Adaptation and Policy-Based Resource

Allocation for Efficient Bulk Data Transfers in
High Performance Computing Environments

Ann L. Chervenak!, Alex Sim2, Junmin Gu?, Robert Schuler?,
Nandan Hirpathak’

'University of Southern California Information Sciences Institute
2Lawrence Berkeley National Laboratory .

USC oo

||||

C Motivation cecce]

|||‘
g

Many science applications require staging of large datasets to
prepare for analysis on shared computational resources

Need to make efficient use of available resources
 Avoid overprovisioning

ADAPT Project (Adaptive Data Access and Policy-Driven
Transfers)

* Goal: improve transfer throughput and overall latency for
large data staging operations in a resource-constrained,

shared environment
e Provide simple software path to adaptation

Two Techniques:
 Performance-based transfer parameter adaptation
 Policy-based resource allocation

‘\
YA Y \
l S(recceee]
A J

Outline |

« ADAPT Project Approach
« System Description
 Implementation
 Experimental Results

« Summary

Contributions:

« Describe algorithms for policy-based resource allocation
and adaptation of data transfer parameters

« Experimental results:

e Detailed operation of transfer client adaptation and policy-
based resource allocation for large, multi-file transfers

e Approximately 20% improvement in overall intercontinental
transfer completion time with our techniques

USC ADAPT Project Approach ceec) §

|||‘

 Performance-based transfer adaptation

e Adaptive data transfer client selects transfer properties
based on past performance, available resources

* Adapts properties for subsequent transfers when observed
performance changes due to dynamic load on storage,
network, other resources

* Policy-based resource allocation

e Based on Virtual Organization (VO and site level policies
regarding resource allocation, priorities for resources,
users)

 VO-Level Policy Service gives data transfer clients advice
on resource allocations (transfer streams)

e Balance user requirements for data access with load on
resources

System Overview

F-TTTTTTTETEEEEEEEEEET I
: | l : Request
: H: . 1 ! Allocation

[
| Transfer , T Policy Policy
: — Client ADT Library ‘: Service Specification
. , Allocation
T e e
: Transfers : | Site2 |
| : R i
| : , |
| | | |
| I Data | |
: : Transfer : l

* Adaptive Data Transfer Client
* Policy Service (PS)

)
fﬂf”\'"‘

)

USC Policy Service (PS) ’%

|||‘
g

e Suggests resource allocations based on:
e Available system resources

 Virtual Organization or site policies for allocating resources
for network data transfers

* Handles multiple resource allocation requests from clients
* Client makes initial allocation request
» Periodically requests updated allocation

« By default: deployed with Greedy policy

« Users may replace with their own policy module written in
python

 Virtual Organization administrators set policies based on
VO environment requirements

USC g

Policy Service Parameters —
& TABLE L. GREEDY POLICY PARAMETERS
Greedy Policy Parameter Definition

Maximum total streams

for source/destination Maximum concurrent streams active

between a pair of source/destination sites.

pair, Spmax
Maximum streams per Maximum allocation to a single client from
client, Scmax the Policy Service.

On a new client request, the Policy Service
attempts to allocate this many streams
(subject to resource availability).

On an update request, the Policy Service
attempts to increment the allocation by this
many streams (subject to availability)

Initial stream allocation,
Sj

Update increment
stream allocation, S,

USC

Request arrives
from client

Includes source,
destination

PROVISION
checks for
available
streams
between
source and
destination

If enough for full
initial allocation,
allocate s;
streams

)

_ff””\fm‘

Greedy Stream Allocation Algorithm f

for Policy Service (1)

Require: s;: initial streams allocation specified by policy; s,: update
increment streams allocation specified by policy; S,me: maximum streams
allowed between endpoints specified by policy; Seme: maximum streams
allowed for a single client, specified by policy.

procedure PROVISION(?)

01:
02:
03:
04:
05:
06:
07:
08:
09:
10:

t € transfer resource request with (source([#], dest[#]) and steams[¢])
s, € allocated streams between (source[?], dest[¢])
Sy € MIN(Semax — Streams|[#], Spmax —Sa) // Available streams
if s, = 0 then
// No available streams for transfer request
return ¢
else if streams[#] = 0 and s, > s; then
// Enough streams for initial allocation
streams[f] € s;
S, € s, +s; // Update total allocated streams

USC

Greedy Stream Allocation Algorithm
for Policy Service (2)

11: else if streams[#] > 0 and s, > s, then
12: // Enough streams for update allocation
13: streams[f] € streams[f] + s,
14: s,€ s,+s, // Update total allocated streams
15: else
16: // Allocate remaining available streams to initial or update request
17: streams[f] € streams[{] + s,
18: s, € s,+s, //Update total allocated streams
19: end if
20: return ¢
end procedure

‘\
_r:r—rh" Iﬁ‘

BERKELEY LAB

For an update request, if enough available streams, allocate s,
Otherwise (for update or initial request)

Allocate remaining available streams

‘\
'q /_\1 A
rececerc| |
l - C o ‘

Adaptive Data Transfer Client e |

 Performs data transfers

« Adapts within the resource allocation from Policy
Service

« Modifies parameters for new transfers based on recent
performance and resource availability

» Possible parameters for adaptation
e concurrency, number of parallel streams, buffer size, etc.
« Current design adapts concurrency
« Concurrency * parallelism = number of streams
* For long-running, multi-file transfers, a client periodically:

 Requests new allocation advice from the PS

« Adapts its concurrency level up or down based on
recent performance and current stream allocation

USC

Adaptive Data Transfer Client

)
TN

&

Parameters

TABLE IIL ADAPTIVE TRANSFER CLIENT PARAMETERS
Adaptive Transfer .
Client Parameter Defintion
Initial Number of active transfers initiated by a client
concurrency, C; when it begins transferring data.
Maximum Maximum number of active file transfers by a

concurrency, Cpmax

client; this value may be reached by adaptation.

Parallelism, p Number of parallel streams per file transfer
Adaptation delay How often the client requests an updated resource
time. d allocation from the PS; expressed as number of
1me, completed transfers before adaptation occurs.
Adaptation How much the concurrency level increases/
increment/ decreases when the client adapts up or down
decrement, A within its resource allocation.

Difference between current and past performance
Threshold, 7 pap

that triggers adaptation of concurrency level.

— Adaptive Transfer Client Algorithm (1)

e Queue of files to be Require: O: queue of files to be transferred between source and dest.; c;:
initial client concurrency; A: adaptation increment/decrement delta; d:

transferred from adaptation delay; p: parallel streams per file transfer.
source to dest. procedure ADAPTTRANSFERCLIENT(Q, c, A, d, p)
. Req uest initial 01: ¢ € initialize a transfer request between (source, dest) of Q
allocation from PS 02: Provision(?) // request initial allocation from Policy Service
03: caoc € floor(streams[¢] / p) // convert streams to concurrency
« Set Concurrency. 04: ¢ € min(c;, caic) // limit concurrency parameter, if necessary
based on allocation 05: k€d // set counter for next adaptation
 Loop while Queue 06: while QO not empty do
not em pty: 07: ifk<0 then // due for client adaptation
. 08: k€ d // reset counter
* |f specified number P _ ; e et
of transfers are " ovzlcf)lr\(t) N . rc;]/ucst upnattrc a oct:z ion from
com p| ete, up date - Clloc oor(streams([¢] / p) // convert streams to concurrency
i 11: c € ApArT(c, A, caioc) // adapt concurrency up or down
allocation
12: endif
« Call A_‘DAPT 13: F € pop at most ¢ transfer jobs from QO
function 14: /I ...perform F transfers concurrently, wait for completion...

e Performtop c 15: k€ k-c // decrement transfer counter
transfers in queue 16: end while

end procedure

USC USC Adaptive Transfer Client Algorithm (2)

procedure ApArT(c, A, caioc)

20: T € user specified transfer rate adaptation threshold

21: n.e € state of last recorded transfer rate // between source-destination
22: r. € test of current transfer rate // between source-destination
23: Zacis € Ve = Dias

24: if abs(rga) = T then //' change exceeds threshold

25: if 74 <0 then

26: c € max(0,c—-4A) // decrease concurrency

27: else

28: ¢ € min(c + A, Caiecy Crmax) // increase concurrency

29: endif

30: end if

31: returnc

end procedure

 Compares current transfer rate between source, dest with last

measured transfer rate
 |f difference exceeds a threshold T,
* Increase concurrency by A if transfer rate has increased
 Decrease concurrency by A if transfer rate has decreased

 New concurrency must be non-negative and <=c¢

max

rreeeee ‘m
,

USC Implementation q

|||‘
g

* Policy Service (PS)
« RESTful Web service implemented in Python
 Webpy framework, CherryPy embedded HTTP server

 Open source implementation available at:
http://github.com/robes/adapt-policy-service

« Adaptive Data Transfer Client
e Modified conventional srm-copy data movement client
e Stand-alone, command-line client implemented in Java
 Added an Adaptive Data Transfer (ADT) library

e Open source Adaptive Data Transfer Client available at:
https://codeforge.Ibl.gov/projects/adapt/

USC

Evaluation:

Experimental Set up

Example scenario: Users want to run analysis on an Open
Science Grid site

Must first stage large multi-file data set from a remote data source

)
TN

BERKELEY LAB

____________________ |
| l : Request
| '1 I Allocation
|
Transfer ZL . r Policy Policy
— Client ADT Library <: Service Specification
N , Allocation
l Initiate | it -
Transfers : | Site2 |
| |
: —> |
!] |
| Data : :
| Transfer ! !

USC Experiments: Testbed 1 reeee?) §

|||‘

« Performance of adaptive data transfers with srm-copy client

« Transfer data from NERSC in Oakland, CA to Open Science Grid
site at University of Nebraska at Lincoln (UNL), over 10Gbps link

« 8 srm-copy clients performing multi-file transfers: 260 Gbytes / 488
files

* Long-running, multi-file transfers; adapt between completed transfers
» Default common parameters

Maximum total streams
L. 128
between source/destination
Number of clients 8
Maximum streams per client 32
Parallel streams per file 4
.. 1 concurrenc
Adaptation increment/decrement Y
(4 streams)

USC Slow Client-side Adaptation %

CaSGL A DSLITQIlID 11D L.ITINIVV_ VUV IVO <L o0Vt /s
T T T T T

BERKELEY LAB

Niimhar nf Ctraame

[N

Number of Streams

clientO
clientl
client2
client3

client4 ||
client5
— client6
— client7

1000

Client Parameters
Initial concurrency
Maximum concurrency

Adaptation delay time (update
after how many transfers)

Policy Service Parameters
Initial stream allocation

Update allocation increment

2000 300N ___4nnn____®nnn____&nnn 7000 8000

Time (seconds)

Value
1
8 « All adaptation takes place on the client
A side
« Each client slowly adapts the
Value .
concurrency of its transfers up to the
32 . .
A allocation given by the PS

)

USC Fast Client-side Transfer Adaptation f%

35
30} -
=
= 251 -
D)
b 20 -
N
G
O 1sf .
S
D)
@ 10} — clientO
= — Gients
Z 5t — clienta|]
% 1000 2000 B 3690__ 2000 5000 = 6000
Time (seconds)
Client Parameters Value
;““?1 concurrency ;‘ « The higher initial concurrency and
aximum concurrency .
Adaptation delay time (update , the faster adaptation rate have a
after how many transfers) significant effect on the
Policy Service Parameters Value D erformance of the transfers
Initial stream allocation 32 '

Update allocation increment N/A

1< Policy- R rce All ion ..,
USC olicy-based Resource Allocatio :m
— Slow Increase

case23 streams ilsl.pam60 0720 042237

Number of Streams
Number of Streams

cliantD
— AL
— ey
cliantd
clhantd
cliants
w— et
— . At

~ 500

Client Parameters
Initial concurrency
Maximum concurrency

Adaptation delay time (update
after how many transfers)

Policy Service Parameters
Initial stream allocation

Update allocation increment

1000 1500

Value

200N 28MAN

nan A500 4000 4500

Time (seconds)

No client side adaptation

Higher number of streams used
after clients update their
allocations and increase their
concurrency several times.

)

Y Q0 Policy-based Resource Allocation ..
USC =y

Fast Increase
P ils‘r.p-rllluu_ulUU_LJ-I-U-I-UJLI Qo
I I I —_ cliento
] — Giiens|
% Giiemss
E " — client6
. S
2 O
D+ i
g 7
g © : |
E
= QO
,g i
E |
1000 2000 ahor TAnn 5000 6000
Client Parameters Valwe]1MeE (SeCOndS)
Initial concurrency 4
Maximum concurrency 8 « Several clients adapt up to 20, 28 and
Adaptation delay time (update) 32 streams
after how many transfers)) .)
B — Value This forces the last three clients to wait

Initial stream allocation 16 until those first clients complete their

Update allocation increment A transfers and release the streams
(streams)

‘\
7 & A\
lSC recceee] i
e) .

Experimental Testbed 2 —

Transferred the same data set over an inter-continental network

* From the National Institute of Supercomputing and Networking (NISN) in
Daejon, Korea

* To the National Energy Research Scientific Computing Center (NERSC) in
Oakland, CA

* The source and destination share a 10 Gbps inter-domain network

» Data transferred from local disk on NISN node to a GPFS project
directory on NERSC PSDF networked distributed computing cluster

« Data set: same 260 Gbyte data set consisting of 488 files

« Because the NISN node is not a cluster, we run a single client that
issues transfers at the designated concurrency level and
parallelism using multiple threads

)

eV \
USC Experimental Parameters

Parameters for all Comparative Experiments Value
Maximum total streams between source/destination 1024
Number of clients 1
Maximum streams per client (for adaptation) 1024
Parallel streams per file (parallelism) 8
Adaptation increment/decrement (concurrency/streams) 4/32
Initial concurrency/streams for adaptation 20/160
Maximum concurrency/streams per client for adptation 128/1024
Adaptation delay time (update after how many transfers) 2
Non-adaptive concurrency/streams 128/1024

Adaptive Case: NISN client has initial concurrency of 20 and adapts concurrency
after every 2 transfers complete by an increment of 32 streams (concurrency of 4).
Maximum overall concurrency is 128 (or 1024 streams) between NISN and NERSC

Non-adaptive case: NISN client initiates 128 concurrent transfers with parallelism
of 8 for a total of 1024 streams

SO Throughput Results

Cumulative throughput for adaptive vs. non-adaptive transfers
Maximum 1024 total streams between NISN and NERSC

45 case31: adt@0805 173939 vs noAdt@0804 235746

Contention for available
resources

N
o

Red line shows adaptive
performance
ST Black line non-adaptive

w
Ul

w
(=]

N
w1

Significant advantage
in throughput and
overall transfer runtime
for the adaptive, policy-
based transfers

=
Ul

Throughput (MB/sec)

5 === Tlotal transfer time

m— adt

reduced by

0 1000 2000 3000 4000 5000 6000 7000 8000 a p p roximate |y 200/0
Time (seconds)

'\
\7 & A\
l SC _rfrrrrrr
. ___.'

Remarks

 Intuitively, if available bandwidth is not limited, the
non-adaptive transfers should have higher throughput

e Since they consistently use 1024 streams to transfer data

* While the adaptive case starts its transfers with only 160
streams (concurrency of 20, parallelism of 8) and adapts to

Increase concu rrency

* Instead, the experiment shows higher throughput for
adaptive transfers compared to non-adaptive transfers

 This indicates that:
e The test environment is resource-constrained

 The adaptive transfer client and policy-based resource
allocation make more effective use of available

resources without overprovisioning

USC Summary reeee??] f

|||‘
i

- ADAPT project goals
 Avoid overprovisioning of resources that results in suboptimal
transfer throughput
- Adaptive transfer parameters, policy-based allocation advice

« ADAPT software stack
* Provides significant throughput and completion time improvements
in resource constrained environments

* Provide simple transition from current data movement practices to
policy-based, adaptive data movement
* Plans for next phase:
« Explore richer policies for managing resources, adaptation
« Design adaptive policies that change with conditions, performance
* Move performance-based adaptation to the VO level to incorporate
knowledge of transfers, resources throughout the VO
Research on how to set policy parameters automatically
Work with application communities to deploy and evaluate
ADAPT software

‘\
O A
l S((reeeee
I y,

Acknowledgments

This work was supported in part by:

The U.S. National Science Foundation Office of
Cyberinfrastructure under award 1127101 (USC/ISI) and
award 1127039 (LBNL)

The Office of Advanced Scientific Computing Research, Office
of Science, of the U.S. Department of Energy under Contract
No. DE-AC02- 05CH11231

This work used resources provided by the Open Science Grid,
which is supported by NSF and the U.S. DOE Office of
Science

« We thank Brian Bockelman, Garhan Attebury and Carl Lundstedt
at University of Nebraska, Lincoln and Iwona Sakrejda at National
Energy Research Scientific Computing Center, Buseung Cho,
Jysoo Lee at NISN/Kreonet and Eli Dart at ESnet for their
support on our experiments.

