following contributions: 
• We describe our algorithms for policy-based resource 

allocation and adaptation of data transfer parameters in our 
revised design and implementation (Section II), 

• We present experimental results that show the detailed 
operation of transfer client adaptation and policy-based 
resource allocation for large, multi-file wide area transfers 
for slow and fast rates of adaptation (Section III), and 

• We show approximately 20% improvement in overall 
transfer completion time with our techniques (Section III). 



Finally, we review related work in Section IV and conclude 
in Section V.  

II. SYSTEM DESIGN AND IMPLEMENTATION 
Fig. 1 shows the system design for our transfer client 

adaptation and policy-based resource allocation techniques. 
The Adaptive Data Transfer (ADT) Library includes client-side 
functionality for requesting, updating, and releasing resource 
allocations. The ADT Library also tracks the performance of 
transfers and makes dynamic adjustments to increase or 
decrease the number of transfer streams in use. The Transfer 
Client (a modified SRM-Copy client) integrates with the ADT 
Library and is responsible for managing and controlling active 
data transfers. These client side components are distributed 
across a cluster of nodes, and each client adapts independently.  

On the server side, a Policy Service (PS) handles multiple 
resource allocation requests from the client-side ADT Library. 
By default, the Policy Service (PS) is deployed with a Greedy 
policy specification (Fig. 2). The PS may also be configured to 
work with other user-defined policy specifications. Users may 
specify their policies in the form of a python module that 
implements the policy interface for adding, updating, and 
removing resource allocations. We anticipate that the VO 
administrator would deploy the default policy or modify it to 
meet specific goals of that VO environment. For a bulk transfer 
operation, the client will first request an initial resource 
allocation and then adapt its parameters within the bounds of 
the allocation (i.e., increase or decrease the streams in use). 
Periodically, the client will request an updated resource 
allocation from the PS. The client releases its resources once a 
bulk transfer has completed.  

 
Fig. 1. Service interactions for bulk remote data access use cases. 

A. Resource Allocation Algorithm 
Pseudocode for the resource allocation algorithm 

implemented by the Greedy policy specification is shown in 
Fig. 2. The algorithm depends on a few parameters, shown in 
Table I, which an administrator may specify in order to tune 
the algorithm to their requirements. The pseudocode illustrates 
the primary functionality of the algorithm, which is to 
provision resources either for a new or initial allocation or to 
update an existing allocation. For brevity, we do not illustrate 
the resource allocation release, which simply serves to return 
resources to the pool of available resources without making 
adjustments to other allocations. 

The Provision function is passed a resource request 
parameter  t,  a structure indicating the source and destination 
of the transfer (e.g., either a hostname or URL) and the 
currently allocated streams (streams[t]). For an initial transfer 

request, streams[t] = 0, whereas in the case of an update on an 
existing allocation, streams[t] > 0. The algorithm must first 
determine how many streams are currently allocated between 
source[t] and destination[t] (line 2), because stream allocations 
are managed between endpoints and are limited by the policy 
specification parameter, spmax.  

 
Fig. 2. Resource allocation algorithm used by the PS to implement Greedy 

Policy for an initial or update allocation request by a client. 

TABLE I.  GREEDY POLICY PARAMETERS 
Greedy Policy Parameter Definition 
Maximum total streams 
for source/destination 
pair, spmax 

Maximum concurrent streams active 
between a pair of source/destination sites. 

Maximum streams per 
client, scmax 

Maximum allocation to a single client from 
the Policy Service. 

Initial stream allocation, 
si 

On a new client request, the Policy Service 
attempts to allocate this many streams 
(subject to resource availability). 

Update increment 
stream allocation, su 

On an update request, the Policy Service 
attempts to increment the allocation by this 
many streams (subject to availability) 

  
The algorithm then computes the maximum available 

streams for the allocation request (line 3), which is the 
minimum of two values: (1) the remaining streams that may be 
allocated between the source and destination, which is 
determined by the difference between spmax and the current 
allocation for that source/destination pair, and (2) the number 
of streams that may be allocated to this client, specified by the 
difference between the policy maximum per client (scmax) and 
the streams[t] already allocated to the client. If no streams are 
available to satisfy the request, the algorithm terminates (line 
6).  

Require: si: initial streams allocation specified by policy; su: update 
increment streams allocation specified by policy; spmax: maximum streams 
allowed between endpoints specified by policy; scmax: maximum streams 
allowed for a single client, specified by policy. 
  procedure PROVISION(t) 
01: t ß transfer resource request with (source[t], dest[t]) and steams[t]) 
02: sa ß allocated streams between (source[t], dest[t]) 
03: sv ß min(scmax – streams[t], spmax – sa) // Available streams 
04: if sv = 0 then 
05:     // No available streams for transfer request 
06:     return t 
07: else if streams[t] = 0 and sv > si then 
08:     // Enough streams for initial allocation 
09:     streams[t] ß si 
10:     sa ß sa + si // Update total allocated streams 
11: else if streams[t] > 0 and sv > su then 
12:     // Enough streams for update allocation 
13:     streams[t] ß streams[t] + su 
14:     sa ß sa + su // Update total allocated streams 
15: else 
16:     // Allocate remaining available streams to initial or update request 
17:     streams[t] ß streams[t] + sv 
18:     sa ß sa + sv  // Update total allocated streams 
19: end if 
20: return t 
  end procedure 
 



If the current request is an initial request and the available 
streams exceed the policy parameter for initial stream 
allocations (si) (line 7), then the algorithm sets streams[t] to si. 
If the current request is an update request and the available 
streams exceed the policy parameter for update allocation 
increment (su) (line 11), the algorithm increments streams[t] by 
su. If the previous conditions were unmet (line 15), then the 
available streams are below the policy values si for initial 
requests or su for update requests. In that case, the algorithm 
allocates the remaining stream resources to the request, 
whether it is an initial or update request. In each case, the 
algorithm updates the state of the currently allocated requests 
between the pair of source and destintation endpoints. Finally, 
it terminates by returning the allocated request to the client. 

B.  Client Transfer Adaptation Algorithm 
Pseudocode for the client side transfer adaptation is shown 

in Fig. 3. The AdaptTransferClient and Adapt functions depend 
on several client policy parameters shown in Table II. The 
AdaptTransferClient is passed a queue Q of files to be 
transferred between a pair of source and destination endpoints 
and several policy parameters, including the initial concurrency 
for a client transfer c, the increment/decrement value Δ that 
specifies how much concurrency is increased or decreased for a 
client adaptation, the adaptation delay parameter d that 
specifies how frequently adaptation occurs (after d transfers 
complete), and the parallelism or number of data streams p 
used per transfer.  

The function begins by initializing a new transfer request t 
between the source and destination of Q and calling the 
Provision function described in the last section to request a 
resource allocation for t (line 2). The stream allocation 
provided by the PS is converted to a concurrency calloc and 
further limited to the initial concurrency ci set by the client 
configuration (line 4).  

The function then begins a loop that continues while the 
transfer queue Q is not empty and adapts every time d transfers 
complete. If adaptation is due (line 7),  the client calls 
Provision again to acquire an updated resource allocation calloc 
(line 9). The client calls the Adapt function with the parameters 
calloc,, current concurrency c and the increment/decrement 
parameter Δ. If adaptation is not due or after the Adapt call 
completes (line 13), the client takes c transfers from the queue,  
performs the transfers and updates the counter as they 
complete.  

The Adapt function compares the current transfer rate rrate 
between the source and destination with the last measured rate 
rlast. If the difference exceeds a specified threshold T (line 24), 
the Adapt function changes the concurrency for subsequent 
transfers. The function reduces the concurrency by Δ if the 
transfer rate has decreased by more than T and increases the 
concurrency by Δ if the transfer rate has increased by more 
than T. The new concurrency must be non-negative (line 26) 
and may not exceed the maximum allocation calloc or the client 
maximum concurrency cmax (line 28).   

 
Fig. 3. Adaptation algorithm used by Adaptive Transfer Client. The 

AdaptTransferClient procedure processes a batch of transfer jobs and 
uses the Adapt procedure to adjust concurrency up or down. 

TABLE II.  ADAPTIVE TRANSFER CLIENT PARAMETERS 
Adaptive Transfer 
Client Parameter Definition 

Initial 
concurrency, ci 

Number of active transfers initiated by a client 
when it begins transferring data. 

Maximum 
concurrency, cmax 

Maximum number of active file transfers by a 
client; this value may be reached by adaptation.  

Parallelism, p Number of parallel streams per file transfer 

Adaptation delay 
time, d 

How often the client requests an updated resource 
allocation from the PS; expressed as number of 
completed transfers before adaptation occurs.  

Adaptation 
increment/ 
decrement, Δ 

How much the concurrency level increases/ 
decreases when the client adapts up or down 
within its resource allocation.  

Threshold, T Difference between current and past performance 
that triggers adaptation of concurrency level. 

C. Implementation 
The Policy Service implements a RESTful Web service in 

the Python programming language on the Web.py framework 
(webpy.org) deployable in the lightweight CherryPy embedded 

Require: Q: queue of files to be transferred between source and dest.; ci: 
initial client concurrency; Δ: adaptation increment/decrement delta; d: 
adaptation delay; p: parallel streams per file transfer. 
  procedure ADAPTTRANSFERCLIENT(Q, c, Δ, d, p) 
01: t ß initialize a transfer request between (source, dest) of Q 
02: PROVISION(t)   // request initial allocation from Policy Service 
03: calloc ß floor(streams[t] / p)   // convert streams to concurrency 
04: c ß min(ci, calloc)   // limit concurrency parameter, if necessary 
05: k ß d       // set counter for next adaptation 
06: while Q not empty do 
07:     if k ≤ 0 then   // due for client adaptation 
08:         k ß d    // reset counter 
09:         PROVISION(t)  // request updated allocation from PS 
10:         calloc ß floor(streams[t] / p)  // convert streams to concurrency 
11:         c ß ADAPT(c, Δ, calloc)    // adapt concurrency up or down 
12:     end if 
13:     F ß pop at most c transfer jobs from Q 
14:     // …perform F transfers concurrently, wait for completion… 
15:     k ß k – c   // decrement transfer counter 
16: end while 
  end procedure 
  procedure ADAPT(c, Δ, calloc) 
20: T ß user specified transfer rate adaptation threshold 
21: rlast ß state of last recorded transfer rate  // between source-destination 
22: rrate ß test of current transfer rate // between source-destination 
23: rdelta ß rrate - rlast 
24: if abs(rdelta) > T then //  change exceeds threshold  
25:     if rdelta < 0 then 
26:         c ß max(0, c – Δ) // decrease concurrency 
27:     else 
28:         c ß min(c + Δ, calloc, cmax) // increase concurrency 
29:     end if 
30: end if 
31: return c 
end procedure 

 



HTTP server (www.cherrypy.org).  The open source 
implementation of the PS is available at: 
http://github.com/robes/adapt-policy-service. 

The Adaptive Data Transfer Client is a standalone, 
command-line client implemented in the Java programming 
language. It extends the conventional SRM-Copy command-
line client (sdm.lbl.gov/srmclients/) with the adaptive data 
transfer (ADT) library. ADT library includes the 
implementation of the adjustment decisions on the transfer 
parameters based on the observed throughput performance 
differences. The open source Adaptive Data Transfer Client 
may be found at: https://codeforge.lbl.gov/projects/adapt/. 

III. EVALUATION 
We present our evaluation results in two parts. In the first part 
of our evaluation, we illustrate the operation and performance 
of client side adaptation and policy-based resource allocation 
techniques on long-running data transfers over a relatively 
high-performance network between the Parallel Distributed 
Systems Facility at the National Energy Research Scientific 
Computing Center (NERSC) in Oakland, CA and the 
University of Nebraska at Lincoln (UNL). This first set of 
results show the tradeoffs and capabilities of adaptive transfers 
and policy-based resource allocation. In the second part of the 
evaluation, we use a testbed with constrained resources to 
model bulk data movement between HPC facilities with 
contention for available resources. For these experiments, a 
client node at National Institute of Supercomputing and 
Networking (NISN) in Daejon, Korea transferred data to 
NERSC in Oakland, CA. These experiments show the 
advantage of our techniques in realistic, resource constrained 
environments. All experiments transfer a 260 GByte data set 
made up of 488 files.  

A. Evaluation for Experimental Testbed 1: NERSC to UNL 
over High Bandwidth Network 

 
Fig. 4. Experimental testbed setup 

We ran experiments to investigate the tradeoffs of a range 
of stream allocation policies and faster vs. slower client-side 
transfer parameter adaptation. We transferred the 260 Gbyte 
data set from NERSC to UNL. Our experiments used 8 job 
submission nodes at the source site at NERSC, each of which 
runs SL6 with General Parallel File System (GPFS)  backend 
storage. Both NERSC and UNL have 10 Gbps connections to 
the wide area network, which crosses the ESnet and Internet2 
domains. The network and resources at both ends are shared 
with other traffic, which causes performance variations in our 

results. Fig. 4 shows this setup. In our study, we assume that 
the main constrained resource is the shared network; however, 
in some cases, the end systems could be the performance 
bottleneck. Our algorithm addresses end system performance 
issues by detecting poor transfer performance and adjusting 
transfer parameters, which in turn adjusts end system resource 
usage. 

Table III shows common parameters for the following 
experiments that use adaptation or policy-based allocation.  

TABLE III.  COMMON PARAMETERS USED FOR ADAPTIVE EXPERIMENTS 

Common Parameters for all Adaptive Experiments Value 
Maximum total streams between source/destination 128 
Number of clients 8 
Maximum streams per client 32 
Parallel streams per file 4 

Adaptation increment/decrement 1 concurrency 
(4 streams) 

 
1) Slow Client Side Adaptation 
First, we isolate the effect of slow client side adaptation. 

Parameters for this experiment are shown in Table IV. In this 
experiment, the PS has no role beyond its initial allocation to 
each client. All adaptation takes place on the client side. 

TABLE IV.  PARAMETERS USED FOR SLOW CLIENT SIDE ADAPTATION 

Client Parameters Value 
Initial concurrency 1 
Maximum concurrency 8 
Adaptation delay time (update after how many transfers) 4 

Policy Service Parameters Value 
Initial stream allocation 32 
Update allocation increment N/A 

 
Fig. 5 shows the performance for one of the three runs for 

this experiment. This figure shows the number of streams 
being used by each client on the vertical axis, with the 
horizontal axis showing elapsed time. Based on the parameters 
in Table IV, the first four clients that consulted the Policy 
Service were allocated 32 streams out of the 128 total streams 
available between the source and destination; the remaining 4 
clients had to wait until one or more of those clients completed 
their transfers and released streams for the remaining clients. 

 
Fig. 5. Number of streams used for slow client side adaptation 

Within the 32 allocated streams, each client slowly adapts 
the concurrency of its transfers, beginning with one transfer 
that uses 4 parallel streams, and increasing to a maximum of 8 
concurrent transfers that each use 4 streams, or a maximum of 



32 streams per client. Each client is configured to adapt its 
concurrency after 4 transfers complete; it may then increase or 
decresase its concurrency by one transfer (4 streams) based on 
recent performance. Fig. 5 shows each client slowly adapting 
its concurrency up or down, with some clients eventually 
reaching the maximum of 8 transfers (32 streams). Once a 
client completes its transfers, the PS frees up the client’s 
stream allocation and allocates those 32 streams to one of the 
waiting clients, which then performs its transfers, adapting in 
the same manner.  

We ran these experiments three times on different days and 
times of the day. We observed a range of performance based 
on the load on the infrastructure, as expected when using 
shared infrastructure at the source and destination sites and 
shared networking betweeen sites. The experiment completion 
times were 127 minutes at 11:31pm on 7/8/13, 141 minutes at 
2:59am on 7/9/13 and 159 minutes at 11:00am on 7/11/13. 

2) Fast Client Side Adaptation 
In the next set of experiments, we measured faster client 

side adaptation, where the client increases or decreases its 
concurrency by one transfer after every 2 completed transfers. 
In this scenario, the Policy Service again allocates 32 streams 
per client when it first gets a request for a client allocation, and 
then it has no further role in the adaptation. The experimental 
parameters are summarized in Table V.  

TABLE V.  PARAMETERS USED FOR FAST CLIENT SIDE ADAPTATION 

Client Parameters Value 
Initial concurrency 4 
Maximum concurrency 8 
Adaptation delay time (update after how many transfers) 2 

Policy Service Parameters Value 
Initial stream allocation 32 
Update allocation increment N/A 

 
Fig. 6. Number of streams used for fast client side adaptation  

Fig. 6 shows the streams used during one run of these 
experiments. The first four clients receive an allocation of 32 
streams from the PS and begin transferring data with a 
concurrency of 4 transfers (16 streams). The figure shows that 
each client then quickly adapts its concurrency up or down by 
1 transfer (4 streams) each time two transfers complete. The 
result of this fast adapation is that the four clients quickly 
increase their concurrency to utilize the allocated maximum of 
32 streams per client. Note that each adaptive transfer client 
sometimes reduces its concurrency based on recent 
performance, utilizing fewer streams when performance drops. 

The adaptive transfer client thus avoids overprovisioning 
constrained resources.   

We ran this experiment three times, and the completion 
times were 100 minutes at 11:34pm on 7/10, 88 minutes at 
1:16am on 7/11/13 and 90 minutes at 8:32am on 7/11/13.  

Because of the large variations in load on our shared 
infrastructure, it is challenging to do direct comparisons of 
experiments (e.g., slow vs. fast client adaptation). We limit our 
comparative conclusions to Section III.B and focus in this 
section on the tradeoffs of adaptation and allocation. 

3) Policy Service Resource Allocation: Slow Increases 
Next, we isolated the effect of the Policy Service (PS), 

which provides an allocation of streams to each client. In this 
experiment and the next, the data transfer client does no 
performance-based adaptation of the number of streams. After 
it sends an initial or update request for an allocation to the PS, 
the transfer client simply sets its concurrency level based on 
the allocation it receives. 

The current implementation of the PS only increases the 
allocation to each client if additional resources are available; it 
does not decrease the allocation, but instead waits for the data 
transfer client to release streams if they are no longer needed. 
In future work, we will modify the PS to decrease allocations 
based on transfer performance or on VO policies and to handle 
exceptional situations such as non-responsive clients.   

Experimental parameters for slow increases in resource 
allocation by the PS are summarized in Table VI. Fig. 7 shows 
the streams used by clients for this experiment. The PS initially 
allocates 4 streams to each client (or concurrency = 1). A client 
requests an updated allocation after 4 transfers complete; the 
PS then allocates 4 additional streams if they are available. 
When a client receives an allocation from the PS, it initiates 
transfers at the maximum concurrency allowed by that 
allocation (up to a concurrency of 8 for this experiment). The 
clients do not adapt based on performance.  
TABLE VI.  PARMETERS USED FOR SLOW INCREASES IN PS ALLOCATION 

Client Parameters Value 
Initial concurrency 1 
Maximum concurrency 8 
Adaptation delay time (update after how many transfers) 4 

Policy Service Parameters Value 
Initial stream allocation 4 
Update allocation increment 4 

 

Fig. 7 shows that each client receives an initial allocation of 
4 streams from the Policy Service. Several of the clients 
quickly request additional PS allocations until they reach the 
maximum concurrency of 8 (or 32 streams). Since the overall 
maximum number of streams allowed between the source and 
destination is 128 (from Table III), several clients must wait 
until those first clients finish their transfers and release their 
allocated resources before the later clients receive increased 
stream allocations (e.g., the dark blue, purple, black and yellow 
lines in Fig. 7.) 

The three runs of these experiments had completion times 
of 73 minutes at 4:23am on 7/20/13, 83 minutes at 5:54am on 
7/22/13, and 85 minutes at 8:38am on 7/22/13. 



 
Fig. 7. Stream allocation for slow increases in policy service allocation 

4) Policy Service Resource Allocation: Fast Increases 
In the next experiment, we again isolate the effect of 

increasing allocations by the PS, this time using faster 
increases in those allocations. When a new request arrives from 
a data transfer client to the PS, the PS allocates 16 streams 
(concurrency level of 4) to the client. Each time a client 
completes two transfers, it requests an updated allocation from 
the PS. When additional resources are available, the PS 
provides 4 additional streams, allowing the client to increase its 
concurrency by 1. As in the last experiment, the transfer client 
does no performance-based adaptation. It sets its concurrency 
level to use the allocated streams provided by the PS. These 
parameters are summarized in Table VII. 
TABLE VII.  PARMETERS USED FOR FAST INCREASES IN PS ALLOCATION 

Client Parameters Value 
Initial concurrency 4 
Maximum concurrency 8 
Adaptation delay time (update after how many transfers) 2 

Policy Service Parameters Value 
Initial stream allocation 16 
Update allocation increment (streams) 4 

 
Fig. 8. Stream allocation for fast increases in policy service allocation 

Fig. 8 shows the stream usage for one run of this 
experiment. Initially, five clients consult the PS, receive an 
allocation of 16 streams (concurrency = 4) and begin 
transferring data. These initial allocations consume 80 of the 
128 available streams between the source and destination.  
Before the remaining three clients receive a stream allocation, 
the initial clients request updated allocations from the PS. The 
graph shows that those clients eventually receive allocations of 
32 streams (client1 and client2), 28 streams (client0), 20 
streams (client3) and 16 streams (client4). These allocations 
consume all of the 128 available streams between the source 

and destination. The last three clients must wait until some of 
the earlier clients complete their transfers and release resources 
before receiving a stream allocation. 

We ran these experiments three times and observed these 
completion times: 92 minutes at 6:41pm, 107 minutes at 
7:56pm and 88 minutes at 11:20pm, all on 7/9/13.  

5) Summary of Tradeoffs Illustrated by Testbed 1 
The experiments on Testbed 1 illustrate the operation and 

tradeoffs of client-side adaptation and policy-based stream 
allocation techniques.  

The results show that the use of fast client-side adaptation 
allows transfer clients to quickly saturate high bandwidth 
networks (perhaps with a few competing clients) without 
overprovisioning resources, while slow adaptation is better 
suited to scenarios with network contention where the goal is 
to share bandwidth more fairly among clients. 

For the Policy Service, the results demonstrate that granting 
larger allocations with a first-come-first-served strategy can 
significantly increase resource consumption for the earliest 
requesters. This approach may inform the design of VO 
policies that seek to minimize the makespan for early 
requesters while delaying (effectively queueing) the start time 
for later requesters. Conversely, VO policies that allocate 
fewer resources may be better suited to minimize overall 
makespan (for all requesters), which may be especially 
beneficial where jobs can be parallelized and start when a 
subset of input files have been transferred.  

These results can thus be used to inform the specification of 
VO policies and for tailoring the resource allocations to the 
needs of VO clients and their transfer resources. 

B. Evaluation for Experimental Testbed 2: NISN to NERSC 
over Constrained Resources 
In earlier results [12], we ran experiments in a highly 

resource-constrained environment that consisted of a single 
node at Lawrence Berkeley National Laboratory running 8 
adaptive data transfer clients and transferring a 260 Gbyte data 
set to the University of Nebraska at Lincoln. We compared the 
performance of fast increases in policy based allocation and 
fast data transfer client adaptation with the performance of 
non-adaptive transfers. For a configuration with 640 total 
streams between the source and destination, 32 initial streams 
per client and 160 streams maximum per client, we measured a 
reduction in overall transfer time of the data set of 
approximately 20% using our fast client-based transfer 
adaptation and policy-based resource allocation techniques.  

Next, we describe an experiment that used a more powerful 
client to transfer the same data set over an inter-continental 
network from the National Institute of Supercomputing and 
Networking (NISN) in Daejon, Korea to the National Energy 
Research Scientific Computing Center (NERSC) in Oakland, 
CA. The source and destination share a 10 Gbps inter-domain 
network. Data are transferred from local disk on the NISN 
node to a GPFS project directory on the NERSC PSDF 
networked distributed computing cluster. The data set for these 
experiments is the same 260 Gbyte data set consisting of 488 
files. Maximum throughput achieved between the source and 



destination site is approximately 450 MB/sec or 3.6 Gbps. 
Because the NISN node is not a cluster, we run a single client 
that issues transfers at the designated concurrency level and 
parallelism using multiple threads.  

TABLE VIII.  PARAMETERS FOR COMPARATIVE EXPERIMENT 
Parameters for all Comparative Experiments Value 

Maximum total streams between source/destination 1024 
Number of clients 1 
Maximum streams per client (for adaptation) 1024 
Parallel streams per file (parallelism) 8 
Adaptation increment/decrement (concurrency/streams) 4/32 
Initial concurrency/streams for adaptation 20/160 
Maximum concurrency/streams per client for adptation 128/1024 
Adaptation delay time (update after how many transfers) 2 
Non-adaptive concurrency/streams 128/1024 

 
Fig. 9. Comparison of adaptive vs. non-adaptive data transfer performance 

for a 260 GByte data set from NISN to NERSC.  

Table VIII shows parameters of our experimental scenario. 
In Fig. 9, we show one of two experimental run for this 
scenario. The red line shows the aggregate throughput in 
MBytes/second when using both fast client side adaptation and 
fast increases in resource allocation; the black line shows the 
throughput of non-adaptive transfer clients that use no policy-
based resource allocation.  

In the adaptive case, the NISN client begins with an initial 
concurrency of 20 and adapts the concurrency up or down after 
every 2 transfers complete by an increment of 32 streams (or 
concurrency of 4). Maximum overall concurrency is 128 (or 
1024 streams) between NISN and NERSC. For the non-
adaptive case, the client initiates 128 concurrent transfers with 
parallelism of 8 for a total of 1024 streams.  

Intiuitively, if available bandwidth is not limited, the non-
adaptive transfers should have higher throughput, since they 
consistently use 1024 streams to transfer data, while the 
adaptive case starts its transfers with only 160 streams 
(concurrency of 20, parallelism of 8). Instead, Fig. 9 shows that 
the throughput for adaptive transfers (shown in red) is 
significantly higher than the non-adaptive transfers (shown in 
black), indicating that the test environment is resource-
constrained and that the adaptive transfer client and policy-
based resource allocation make more effective use of available 
resources without overprovisioning.  

The overal time to transfer the data set from NISN to 
NERSC is approximately 20% shorter in the adaptive case, 
which is similar to the benefit we observed in our earlier 
experiments between LBNL and UNL. These experiments 

show a significant advantage in throughput and overall transfer 
time for adaptive, policy-based transfers compared to non-
adaptive transfers on resource-constrained infrastructure.  

IV. RELATED WORK 
Policies for data staging and resource management: In 
earlier work, we studied policy-based data staging for scientific 
applications [13-17]. Large scientific collaborations have used 
VO policy-based data dissemination and replication, including 
the Physics Experiment Data Export (PheDEx) [18, 19] system 
and the Lightweight Data Replicator (LDR) [20]. The 
integrated Rule-Oriented Data System (iRODS) [21] uses a 
rule based system to implement data management policies 

Data transfer adaptation: Data transfer parameter 
estimations have been studied based on the active profiling 
measurements from the sample transfers [22-28] or a simple 
throughput prediction model with passsive information from 
current data transfer operations [29, 30]. Application-level 
auto-tuning techniques [23, 31-33], including adaptive 
parameter tuning [23, 24, 29] only consider network 
conditions. Multiple data transfer streams is a common way of 
increasing the network throughput performance in client 
applications [22, 24, 34]. Our work does not make data transfer 
throughput predictions or try to model the performance; rather, 
it reflects dynamic throughput performance changes into data 
transfer management. 

V. CONCLUSIONS 
We presented two techniques to adapt the use of resources 

for long running, multi-file data transfers: (1) policy-based 
allocation of data transfer resources at the Virtual Organization 
level based on VO and site level policies, and (2) adaptation of 
transfer parameters by each transfer client based on recent 
performance. We showed that these techniques provide 
significant improvements in throughput and overall transfer 
completion time (up to 20% in our experiments) in resource 
constrained environments. We also demonstrated the tradeoffs 
of these techniques. Fast client side adaptation and VO-level 
policies that quickly increase resource allocation consume 
available resources aggressively without overprovisioning the 
resources, while slower adaptation and VO-level allocation 
policies share available resources more fairly among clients.   

We plan to extend the current work to provide richer 
policies and adaptation to further improve network utilization 
and transfer performance. Our current work uses static policies 
based on VO preferences and priorities; we will extend this 
work to study whether a dynamic policy model that adapts to 
changes in resource demand and availability would provide 
additional improvements. In addition, our current work adapts 
transfer parameters such as concurrency based on the transfer 
client’s limited knowledge of recent performance between a 
specific pair of source and destination hosts. We will extend 
this work to study the impact of moving performance-based 
adaptation to the VO level and developing adaptation 
algorithms that incorporate knowledge of transfers throughout 
the VO as well as performance measurements and resource 
availability information from monitoring systems. Finally, we 
will study extending policies to incorporate novel techniques 
for performance estimation and prediction. 
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