
Ann L. Chervenak1, Alex Sim2, Junmin Gu2, Robert Schuler1,
Nandan Hirpathak1

1University of Southern California Information Sciences Institute
2Lawrence Berkeley National Laboratory

Adaptation and Policy-Based Resource
Allocation for Efficient Bulk Data Transfers in
High Performance Computing Environments

Motivation

•  Many science applications require staging of large datasets to
prepare for analysis on shared computational resources

•  Need to make efficient use of available resources
•  Avoid overprovisioning

•  ADAPT Project (Adaptive Data Access and Policy-Driven
Transfers)
•  Goal: improve transfer throughput and overall latency for

large data staging operations in a resource-constrained,
shared environment

•  Provide simple software path to adaptation

•  Two Techniques:
•  Performance-based transfer parameter adaptation
•  Policy-based resource allocation

Outline
•  ADAPT Project Approach
•  System Description
•  Implementation
•  Experimental Results
•  Summary

Contributions:
•  Describe algorithms for policy-based resource allocation

and adaptation of data transfer parameters
•  Experimental results:

•  Detailed operation of transfer client adaptation and policy-
based resource allocation for large, multi-file transfers

•  Approximately 20% improvement in overall intercontinental
transfer completion time with our techniques

ADAPT Project Approach

•  Performance-based transfer adaptation
•  Adaptive data transfer client selects transfer properties

based on past performance, available resources
•  Adapts properties for subsequent transfers when observed

performance changes due to dynamic load on storage,
network, other resources

•  Policy-based resource allocation
•  Based on Virtual Organization (VO and site level policies

regarding resource allocation, priorities for resources,
users)

•  VO-Level Policy Service gives data transfer clients advice
on resource allocations (transfer streams)

•  Balance user requirements for data access with load on
resources

System Overview

•  Adaptive Data Transfer Client
•  Policy Service (PS)

Policy Service (PS)

•  Suggests resource allocations based on:
•  Available system resources
•  Virtual Organization or site policies for allocating resources

for network data transfers

•  Handles multiple resource allocation requests from clients
•  Client makes initial allocation request
•  Periodically requests updated allocation

•  By default: deployed with Greedy policy
•  Users may replace with their own policy module written in

python

•  Virtual Organization administrators set policies based on
VO environment requirements

Policy Service Parameters

Greedy Stream Allocation Algorithm
for Policy Service (1)

•  Request arrives
from client

•  Includes source,
destination

•  PROVISION
checks for
available
streams
between
source and
destination

•  If enough for full
initial allocation,
allocate si
streams

Greedy Stream Allocation Algorithm
for Policy Service (2)

•  For an update request, if enough available streams, allocate su

•  Otherwise (for update or initial request)
•  Allocate remaining available streams

Adaptive Data Transfer Client

•  Performs data transfers
•  Adapts within the resource allocation from Policy

Service
•  Modifies parameters for new transfers based on recent

performance and resource availability
•  Possible parameters for adaptation

•  concurrency, number of parallel streams, buffer size, etc.
•  Current design adapts concurrency

•  Concurrency * parallelism = number of streams
•  For long-running, multi-file transfers, a client periodically:

•  Requests new allocation advice from the PS
•  Adapts its concurrency level up or down based on

recent performance and current stream allocation

Adaptive Data Transfer Client
Parameters

Adaptive Transfer Client Algorithm (1)

•  Queue of files to be
transferred from
source to dest.

•  Request initial
allocation from PS

•  Set concurrency
based on allocation

•  Loop while Queue
not empty:
•  If specified number

of transfers are
complete, update
allocation

•  Call ADAPT
function

•  Perform top c
transfers in queue

Adaptive Transfer Client Algorithm (2)

•  Compares current transfer rate between source, dest with last
measured transfer rate

•  If difference exceeds a threshold T,
•  Increase concurrency by Δ if transfer rate has increased
•  Decrease concurrency by Δ if transfer rate has decreased

•  New concurrency must be non-negative and <= cmax

Implementation

•  Policy Service (PS)
•  RESTful Web service implemented in Python

•  Webpy framework, CherryPy embedded HTTP server
•  Open source implementation available at:

 http://github.com/robes/adapt-policy-service

•  Adaptive Data Transfer Client
•  Modified conventional srm-copy data movement client
•  Stand-alone, command-line client implemented in Java
•  Added an Adaptive Data Transfer (ADT) library
•  Open source Adaptive Data Transfer Client available at:

https://codeforge.lbl.gov/projects/adapt/

Evaluation:
Experimental Set up

•  Example scenario: Users want to run analysis on an Open
Science Grid site

•  Must first stage large multi-file data set from a remote data source

Experiments: Testbed 1

•  Performance of adaptive data transfers with srm-copy client
•  Transfer data from NERSC in Oakland, CA to Open Science Grid

site at University of Nebraska at Lincoln (UNL), over 10Gbps link
•  8 srm-copy clients performing multi-file transfers: 260 Gbytes / 488

files
•  Long-running, multi-file transfers; adapt between completed transfers
•  Default common parameters

Maximum total streams
between source/destination 128

Number of clients 8
Maximum streams per client 32
Parallel streams per file 4

Adaptation increment/decrement 1 concurrency
(4 streams)

Slow Client-side Adaptation

•  All adaptation takes place on the client
side

•  Each client slowly adapts the
concurrency of its transfers up to the
allocation given by the PS

!
Client Parameters Value

Initial concurrency 1

Maximum concurrency 8

Adaptation delay time (update
after how many transfers) 4

Policy Service Parameters Value

Initial stream allocation 32

Update allocation increment N/A

N
um

be
r o

f S
tre

am
s

Time (seconds)

Fast Client-side Transfer Adaptation

•  The higher initial concurrency and
the faster adaptation rate have a
significant effect on the
performance of the transfers.

Client Parameters Value
Initial concurrency 4
Maximum concurrency 8
Adaptation delay time (update
after how many transfers) 2

Policy Service Parameters Value
Initial stream allocation 32
Update allocation increment N/A

N
um

be
r o

f S
tre

am
s

Time (seconds)

Policy-based Resource Allocation
Slow Increase

•  No client side adaptation
•  Higher number of streams used

after clients update their
allocations and increase their
concurrency several times.

Client Parameters Value
Initial concurrency 1
Maximum concurrency 8
Adaptation delay time (update
after how many transfers) 4

Policy Service Parameters Value
Initial stream allocation 4
Update allocation increment 4

N
um

be
r o

f S
tre

am
s

Time (seconds)

!

Policy-based Resource Allocation
Fast Increase

•  Several clients adapt up to 20, 28 and
32 streams

•  This forces the last three clients to wait
until those first clients complete their
transfers and release the streams

Client Parameters Value
Initial concurrency 4
Maximum concurrency 8
Adaptation delay time (update
after how many transfers) 2

Policy Service Parameters Value
Initial stream allocation 16
Update allocation increment
(streams) 4

N
um

be
r o

f S
tre

am
s

Time (seconds)

Experimental Testbed 2

•  Transferred the same data set over an inter-continental network
•  From the National Institute of Supercomputing and Networking (NISN) in

Daejon, Korea
•  To the National Energy Research Scientific Computing Center (NERSC) in

Oakland, CA

•  The source and destination share a 10 Gbps inter-domain network

•  Data transferred from local disk on NISN node to a GPFS project
directory on NERSC PSDF networked distributed computing cluster

•  Data set: same 260 Gbyte data set consisting of 488 files

•  Because the NISN node is not a cluster, we run a single client that
issues transfers at the designated concurrency level and
parallelism using multiple threads

Experimental Parameters
Parameters for all Comparative Experiments Value

Maximum total streams between source/destination 1024
Number of clients 1
Maximum streams per client (for adaptation) 1024
Parallel streams per file (parallelism) 8
Adaptation increment/decrement (concurrency/streams) 4/32
Initial concurrency/streams for adaptation 20/160
Maximum concurrency/streams per client for adptation 128/1024
Adaptation delay time (update after how many transfers) 2
Non-adaptive concurrency/streams 128/1024

 Adaptive Case: NISN client has initial concurrency of 20 and adapts concurrency
after every 2 transfers complete by an increment of 32 streams (concurrency of 4).
Maximum overall concurrency is 128 (or 1024 streams) between NISN and NERSC

Non-adaptive case: NISN client initiates 128 concurrent transfers with parallelism
of 8 for a total of 1024 streams

Throughput Results
Cumulative throughput for adaptive vs. non-adaptive transfers
Maximum 1024 total streams between NISN and NERSC

Time (seconds)

Th
ro

ug
hp

ut
 (M

B/
se

c)

Contention for available
resources

Red line shows adaptive
performance
Black line non-adaptive

Significant advantage
in throughput and
overall transfer runtime
for the adaptive, policy-
based transfers

Total transfer time
reduced by
approximately 20%

Remarks
•  Intuitively, if available bandwidth is not limited, the

non-adaptive transfers should have higher throughput
•  Since they consistently use 1024 streams to transfer data
•  While the adaptive case starts its transfers with only 160

streams (concurrency of 20, parallelism of 8) and adapts to
increase concurrency

•  Instead, the experiment shows higher throughput for
adaptive transfers compared to non-adaptive transfers

•  This indicates that:
•  The test environment is resource-constrained
•  The adaptive transfer client and policy-based resource

allocation make more effective use of available
resources without overprovisioning

Summary
•  ADAPT project goals

•  Avoid overprovisioning of resources that results in suboptimal
transfer throughput

•  Adaptive transfer parameters, policy-based allocation advice
•  ADAPT software stack

•  Provides significant throughput and completion time improvements
in resource constrained environments

•  Provide simple transition from current data movement practices to
policy-based, adaptive data movement

•  Plans for next phase:
•  Explore richer policies for managing resources, adaptation
•  Design adaptive policies that change with conditions, performance
•  Move performance-based adaptation to the VO level to incorporate

knowledge of transfers, resources throughout the VO
•  Research on how to set policy parameters automatically
•  Work with application communities to deploy and evaluate

ADAPT software

Acknowledgments
This work was supported in part by:
•  The U.S. National Science Foundation Office of

Cyberinfrastructure under award 1127101 (USC/ISI) and
award 1127039 (LBNL)

•  The Office of Advanced Scientific Computing Research, Office
of Science, of the U.S. Department of Energy under Contract
No. DE-AC02- 05CH11231

•  This work used resources provided by the Open Science Grid,
which is supported by NSF and the U.S. DOE Office of
Science
•  We thank Brian Bockelman, Garhan Attebury and Carl Lundstedt

at University of Nebraska, Lincoln and Iwona Sakrejda at National
Energy Research Scientific Computing Center, Buseung Cho,
Jysoo Lee at NISN/Kreonet and Eli Dart at ESnet for their
support on our experiments.

