
Adaptation and Policy-Based Resource Allocation for Efficient Bulk Data Transfers in
High Performance Computing Environments

Ann L. Chervenak1, Alex Sim2, Junmin Gu2, Robert E. Schuler1, Nandan Hirpathak1

1University of Southern California
Information Sciences Institute

Marina del Rey, CA, USA
{annc, schuler, nandan}@isi.edu

2Lawrence Berkeley National Laboratory
Scientific Data Management Research Group

Berkeley, CA, USA
{asim, jgu}@lbl.gov

Abstract—Many science applications increasingly make use of
data-intensive methods that require bulk data movement such as
staging of large datasets in preparation for analysis on shared
computational resources, remote access to large data sets, and
data dissemination. Over the next 5 to 10 years, these datasets
are projected to grow to exabytes of data, and continued
scientific progress will depend on efficient methods for data
movement between high performance computing centers. We
study two techniques that improve the use of available resources
for large, long-running, multi-file transfers. First, we show the
effect of adaptation of transfer parameters for multi-file
transfers, where the adaptation is based on recent performance.
Second, we use Virtual Organization and site policies to influence
the allocation of resources such as available transfer streams to
clients. We show that these techniques improve completion times
for large multi-file data transfers by approximately 20% over
resource constrained infrastructure.

Keywords—bulk data transfer; performance-based adaptation;
policy-based resource allocation; resource constrained; throughput

I. INTRODUCTION
Scientific activities are generating data at unprecedented

volumes and rates. Over the next 5 to 10 years, applications in
many domains are expected to generate exabytes of data. Many
of these science domains include unique experimental facilities
that generate large data sets, such as the Large Hadron Collider
(LHC) [1], the Large Synoptic Survey Telescope (LSST) [2],
and the Laser Interferometer Gravitational Wave Observatory
(LIGO) [3]. Other domains generate large amounts of
simulation data that must be shared, compared and analyzed.
For example, the climate modeling community has published
multiple petabytes of data produced by the Coupled Model
Intercomparison Project (CMIP) through the Earth System
Grid Federation (ESGF) [4, 5]; based on current growth rates,
the climate community estimates that its model data will
exceed 100 exabytes by 2020 [6].

For science to progress, the large and steadily increasing
amount of data originating from instruments and simulations
must be efficiently accessed by scientists and disseminated
throughout a scientific collaboration or Virtual Organization
(VO) [7] for analysis, simulation, and storage. While many
large collaborations have access to high-performance networks,
the growth in data volumes and demand for data movement
increasingly stress networks and file transfer services. In
particular, spikes in bulk data movement requests, when
uncoordinated, can easily overwhelm file transfer resources,
causing them to become sluggish and unresponsive, and may
ultimately lead to bulk file transfer failures. A key unmet

challenge for high-performance, data-instensive
cyberinfrastructure is to coordinate bulk data movement to
facilitate efficient transfer performance across a scientific
collaboration.

Among large-scale scientific collaborations, key bulk data
access operations include:
• staging of large data sets to computational resources before

execution of a large analysis, as is typical for scientific
workflows running on the Open Science Grid (OSG) [8] or
XSEDE [9] computing environments;

• support for remote data access to large data sets stored at
archive sites, for example, when a workflow running on a
commercial cloud infrastructure remotely accesses data
stored at science archives at NASA or the ESGF;

• data replication and dissemination operations, which copy
data generated at an instrument or simulation site to sites
around the world based on a VO’s data dissemination
policies (e.g., distributing data sets from the LHC to Tier 1
and Tier 2 sites in the LHC community [10]); and

• bulk data access requests by scientists within the VO
across shared resources.

Our goal is to improve transfer throughput and latency for
bulk data transfer operations. We study two techniques to
improve the performance of long running, multi-file data
transfers in resource constrained environments: policy-based
allocation of data transfer resources based on Virtual
Organization (VO) and site level policies and client-side
adaptation of transfer parameters based on recent transfer
performance. Using a testbed that models wide-area, bulk data
staging over high-performance networks to a supercomputing
facility, we measure the performance of these techniques
separately and in combination and demonstrate that they
provide significant throughput and completion time
improvements when there is contention for resources.

This paper extends our previous work [11, 12] with the
following contributions:
• We describe our algorithms for policy-based resource

allocation and adaptation of data transfer parameters in our
revised design and implementation (Section II),

• We present experimental results that show the detailed
operation of transfer client adaptation and policy-based
resource allocation for large, multi-file wide area transfers
for slow and fast rates of adaptation (Section III), and

• We show approximately 20% improvement in overall
transfer completion time with our techniques (Section III).

Finally, we review related work in Section IV and conclude
in Section V.

II. SYSTEM DESIGN AND IMPLEMENTATION
Fig. 1 shows the system design for our transfer client

adaptation and policy-based resource allocation techniques.
The Adaptive Data Transfer (ADT) Library includes client-side
functionality for requesting, updating, and releasing resource
allocations. The ADT Library also tracks the performance of
transfers and makes dynamic adjustments to increase or
decrease the number of transfer streams in use. The Transfer
Client (a modified SRM-Copy client) integrates with the ADT
Library and is responsible for managing and controlling active
data transfers. These client side components are distributed
across a cluster of nodes, and each client adapts independently.

On the server side, a Policy Service (PS) handles multiple
resource allocation requests from the client-side ADT Library.
By default, the Policy Service (PS) is deployed with a Greedy
policy specification (Fig. 2). The PS may also be configured to
work with other user-defined policy specifications. Users may
specify their policies in the form of a python module that
implements the policy interface for adding, updating, and
removing resource allocations. We anticipate that the VO
administrator would deploy the default policy or modify it to
meet specific goals of that VO environment. For a bulk transfer
operation, the client will first request an initial resource
allocation and then adapt its parameters within the bounds of
the allocation (i.e., increase or decrease the streams in use).
Periodically, the client will request an updated resource
allocation from the PS. The client releases its resources once a
bulk transfer has completed.

Fig. 1. Service interactions for bulk remote data access use cases.

A. Resource Allocation Algorithm
Pseudocode for the resource allocation algorithm

implemented by the Greedy policy specification is shown in
Fig. 2. The algorithm depends on a few parameters, shown in
Table I, which an administrator may specify in order to tune
the algorithm to their requirements. The pseudocode illustrates
the primary functionality of the algorithm, which is to
provision resources either for a new or initial allocation or to
update an existing allocation. For brevity, we do not illustrate
the resource allocation release, which simply serves to return
resources to the pool of available resources without making
adjustments to other allocations.

The Provision function is passed a resource request
parameter t, a structure indicating the source and destination
of the transfer (e.g., either a hostname or URL) and the
currently allocated streams (streams[t]). For an initial transfer

request, streams[t] = 0, whereas in the case of an update on an
existing allocation, streams[t] > 0. The algorithm must first
determine how many streams are currently allocated between
source[t] and destination[t] (line 2), because stream allocations
are managed between endpoints and are limited by the policy
specification parameter, spmax.

Fig. 2. Resource allocation algorithm used by the PS to implement Greedy

Policy for an initial or update allocation request by a client.

TABLE I. GREEDY POLICY PARAMETERS
Greedy Policy Parameter Definition
Maximum total streams
for source/destination
pair, spmax

Maximum concurrent streams active
between a pair of source/destination sites.

Maximum streams per
client, scmax

Maximum allocation to a single client from
the Policy Service.

Initial stream allocation,
si

On a new client request, the Policy Service
attempts to allocate this many streams
(subject to resource availability).

Update increment
stream allocation, su

On an update request, the Policy Service
attempts to increment the allocation by this
many streams (subject to availability)

The algorithm then computes the maximum available

streams for the allocation request (line 3), which is the
minimum of two values: (1) the remaining streams that may be
allocated between the source and destination, which is
determined by the difference between spmax and the current
allocation for that source/destination pair, and (2) the number
of streams that may be allocated to this client, specified by the
difference between the policy maximum per client (scmax) and
the streams[t] already allocated to the client. If no streams are
available to satisfy the request, the algorithm terminates (line
6).

Require: si: initial streams allocation specified by policy; su: update
increment streams allocation specified by policy; spmax: maximum streams
allowed between endpoints specified by policy; scmax: maximum streams
allowed for a single client, specified by policy.
 procedure PROVISION(t)
01: t ß transfer resource request with (source[t], dest[t]) and steams[t])
02: sa ß allocated streams between (source[t], dest[t])
03: sv ß min(scmax – streams[t], spmax – sa) // Available streams
04: if sv = 0 then
05: // No available streams for transfer request
06: return t
07: else if streams[t] = 0 and sv > si then
08: // Enough streams for initial allocation
09: streams[t] ß si
10: sa ß sa + si // Update total allocated streams
11: else if streams[t] > 0 and sv > su then
12: // Enough streams for update allocation
13: streams[t] ß streams[t] + su
14: sa ß sa + su // Update total allocated streams
15: else
16: // Allocate remaining available streams to initial or update request
17: streams[t] ß streams[t] + sv
18: sa ß sa + sv // Update total allocated streams
19: end if
20: return t
 end procedure

If the current request is an initial request and the available
streams exceed the policy parameter for initial stream
allocations (si) (line 7), then the algorithm sets streams[t] to si.
If the current request is an update request and the available
streams exceed the policy parameter for update allocation
increment (su) (line 11), the algorithm increments streams[t] by
su. If the previous conditions were unmet (line 15), then the
available streams are below the policy values si for initial
requests or su for update requests. In that case, the algorithm
allocates the remaining stream resources to the request,
whether it is an initial or update request. In each case, the
algorithm updates the state of the currently allocated requests
between the pair of source and destintation endpoints. Finally,
it terminates by returning the allocated request to the client.

B. Client Transfer Adaptation Algorithm
Pseudocode for the client side transfer adaptation is shown

in Fig. 3. The AdaptTransferClient and Adapt functions depend
on several client policy parameters shown in Table II. The
AdaptTransferClient is passed a queue Q of files to be
transferred between a pair of source and destination endpoints
and several policy parameters, including the initial concurrency
for a client transfer c, the increment/decrement value Δ that
specifies how much concurrency is increased or decreased for a
client adaptation, the adaptation delay parameter d that
specifies how frequently adaptation occurs (after d transfers
complete), and the parallelism or number of data streams p
used per transfer.

The function begins by initializing a new transfer request t
between the source and destination of Q and calling the
Provision function described in the last section to request a
resource allocation for t (line 2). The stream allocation
provided by the PS is converted to a concurrency calloc and
further limited to the initial concurrency ci set by the client
configuration (line 4).

The function then begins a loop that continues while the
transfer queue Q is not empty and adapts every time d transfers
complete. If adaptation is due (line 7), the client calls
Provision again to acquire an updated resource allocation calloc
(line 9). The client calls the Adapt function with the parameters
calloc,, current concurrency c and the increment/decrement
parameter Δ. If adaptation is not due or after the Adapt call
completes (line 13), the client takes c transfers from the queue,
performs the transfers and updates the counter as they
complete.

The Adapt function compares the current transfer rate rrate
between the source and destination with the last measured rate
rlast. If the difference exceeds a specified threshold T (line 24),
the Adapt function changes the concurrency for subsequent
transfers. The function reduces the concurrency by Δ if the
transfer rate has decreased by more than T and increases the
concurrency by Δ if the transfer rate has increased by more
than T. The new concurrency must be non-negative (line 26)
and may not exceed the maximum allocation calloc or the client
maximum concurrency cmax (line 28).

Fig. 3. Adaptation algorithm used by Adaptive Transfer Client. The

AdaptTransferClient procedure processes a batch of transfer jobs and
uses the Adapt procedure to adjust concurrency up or down.

TABLE II. ADAPTIVE TRANSFER CLIENT PARAMETERS
Adaptive Transfer
Client Parameter Definition

Initial
concurrency, ci

Number of active transfers initiated by a client
when it begins transferring data.

Maximum
concurrency, cmax

Maximum number of active file transfers by a
client; this value may be reached by adaptation.

Parallelism, p Number of parallel streams per file transfer

Adaptation delay
time, d

How often the client requests an updated resource
allocation from the PS; expressed as number of
completed transfers before adaptation occurs.

Adaptation
increment/
decrement, Δ

How much the concurrency level increases/
decreases when the client adapts up or down
within its resource allocation.

Threshold, T Difference between current and past performance
that triggers adaptation of concurrency level.

C. Implementation
The Policy Service implements a RESTful Web service in

the Python programming language on the Web.py framework
(webpy.org) deployable in the lightweight CherryPy embedded

Require: Q: queue of files to be transferred between source and dest.; ci:
initial client concurrency; Δ: adaptation increment/decrement delta; d:
adaptation delay; p: parallel streams per file transfer.
 procedure ADAPTTRANSFERCLIENT(Q, c, Δ, d, p)
01: t ß initialize a transfer request between (source, dest) of Q
02: PROVISION(t) // request initial allocation from Policy Service
03: calloc ß floor(streams[t] / p) // convert streams to concurrency
04: c ß min(ci, calloc) // limit concurrency parameter, if necessary
05: k ß d // set counter for next adaptation
06: while Q not empty do
07: if k ≤ 0 then // due for client adaptation
08: k ß d // reset counter
09: PROVISION(t) // request updated allocation from PS
10: calloc ß floor(streams[t] / p) // convert streams to concurrency
11: c ß ADAPT(c, Δ, calloc) // adapt concurrency up or down
12: end if
13: F ß pop at most c transfer jobs from Q
14: // …perform F transfers concurrently, wait for completion…
15: k ß k – c // decrement transfer counter
16: end while
 end procedure
 procedure ADAPT(c, Δ, calloc)
20: T ß user specified transfer rate adaptation threshold
21: rlast ß state of last recorded transfer rate // between source-destination
22: rrate ß test of current transfer rate // between source-destination
23: rdelta ß rrate - rlast
24: if abs(rdelta) > T then // change exceeds threshold
25: if rdelta < 0 then
26: c ß max(0, c – Δ) // decrease concurrency
27: else
28: c ß min(c + Δ, calloc, cmax) // increase concurrency
29: end if
30: end if
31: return c
end procedure

HTTP server (www.cherrypy.org). The open source
implementation of the PS is available at:
http://github.com/robes/adapt-policy-service.

The Adaptive Data Transfer Client is a standalone,
command-line client implemented in the Java programming
language. It extends the conventional SRM-Copy command-
line client (sdm.lbl.gov/srmclients/) with the adaptive data
transfer (ADT) library. ADT library includes the
implementation of the adjustment decisions on the transfer
parameters based on the observed throughput performance
differences. The open source Adaptive Data Transfer Client
may be found at: https://codeforge.lbl.gov/projects/adapt/.

III. EVALUATION
We present our evaluation results in two parts. In the first part
of our evaluation, we illustrate the operation and performance
of client side adaptation and policy-based resource allocation
techniques on long-running data transfers over a relatively
high-performance network between the Parallel Distributed
Systems Facility at the National Energy Research Scientific
Computing Center (NERSC) in Oakland, CA and the
University of Nebraska at Lincoln (UNL). This first set of
results show the tradeoffs and capabilities of adaptive transfers
and policy-based resource allocation. In the second part of the
evaluation, we use a testbed with constrained resources to
model bulk data movement between HPC facilities with
contention for available resources. For these experiments, a
client node at National Institute of Supercomputing and
Networking (NISN) in Daejon, Korea transferred data to
NERSC in Oakland, CA. These experiments show the
advantage of our techniques in realistic, resource constrained
environments. All experiments transfer a 260 GByte data set
made up of 488 files.

A. Evaluation for Experimental Testbed 1: NERSC to UNL
over High Bandwidth Network

Fig. 4. Experimental testbed setup

We ran experiments to investigate the tradeoffs of a range
of stream allocation policies and faster vs. slower client-side
transfer parameter adaptation. We transferred the 260 Gbyte
data set from NERSC to UNL. Our experiments used 8 job
submission nodes at the source site at NERSC, each of which
runs SL6 with General Parallel File System (GPFS) backend
storage. Both NERSC and UNL have 10 Gbps connections to
the wide area network, which crosses the ESnet and Internet2
domains. The network and resources at both ends are shared
with other traffic, which causes performance variations in our

results. Fig. 4 shows this setup. In our study, we assume that
the main constrained resource is the shared network; however,
in some cases, the end systems could be the performance
bottleneck. Our algorithm addresses end system performance
issues by detecting poor transfer performance and adjusting
transfer parameters, which in turn adjusts end system resource
usage.

Table III shows common parameters for the following
experiments that use adaptation or policy-based allocation.

TABLE III. COMMON PARAMETERS USED FOR ADAPTIVE EXPERIMENTS

Common Parameters for all Adaptive Experiments Value
Maximum total streams between source/destination 128
Number of clients 8
Maximum streams per client 32
Parallel streams per file 4

Adaptation increment/decrement 1 concurrency
(4 streams)

1) Slow Client Side Adaptation
First, we isolate the effect of slow client side adaptation.

Parameters for this experiment are shown in Table IV. In this
experiment, the PS has no role beyond its initial allocation to
each client. All adaptation takes place on the client side.

TABLE IV. PARAMETERS USED FOR SLOW CLIENT SIDE ADAPTATION

Client Parameters Value
Initial concurrency 1
Maximum concurrency 8
Adaptation delay time (update after how many transfers) 4

Policy Service Parameters Value
Initial stream allocation 32
Update allocation increment N/A

Fig. 5 shows the performance for one of the three runs for

this experiment. This figure shows the number of streams
being used by each client on the vertical axis, with the
horizontal axis showing elapsed time. Based on the parameters
in Table IV, the first four clients that consulted the Policy
Service were allocated 32 streams out of the 128 total streams
available between the source and destination; the remaining 4
clients had to wait until one or more of those clients completed
their transfers and released streams for the remaining clients.

Fig. 5. Number of streams used for slow client side adaptation

Within the 32 allocated streams, each client slowly adapts
the concurrency of its transfers, beginning with one transfer
that uses 4 parallel streams, and increasing to a maximum of 8
concurrent transfers that each use 4 streams, or a maximum of

32 streams per client. Each client is configured to adapt its
concurrency after 4 transfers complete; it may then increase or
decresase its concurrency by one transfer (4 streams) based on
recent performance. Fig. 5 shows each client slowly adapting
its concurrency up or down, with some clients eventually
reaching the maximum of 8 transfers (32 streams). Once a
client completes its transfers, the PS frees up the client’s
stream allocation and allocates those 32 streams to one of the
waiting clients, which then performs its transfers, adapting in
the same manner.

We ran these experiments three times on different days and
times of the day. We observed a range of performance based
on the load on the infrastructure, as expected when using
shared infrastructure at the source and destination sites and
shared networking betweeen sites. The experiment completion
times were 127 minutes at 11:31pm on 7/8/13, 141 minutes at
2:59am on 7/9/13 and 159 minutes at 11:00am on 7/11/13.

2) Fast Client Side Adaptation
In the next set of experiments, we measured faster client

side adaptation, where the client increases or decreases its
concurrency by one transfer after every 2 completed transfers.
In this scenario, the Policy Service again allocates 32 streams
per client when it first gets a request for a client allocation, and
then it has no further role in the adaptation. The experimental
parameters are summarized in Table V.

TABLE V. PARAMETERS USED FOR FAST CLIENT SIDE ADAPTATION

Client Parameters Value
Initial concurrency 4
Maximum concurrency 8
Adaptation delay time (update after how many transfers) 2

Policy Service Parameters Value
Initial stream allocation 32
Update allocation increment N/A

Fig. 6. Number of streams used for fast client side adaptation

Fig. 6 shows the streams used during one run of these
experiments. The first four clients receive an allocation of 32
streams from the PS and begin transferring data with a
concurrency of 4 transfers (16 streams). The figure shows that
each client then quickly adapts its concurrency up or down by
1 transfer (4 streams) each time two transfers complete. The
result of this fast adapation is that the four clients quickly
increase their concurrency to utilize the allocated maximum of
32 streams per client. Note that each adaptive transfer client
sometimes reduces its concurrency based on recent
performance, utilizing fewer streams when performance drops.

The adaptive transfer client thus avoids overprovisioning
constrained resources.

We ran this experiment three times, and the completion
times were 100 minutes at 11:34pm on 7/10, 88 minutes at
1:16am on 7/11/13 and 90 minutes at 8:32am on 7/11/13.

Because of the large variations in load on our shared
infrastructure, it is challenging to do direct comparisons of
experiments (e.g., slow vs. fast client adaptation). We limit our
comparative conclusions to Section III.B and focus in this
section on the tradeoffs of adaptation and allocation.

3) Policy Service Resource Allocation: Slow Increases
Next, we isolated the effect of the Policy Service (PS),

which provides an allocation of streams to each client. In this
experiment and the next, the data transfer client does no
performance-based adaptation of the number of streams. After
it sends an initial or update request for an allocation to the PS,
the transfer client simply sets its concurrency level based on
the allocation it receives.

The current implementation of the PS only increases the
allocation to each client if additional resources are available; it
does not decrease the allocation, but instead waits for the data
transfer client to release streams if they are no longer needed.
In future work, we will modify the PS to decrease allocations
based on transfer performance or on VO policies and to handle
exceptional situations such as non-responsive clients.

Experimental parameters for slow increases in resource
allocation by the PS are summarized in Table VI. Fig. 7 shows
the streams used by clients for this experiment. The PS initially
allocates 4 streams to each client (or concurrency = 1). A client
requests an updated allocation after 4 transfers complete; the
PS then allocates 4 additional streams if they are available.
When a client receives an allocation from the PS, it initiates
transfers at the maximum concurrency allowed by that
allocation (up to a concurrency of 8 for this experiment). The
clients do not adapt based on performance.
TABLE VI. PARMETERS USED FOR SLOW INCREASES IN PS ALLOCATION

Client Parameters Value
Initial concurrency 1
Maximum concurrency 8
Adaptation delay time (update after how many transfers) 4

Policy Service Parameters Value
Initial stream allocation 4
Update allocation increment 4

Fig. 7 shows that each client receives an initial allocation of
4 streams from the Policy Service. Several of the clients
quickly request additional PS allocations until they reach the
maximum concurrency of 8 (or 32 streams). Since the overall
maximum number of streams allowed between the source and
destination is 128 (from Table III), several clients must wait
until those first clients finish their transfers and release their
allocated resources before the later clients receive increased
stream allocations (e.g., the dark blue, purple, black and yellow
lines in Fig. 7.)

The three runs of these experiments had completion times
of 73 minutes at 4:23am on 7/20/13, 83 minutes at 5:54am on
7/22/13, and 85 minutes at 8:38am on 7/22/13.

Fig. 7. Stream allocation for slow increases in policy service allocation

4) Policy Service Resource Allocation: Fast Increases
In the next experiment, we again isolate the effect of

increasing allocations by the PS, this time using faster
increases in those allocations. When a new request arrives from
a data transfer client to the PS, the PS allocates 16 streams
(concurrency level of 4) to the client. Each time a client
completes two transfers, it requests an updated allocation from
the PS. When additional resources are available, the PS
provides 4 additional streams, allowing the client to increase its
concurrency by 1. As in the last experiment, the transfer client
does no performance-based adaptation. It sets its concurrency
level to use the allocated streams provided by the PS. These
parameters are summarized in Table VII.
TABLE VII. PARMETERS USED FOR FAST INCREASES IN PS ALLOCATION

Client Parameters Value
Initial concurrency 4
Maximum concurrency 8
Adaptation delay time (update after how many transfers) 2

Policy Service Parameters Value
Initial stream allocation 16
Update allocation increment (streams) 4

Fig. 8. Stream allocation for fast increases in policy service allocation

Fig. 8 shows the stream usage for one run of this
experiment. Initially, five clients consult the PS, receive an
allocation of 16 streams (concurrency = 4) and begin
transferring data. These initial allocations consume 80 of the
128 available streams between the source and destination.
Before the remaining three clients receive a stream allocation,
the initial clients request updated allocations from the PS. The
graph shows that those clients eventually receive allocations of
32 streams (client1 and client2), 28 streams (client0), 20
streams (client3) and 16 streams (client4). These allocations
consume all of the 128 available streams between the source

and destination. The last three clients must wait until some of
the earlier clients complete their transfers and release resources
before receiving a stream allocation.

We ran these experiments three times and observed these
completion times: 92 minutes at 6:41pm, 107 minutes at
7:56pm and 88 minutes at 11:20pm, all on 7/9/13.

5) Summary of Tradeoffs Illustrated by Testbed 1
The experiments on Testbed 1 illustrate the operation and

tradeoffs of client-side adaptation and policy-based stream
allocation techniques.

The results show that the use of fast client-side adaptation
allows transfer clients to quickly saturate high bandwidth
networks (perhaps with a few competing clients) without
overprovisioning resources, while slow adaptation is better
suited to scenarios with network contention where the goal is
to share bandwidth more fairly among clients.

For the Policy Service, the results demonstrate that granting
larger allocations with a first-come-first-served strategy can
significantly increase resource consumption for the earliest
requesters. This approach may inform the design of VO
policies that seek to minimize the makespan for early
requesters while delaying (effectively queueing) the start time
for later requesters. Conversely, VO policies that allocate
fewer resources may be better suited to minimize overall
makespan (for all requesters), which may be especially
beneficial where jobs can be parallelized and start when a
subset of input files have been transferred.

These results can thus be used to inform the specification of
VO policies and for tailoring the resource allocations to the
needs of VO clients and their transfer resources.

B. Evaluation for Experimental Testbed 2: NISN to NERSC
over Constrained Resources
In earlier results [12], we ran experiments in a highly

resource-constrained environment that consisted of a single
node at Lawrence Berkeley National Laboratory running 8
adaptive data transfer clients and transferring a 260 Gbyte data
set to the University of Nebraska at Lincoln. We compared the
performance of fast increases in policy based allocation and
fast data transfer client adaptation with the performance of
non-adaptive transfers. For a configuration with 640 total
streams between the source and destination, 32 initial streams
per client and 160 streams maximum per client, we measured a
reduction in overall transfer time of the data set of
approximately 20% using our fast client-based transfer
adaptation and policy-based resource allocation techniques.

Next, we describe an experiment that used a more powerful
client to transfer the same data set over an inter-continental
network from the National Institute of Supercomputing and
Networking (NISN) in Daejon, Korea to the National Energy
Research Scientific Computing Center (NERSC) in Oakland,
CA. The source and destination share a 10 Gbps inter-domain
network. Data are transferred from local disk on the NISN
node to a GPFS project directory on the NERSC PSDF
networked distributed computing cluster. The data set for these
experiments is the same 260 Gbyte data set consisting of 488
files. Maximum throughput achieved between the source and

destination site is approximately 450 MB/sec or 3.6 Gbps.
Because the NISN node is not a cluster, we run a single client
that issues transfers at the designated concurrency level and
parallelism using multiple threads.

TABLE VIII. PARAMETERS FOR COMPARATIVE EXPERIMENT
Parameters for all Comparative Experiments Value

Maximum total streams between source/destination 1024
Number of clients 1
Maximum streams per client (for adaptation) 1024
Parallel streams per file (parallelism) 8
Adaptation increment/decrement (concurrency/streams) 4/32
Initial concurrency/streams for adaptation 20/160
Maximum concurrency/streams per client for adptation 128/1024
Adaptation delay time (update after how many transfers) 2
Non-adaptive concurrency/streams 128/1024

Fig. 9. Comparison of adaptive vs. non-adaptive data transfer performance

for a 260 GByte data set from NISN to NERSC.

Table VIII shows parameters of our experimental scenario.
In Fig. 9, we show one of two experimental run for this
scenario. The red line shows the aggregate throughput in
MBytes/second when using both fast client side adaptation and
fast increases in resource allocation; the black line shows the
throughput of non-adaptive transfer clients that use no policy-
based resource allocation.

In the adaptive case, the NISN client begins with an initial
concurrency of 20 and adapts the concurrency up or down after
every 2 transfers complete by an increment of 32 streams (or
concurrency of 4). Maximum overall concurrency is 128 (or
1024 streams) between NISN and NERSC. For the non-
adaptive case, the client initiates 128 concurrent transfers with
parallelism of 8 for a total of 1024 streams.

Intiuitively, if available bandwidth is not limited, the non-
adaptive transfers should have higher throughput, since they
consistently use 1024 streams to transfer data, while the
adaptive case starts its transfers with only 160 streams
(concurrency of 20, parallelism of 8). Instead, Fig. 9 shows that
the throughput for adaptive transfers (shown in red) is
significantly higher than the non-adaptive transfers (shown in
black), indicating that the test environment is resource-
constrained and that the adaptive transfer client and policy-
based resource allocation make more effective use of available
resources without overprovisioning.

The overal time to transfer the data set from NISN to
NERSC is approximately 20% shorter in the adaptive case,
which is similar to the benefit we observed in our earlier
experiments between LBNL and UNL. These experiments

show a significant advantage in throughput and overall transfer
time for adaptive, policy-based transfers compared to non-
adaptive transfers on resource-constrained infrastructure.

IV. RELATED WORK
Policies for data staging and resource management: In
earlier work, we studied policy-based data staging for scientific
applications [13-17]. Large scientific collaborations have used
VO policy-based data dissemination and replication, including
the Physics Experiment Data Export (PheDEx) [18, 19] system
and the Lightweight Data Replicator (LDR) [20]. The
integrated Rule-Oriented Data System (iRODS) [21] uses a
rule based system to implement data management policies

Data transfer adaptation: Data transfer parameter
estimations have been studied based on the active profiling
measurements from the sample transfers [22-28] or a simple
throughput prediction model with passsive information from
current data transfer operations [29, 30]. Application-level
auto-tuning techniques [23, 31-33], including adaptive
parameter tuning [23, 24, 29] only consider network
conditions. Multiple data transfer streams is a common way of
increasing the network throughput performance in client
applications [22, 24, 34]. Our work does not make data transfer
throughput predictions or try to model the performance; rather,
it reflects dynamic throughput performance changes into data
transfer management.

V. CONCLUSIONS
We presented two techniques to adapt the use of resources

for long running, multi-file data transfers: (1) policy-based
allocation of data transfer resources at the Virtual Organization
level based on VO and site level policies, and (2) adaptation of
transfer parameters by each transfer client based on recent
performance. We showed that these techniques provide
significant improvements in throughput and overall transfer
completion time (up to 20% in our experiments) in resource
constrained environments. We also demonstrated the tradeoffs
of these techniques. Fast client side adaptation and VO-level
policies that quickly increase resource allocation consume
available resources aggressively without overprovisioning the
resources, while slower adaptation and VO-level allocation
policies share available resources more fairly among clients.

We plan to extend the current work to provide richer
policies and adaptation to further improve network utilization
and transfer performance. Our current work uses static policies
based on VO preferences and priorities; we will extend this
work to study whether a dynamic policy model that adapts to
changes in resource demand and availability would provide
additional improvements. In addition, our current work adapts
transfer parameters such as concurrency based on the transfer
client’s limited knowledge of recent performance between a
specific pair of source and destination hosts. We will extend
this work to study the impact of moving performance-based
adaptation to the VO level and developing adaptation
algorithms that incorporate knowledge of transfers throughout
the VO as well as performance measurements and resource
availability information from monitoring systems. Finally, we
will study extending policies to incorporate novel techniques
for performance estimation and prediction.

ACKNOWLEDGMENT
This work was supported in part by the National Science
Foundation (NSF) Office of Cyberinfrastructure under awards
1127101 (USC/ISI) and 1127039 (LBNL) and by the U.S.
Department of Energy (DOE) Office of Advanced Scientific
Computing Research, Office of Science, under Contract DE-
AC02- 05CH11231. This work used resources from the Open

Science Grid, which is supported by NSF and the DOE Office
of Science. We thank Brian Bockelman, Garhan Attebury and
Carl Lundstedt at U. Nebraska, Lincoln; Buseung Cho and
Jysoo Lee at NISN; Eli Dart at ESnet; K. John Wu at LBNL;
C. S. Chang at PPPL; and Iwona Sakrejda at NERSC for their
support for our experiments.

REFERENCES
[1] LHC – The Large Hadron Collider. Available:
http://lhc.web.cern.ch/lhc/
[2] Large Synoptic Survey Telescope (LSST). Available:
http://www.lsst.org/lsst
[3] LIGO Project. LIGO - Laser Interferometer Gravitational Wave
Observatory. Available: http://www.ligo.caltech.edu/
[4] A. B. Rosen, M. B. Hamel, M. C. Weinstein, D. M. Cutler, A.
M. Fendrick, and S. Vijan, "Cost-effectiveness of full Medicare coverage of
angiotensin-converting enzyme inhibitors for beneficiaries with diabetes,"
Annals of internal medicine, vol. 143, pp. 89-99, 2005.
[5] D. N. Williams, R. Ananthakrishnan, D. E. Bernholdt, S.
Bharathi, D. Brown, M. Chen, et al., "The Earth System Grid: Enabling
Access to Multi-Model Climate Simulation Data," Bulletin of the American
Meteorological Society (BAMS), vol. 90, no. 2, pp. 195–205, February
2009.
[6] "Biological and Environmental Research Network
Requirements Workshop, November 2012 - Final Report," DOE Office of
Science and the Energy Sciences Network,
http://www.es.net/assets/pubs_presos/BER-Net-Req-Review-2012-Final-
Report.pdf20112012.
[7] J. Cummings, T. Finholt, I. Foster, C. Kesselman, and K. A.
Lawrence, "Beyond Being There: A Blueprint for Advancing the Design,
Development, and Evaluation of Virtual Organizations " Final report from
the NSF workshop on Building Effective Virtual Organizations,
http://www.ci.uchicago.edu/events/VirtOrg2008/, 2008.
[8] Open Science Grid. Available: http://www.opensciencegrid.org/
[9] XSEDE Extreme Science and Engineering Discovery
Environment. Available: https://http://www.xsede.org/
[10] J. Shiers, "The Worldwide LHC Computing Grid (Worldwide
LCG)," Computer Physics Communications, vol. 177, pp. 219-223, 2007.
[11] J. Gu, D. Smith, A. L. Chervenak, and A. Sim, "Adaptive Data
Transfers that Utilize Policies for Resource Sharing," presented at the 2nd
Int'l Workshop on Network Aware Data Management (NDM 2012), in
conjunction with SC12 Conference, Salt Lake City, UT, 2012.
[12] A. L. Chervenak, A. Sim, J. Gu, R. Schuler, and N. Hirpathak,
"Efficient Data Staging Using Performance-Based Adaptation and Policy-
Based Resource Allocation," presented at the 22nd Euromicro Intl. Conf.
on Parallel, Distributed and Network-Based Processing (PDP 2014), Turin,
Italy, 2014.
[13] A. Chervenak, E. Deelman, M. Livny, M. Su, R. Schuler, S.
Bharathi, G. Mehta, K. Vahi, "Data Placement for Scientific Applications
in Distributed Environments," in 8th IEEE/ACM International Conference
on Grid Computing (Grid 2007), Austin, Texas, 2007.
[14] S. Bharathi and A. Chervenak, "Data Staging Strategies and
Their Impact on the Execution of Scientific Workflows," presented at the
Proceedings of the Second International Workshop on Data-Aware
Distributed Computing (DADC), in association with High Performance
Distributed Computing (HPDS) Conference, Garching, Germany, 2009.
[15] S. Bharathi and A. Chervenak, "Scheduling Data-Intensive
Workflows on Storage Constrained Resources," in Proceedings of the 4th
Workshop on Workflows in Support of Large-Scale Science (WORKS09), in
conjunction with Supercomputing (SC09), Portland, Oregon, 2009.
[16] M. Amer, W. Chen, and A. L. Chervenak, "Improving Scientific
Workflow Performance using Policy Based Data Placement," in IEEE
International Symposium on Policies for Distributed Systems and Networks
(POLICY 2012), Chapel Hill, North Carolina USA, 2012.

[17] A. L. Chervenak, D. E. Smith, W. Chen, and E. Deelman,
"Integrating Policy with Scientific Workflow Management for Data-
Intensive Applications," presented at the 7th Workshop on Workflows in
Support of Large-Scale Science (WORKS 12), in conjunction with SC12
Conference, Salt Lake City, UT, 2012.
[18] T. A. Barrass, et al., "Software Agents in Data and Workflow
Management," in Computing in High Energy and Nuclear Physics (CHEP)
2004, Interlaken, Switzerland, 2004.
[19] J. Rehn, T. Barrass, D. Bonacorsi, J. Hernandez, I. Semeniouk,
L. Tuura, et al., "PhEDEx high-throughput data transfer management
system," in Computing in High Energy and Nuclear Physics (CHEP) 2006,
Mumbai, India, 2006.
[20] (2004). Lightweight Data Replicator. Available: http://www.lsc-
group.phys.uwm.edu/LDR/
[21] A. Rajasekar, M. Wan, R. Moore, and W. Schroeder, "A
prototype rule-based distributed data management system," in HPDC
Workshop on Next-Generation Distributed Data Management, ed, 2006.
[22] T. Dunigan, M. Mathis, and B. Tierney, "A tcp tuning daemon,"
in SuperComputing: High-Performance Networking and Computing, 2002.
[23] W. Feng, M. Fisk, M. Gardner, and E. Weigle, "Dynamic right
sizing:An automated, lightweight, and scalable technique for enhancing
grid performance," in the 7th IFIP/IEEE International Workshop on
Protocols for High Speed Networks, 2002.
[24] T. Ito, H. Ohsaki, and M. Imase, "On parameter tuning of data
transfer protocol gridftp in wide-area grid computing," in Second Int'l
Workshop on Networks for Grid Applications, GridNets, 2005.
[25] T. J. Hacker, B. D. Noble, and B. D. Athey, "Adaptive data
block scheduling for parallel TCP streams," in the High Performance
Distributed Computing, 2005.
[26] M. Mirza, J. Sommers, P. Barford, and X. Zhu, "A machine
learning approach to TCP throughput prediction," SIGMETRICS Perform.
Eval. Rev., vol. 35, pp. 97-108, 2007.
[27] E. Yildirim, M. Balman, and T. Kosar, "Dynamically Tuning
Level of Parallelism in Wide Area Data Transfers," in DADC'08, 2008.
[28] D. Yin, E. Yildirim, and T. Kosar, "A Data Throughput
Prediction and Optimization Service for Widely Distributed Many-Task
Computing," in MTAGS'09, 2009.
[29] M. Balman and T. Kosar, "Dynamic Adaptation of Parallelism
Level in Data Transfer Scheduling," in Second International Workshop on
Adaptive Systems in Heterogeneous Environments, 2009.
[30] A. Sim, M. Balman, D. Williams, A. Shoshani, and V.
Natarajan, "Adaptive Transfer Adjustment in Efficient Bulk Data Transfer
Management for Climate Datasets," in the 22nd International Conference
on Parallel and Distributed Computing and Systems (PDCS 2010), 2010.
[31] J. Bresnahan, M. Link, R. Kettimuthu, D. Fraser, and I. Foster,
"GridFTP Pilelining," in Teragrid 2007 Conference, 2007.
[32] M. Gardner, S. Thulasidasan, and W. Feng, "User-space auto
tuning for tcp flow control in computational grids," Computer
Communications, vol. 27, pp. 1364-1374, 2004.
[33] S. Soudan, B. Chen, and P. V.-B. Primet, "Flow scheduling and
endpoint rate control in grid networks," Future Gener. Comput. Syst., vol.
25, pp. 904-911, 2009.
[34] M. Balman and T. Kosar, "Data Scheduling for Large Scale
Distributed Applications," in the 9th International Conference on
Enterprise Information Systems Doctoral Symposium (DCEIS 2007), 2007.

