
Ann L. Chervenak1, Alex Sim2, Junmin Gu2, Rob Schuler1

1University of Southern California Information Sciences Institute
2Lawrence Berkeley National Laboratory

ADAPT: Improving Data Transfers Using
Performance-Based Adaptation and
Policy-Based Resource Allocation

Motivation

Many science applications require transfer and staging of
large datasets in preparation for analysis on shared
computational resources

The success of these applications requires distributed data
access with improved use of available resources

ADAPT Project (Adaptive Data Access and Policy-
Driven Transfers)
•  Goal: improve transfer throughput and latency for

large data staging operations in a resource-
constrained, shared environment

Techniques:
•  Performance-based transfer parameter adaptation
•  Policy-based resource allocation

Outline

•  ADAPT Project
•  System Overview
•  Implementation
•  Experiments – Case 1
•  Experiments – Case 2
•  Summary

ADAPT Project

Provides performance-based transfer adaptation
•  Select transfer properties based on past performance,

available resources
•  Adapt properties when observed performance

changes due to dynamic load on storage, network,
other resources

Policy-based resource allocation
•  Based on Virtual Organization policies regarding

resource allocation, priorities for resources, users
•  Balance user requirements for data access with load

on resources

System Overview

•  Adaptive Data Transfer Client
•  Policy Service (PS)

!

System Overview: Components

Policy Service (PS)
•  Suggests resource allocations based on:

•  Available system resources
•  Site or Virtual Organization policies allocating resources for

network data transfers, based on the several parameters
•  Input parameters:

•  Maximum concurrent streams between pair of source/
destination hosts

•  Maximum streams per client
•  Initial stream allocation (on a new request)
•  Update allocation increment

System Overview: Components

•  Adaptive Data Transfer Client
•  Performs data transfers
•  Adapts transfer parameters within the resource allocation

from Policy Service
•  Adapts transfer parameters based on recent transfer

performance and resource availability
•  For long-running, multi-file transfers, client periodically:

•  Requests new advice from the PS
•  Adapts transfer parameters (concurrency, number of parallel

streams, buffer size, etc.) based on resource performance
and changes in resource availability

Implementation

Policy Service (PS)
•  RESTful Web service implemented in Pyton

•  Webpy framework, CherryPy embedded HTTP server
•  Service generates advice based on VO & site policies, knowledge of

resources allocated
•  Recommends resource allocation (streams)

Allocation policy
•  Input parameters specify maximum streams between source,

destination sites; max streams per client; initial stream allocation
•  When a request for transfer advice arrives at PS:

•  Check resource allocation state to determine streams/bandwidth that
have already been allocated

•  If unallocated streams/bandwidth remain below the threshold to satisfy
the new request, then return advice to allocate requested resources

•  Once threshold is reached:
•  Refuse additional requests

Implementation

Adaptive Data Transfer Client
•  Modified conventional srm-copy data movement client
•  Stand-alone, command-line client implemented in Java
•  Added an Adaptive Data Transfer (ADT) library
•  Gradually adjust number of concurrent transfers to gain

maximum aggregated throughput or up to the allocated
resource limits by the PS

Experimental Set up

!

Users want to run analysis on an Open Science Grid site
Must first stage data from a remote data source

Experiment - Case 1

Performance of adaptive data transfers with srm-copy client
Transfer data from NERSC in Oakland, CA to Open Science Grid site at

University of Nebraska at Lincoln (UNL), over 10Gbps link
8 srm-copy clients performing multi-file transfers: 260 Gbytes / 488 files
Long-running, multi-file transfers; adapt between completed transfers
Default common parameters

Maximum total streams
between source/destination 128

Number of clients 8
Maximum streams per client 32
Parallel streams per file 4

Adaptation increment/decrement 1 concurrency
(4 streams)

Slow Client-side Adaptation

All adaptation takes place on the client side
Each client slowly adapts the concurrency of its transfers up to the allocation

! !

Client Parameters Value

Initial concurrency 1

Maximum concurrency 8

Adaptation delay time (update after how many transfers) 4

Policy Service Parameters Value

Initial stream allocation 32

Update allocation increment N/A
Number of streams used for slow client side adaptation 	
 Throughput for slow client side adaptation 	

!

Fast Client-side Adaptation

The higher initial concurrency and the faster adaptation rate have a
significant effect on the performance of the transfers.

Client Parameters Value
Initial concurrency 4
Maximum concurrency 8
Adaptation delay time (update after how many transfers) 2

Policy Service Parameters Value
Initial stream allocation 32
Update allocation increment N/A

Number of streams used for slow client side adaptation 	

!

Throughput for slow client side adaptation 	

!

Policy-based Resource Allocation
Slow Increase

Higher throughputs are reached after clients update their allocations
and increase their concurrency several times.

Client Parameters Value
Initial concurrency 1
Maximum concurrency 8
Adaptation delay time (update after how many transfers) 4

Policy Service Parameters Value
Initial stream allocation 4
Update allocation increment 4

Stream allocation for slow increases in policy service allocation 	
 Throughput	

!

!!

Policy-based Resource Allocation
Fast Increase

Several clients adapt up to 20, 28 and 32 streams, forcing the last three clients to wait
until those first clients complete their transfers and release the streams.

Client Parameters Value
Initial concurrency 4
Maximum concurrency 8
Adaptation delay time (update after how many transfers) 2

Policy Service Parameters Value
Initial stream allocation 16
Update allocation increment (streams) 4

Stream allocation for fast increases in policy service allocation 	
 Throughput	

Combined Effects:
Slow Client Side Adaptation and

Slow Increases in Policy Service Allocation

Each client starts out with 4 streams and slowly adapts toward a
maximum of 32 streams per client.

The throughput achieved for these transfers is 2 to 10 MB/second after
all 8 clients are active.

Stream used for combined slow PS allocation, client adaptation 	
 Throughput for combined slow PS allocation, client adaptation 	

! !

Combined Effects:
Fast Client Side Adaptation and

Fast Increases in Policy Service Allocation

Most clients starting out with 16 streams and adapting fairly quickly
towards 32 streams.

One client receives an initial allocation of only 4 streams from the PS
because all other streams have been allocated.

Two clients wait for earlier clients to finish and release resources

Stream used for combined fast PS allocation, client adaptation 	
 Throughput for combined fast PS allocation, client adaptation 	

! !

Experiment – Case 2
Compare performance of adaptive data transfers with unmodified

srm-copy client performance, under resource-constrained
environment

Transfer data from LBNL in Berkeley, CA to Open Science Grid site at
University of Nebraska at Lincoln (UNL), over 1Gbps link

8 srm-copy clients performing multi-file transfers: 260 Gbytes / 488 files
Default common parameters

Parameters for all Comparative Experiments Value

Maximum total streams between source/destination (scenarios 1 through 4) 256, 384, 512, 640

Number of clients 8

Parallelism: streams per file transfer 4

Adaptation increment/decrement 2 concurrency
(8 streams)

Initial Streams for adaptation (scenarios 1 through 4) 16, 16, 16, 32

Maximum streams per client for adaptation (scenarios 1 through 4) 64, 96, 128, 160

Non-adaptive concurrency (scenarios 1 through 4) 8, 12, 16, 20

Scenario 1

The adaptive transfers (red line) have greater cumulative throughput
than the non-adaptive transfers (black line).

Cumulative throughput for adaptive vs. non-adaptive transfers, max. 256
total streams, max. 64 streams per adaptive client

cumulative number of files transferred���
adaptive vs. non-adaptive 	

Scenario 2

There is a larger vertical separation between the adaptive throughput
(red line) and the non-adaptive throughput (black line).

Cumulative throughput for adaptive vs. non-adaptive transfers, max. 384
total streams, max. 96 streams per adaptive client

cumulative number of files transferred���
adaptive vs. non-adaptive 	

Scenario 3

The cumulative throughput of the adaptive transfers continues to
increase compared to the non-adaptive transfers as the contention
for resources on the infrastructure increases.

Cumulative throughput for adaptive vs. non-adaptive transfers, max. 512
total streams, max. 128 streams per adaptive client

cumulative number of files transferred���
adaptive vs. non-adaptive 	

Scenario 4

These experiments show a significant advantage in throughput and overall transfer
runtime for the adaptive, policy-based transfers compared to non-adaptive transfers on
resource-constrained infrastructure.

In the most resource constrained experiment (Scenario 4), the total transfer time is
reduced by approximately 20%.

Cumulative throughput for adaptive vs. non-adaptive transfers, max. 640
total streams, max. 160 streams per adaptive client

cumulative number of files transferred���
adaptive vs. non-adaptive 	

Summary

ADAPT project goals
•  Avoid overprovisioning of resources that results in suboptimal

transfer throughput
•  Provide simple transition from current data movement practices

to policy-based, adaptive data movement
ADAPT software stack

•  Provides significant throughput and completion time
improvements in resource constrained environments

•  Provides better resource utilization and higher throughput and
performance in a shared resource environment

Plans for next phase:
•  Integrating perfSONAR as performance monitoring archive
•  Exploring richer policies for managing resources, adaptation
•  Work with application communities to deploy and evaluate

ADAPT software

Acknowledgments
This work was supported in part by:
•  The National Science Foundation Office of

Cyberinfrastructure under award 1127101 (USC/ISI) and
award 1127039 (LBNL)

•  The Office of Advanced Scientific Computing Research,
Office of Science, of the U.S. Department of Energy
under Contract No. DE-AC02- 05CH11231

•  This work used resources provided by the Open Science
Grid, which is supported by NSF and the U.S. DOE Office
of Science
•  We thank Brian Bockelman, Garhan Attebury and Carl

Lundstedt at University of Nebraska, Lincoln and Iwona
Sakrejda at National Energy Research Scientific Computing
Center for their support on our experiments

Extra

Cumulative number of files transferred
for adaptive vs. non-adaptive transfers

Scenario 1	
 Scenario 2	

Scenario 3	
 Scenario 4	

Cumulative throughput
for adaptive vs. non-adaptive transfers

Scenario 1	

Scenario 2	

Scenario 3	
 Scenario 4	

