
Collective I/O Optimizations for Adaptive Mesh
Refinement Data Writes on Lustre File System

Dharshi Devendran∗, Suren Byna∗, Bin Dong∗,
Brian Van Straalen∗, Hans Johansen∗, Noel Keen∗, and Nagiza F. Samatova†

∗Lawrence Berkeley National Laboratory, CA 94720, USA Email: pdevendran@lbl.gov
†North Carolina State University, NC 27695, USA

Abstract—Adaptive mesh refinement (AMR) applications re-
fine small regions of a physical space. As a result, when AMR
data has to be stored in a file, writing data involves storing
a large number of small blocks of data. Chombo is an AMR
software library for solving partial differential equations over
block-structured grids, and is used in large-scale climate and
fluid dynamics simulations. Chombo’s current implementation
for writing data on an AMR hierarchy uses several independent
write operations, causing low I/O performance. In this paper,
we investigate collective I/O optimizations for Chombo’s write
function. We introduce Aggregated Collective Buffering (ACB)
to reduce the number of small writes. We demonstrate that
our approach outperforms the current implementation by 2×
to 9.1× and the MPI-IO collective buffering by 1.5× to 3.4× on
the Edison and Cori platforms at NERSC using the Chombo-
IO benchmark. Using the Darshan I/O characterization tool, we
show that ACB makes larger contiguous writes than collective
buffering at the POSIX level, and this difference gives ACB a
significant performance benefit over collective buffering.

Index Terms—Collective Buffering, Chombo, Parallel I/O,
Lustre File System

I. INTRODUCTION

Adaptive Mesh Refinement (AMR) is a significant advance
in large-scale scientific simulations on high-performance com-
puters (HPC) toward improving efficiency of computational
and memory requirements. AMR methods allow applications
to dynamically refine simulation resolution across space and
time. Several scientific simulations from cosmology, combus-
tion, climate, etc. are moving toward using AMR. Over the
last decade, several block-structured AMR libraries, such as
Chombo [1], BoxLib [3], FLASH [5], have become popular.
As a result of refinement based on information, AMR appli-
cations produce hierarchical, multi-level, and multi-resolution
meshes. Writing this complex data structure to storage devices
is often tricky as there are several small and disjoint pieces
of data to be stitched together, often causing poor parallel I/O
performance. In this paper, we study the parallel I/O module
of the Chombo library and optimize its performance using
aggregation techniques.

Chombo is a software library for solving partial differential
equations over AMR grids, and is currently being used for
large-scale climate and fluid dynamics simulations. Chombo
specializes in block-structured AMR grids, which divides the
grids into rectangular regions of uniform mesh-width, called
“boxes”. In general, a Chombo application spends most of

its time in solving the partial differential equations (PDEs)
that model a scientific problem. As a result, there has been a
significant research and development effort on improving the
performance of Chombo’s solvers and the algorithms involved
in computations [2], [13], [11], [9]. As these algorithms be-
come faster, Chombo’s I/O routines become a more prominent
bottleneck in performance.

Chombo uses the HDF5 library [12] to write out its data
to storage. In the current Chombo implementation, each MPI
process calls a separate HDF5 write function for each box on
the process, resulting in several independent small write opera-
tions, and ultimately low performance. Moreover, the layout of
boxes in the file and in memory affect the type of optimizations
we can use to improve I/O performance. In the HDF5 file,
the boxes are organized in lexicographic order to facilitate
fast reads of grid sub-regions. In the memory, the boxes are
distributed across MPI processes in a way that balances the
loads (usually measured by the number of points in a box)
across the processes as much as possible. The distribution of
boxes on the processes appear randomly distributed, and are
typically independent of lexicographic order. As a result, each
process writes to several non-contiguous regions in the file.

Collective I/O is a popular optimization strategy for appli-
cations that make several small non-contiguous accesses to a
file. There are a few studies that investigate the performance
of collective I/O in AMR-based codes [14], [8], [15], [7]. We
have found only one other paper, however, that studies I/O
performance for Chombo [6]. Howison et al. [6] introduce
optimizations for collective buffering on a Lustre file system,
and show that this new mode of collective I/O improves
Chombo’s I/O performance when applied to a Chombo I/O
benchmark.

In this paper, we build on the work in [6] by introducing
Aggregated Collective Buffering (ACB), a new strategy
for optimizing Chombo’s I/O. In Chombo’s current imple-
mentation, each MPI process only sends a single box for
writing, limiting the optimizations that MPI-IO’s collective
buffering can achieve. In ACB, we aggregate the boxes on
each process into one buffer in Chombo and use a union of
HDF5 hyperslabs to specify the locations of the boxes in the
file, so the boxes are still organized in lexicographic order in
the file.

We test the proposed ACB method on the Chombo I/O



benchmark on two Cray systems at the National Energy
Research Scientific Computing Center (NERSC), Edison and
Cori, and compare it to the performance of MPI-IO with
independent and collective buffering I/O modes. We show
that enabling collective buffering is 2.3× to 6.1× faster than
the current Chombo I/O implementation that is based on
independent I/O mode on Cori. Our new ACB mode is 3.9×
to 9.1× faster than the independent I/O version on Cori. On
Edison, Chombo with collective I/O mode is 1.1× to 1.6×
faster than that with independent I/O and ACB is 2× to
3.4× faster. We have also investigated how Lustre file system
striping affects performance, and used the I/O characterization
tool Darshan [4] to analyze the behavior of the three methods.

In Section 2, we provide background on Chombo I/O
and MPI-IO collective buffering. In Section 3, we introduce
our Aggregated Collective Buffering optimization strategy
for Chombo. In Section 4, we present our experiments and
evaluation of I/O performance and conclude our discussion in
Section 5.

II. BACKGROUND

A. Chombo

Chombo is a software package for solving partial differential
equations over a block-structured AMR mesh. This mesh is a
hierarchy of nested, uniform resolution grids. In general, only
the coarsest grid covers the problem domain. The refinement
ratio, which is a vector of integers, relates the resolutions of
two consecutive grid levels. In block-structured AMR, each
grid can be decomposed into rectangular regions, called boxes.

Application variables, such as temperature, velocity, pres-
sure, etc., are evaluated at centers of the cells making up
a box, at cell corners, or at the centroids of cell faces.
Different variables may be evaluated at different locations.
Ghost cells, or extra layers of cells surrounding a box, are
used to communicate information between boxes as well as
between different grid levels. In Chombo, the data on a box
and its ghost cells is contained in a multidimensional array.
We show an example AMR mesh with three grid levels in
Figure 1.

To store this data, Chombo uses HDF5, a library and
portable file format for storing complex data. HDF5 abstracts
out the details of writing data to storage, so application
developers can maintain an object-oriented view of their data.
It uses parallel MPI-IO to handle the low-level details of
writing data to a parallel file system.

Chombo writes out the data on the entire AMR mesh to a
single HDF5 dataset. In particular, the multidimensional array
containing the data on a box is flattened, and is represented
as a 1D array in the HDF5 file. In the HDF5 file, the AMR
boxes are organized in lexicographic order to facilitate fast
reads of grid sub-regions. Across MPI processes, however,
the boxes and their data are not distributed in lexicographic
order. Instead, the boxes and their data are divided up among
MPI processes to balance the load across the processes as
much as possible. The default load assigned to a box is the
number of cells in the box, but the application developer may

Fig. 1. An AMR mesh with three grid levels. The refinement ratio is (2, 2).
Only the coarsest grid covers the problem domain, and each grid is nested
within the next coarsest grid. Each grid can be decomposed into boxes or
rectangular regions. In this example, grid level 2 is decomposed into 2 boxes
(marked by thick blue lines): B0 and B1. Also in this example, the AMR
data consists of 3 variables: u, v, and p. u is evaluated at the vertical face
centers, v at the horizontal face centers, and p at the cell centers. Ghost cells
are used to exchange this data between boxes and across levels.

choose a different set of load assignments. Once loads are
assigned to the boxes, many applications sort the list of boxes
using Morton ordering, which favors putting spatially adjacent
boxes close together in the list. Finally, Chombo applies the
Kernighan-Lin algorithm to assign boxes to processes and
balance loads [1]. As a result of this procedure, the boxes
may appear randomly distributed across processes, and often
each process writes to non-contiguous regions in the file. In
Figure 2, we show an example on how boxes distributed across
MPI processes are written to disjoint locations in a HDF5
file. When data is written to a disk-based file system, due to
poor performance of disks with non-contiguous accesses that
require large number of costly disk seeks, I/O performance is
typically poor.

In addition, in the current Chombo implementation, each
process performs an independent write for each box on the
process. In particular, it first copies the data on a box into
a 1D buffer, and then it calls an HDF5 write function to
store the data. As a result, Chombo issues a large number
of independent write function calls that output small chunks
of data. The large number of small I/O requests is another
inefficiency on disk-based file systems, as the start-up time of
I/O requests is costly.

B. MPI-IO Collective Buffering

The parallel HDF5 library is dependent on MPI-IO for per-
forming data read and write operations to parallel file systems,
such as Lustre and GPFS. ROMIO, the most popularly used
MPI-IO implementation, provides various features for MPI
processes to write the data independently or collectively. In
the independent mode, each MPI process issues their own
I/O calls. As mentioned above, AMR applications often result
in small non-contiguous independent writes. However, disk-



Fig. 2. Boxes are distributed across MPI processes to balances loads
across the processes. In the HDF5 file, however, the boxes are organized
in lexicographic order. Because load balancing does not distribute the boxes
according to lexicographic order, each process writes to non-contiguous
regions of the file. In the HDF5 file, the data on a box (in this example,
the data are the variables u, v, and p evaluated on the grid) are represented
as a 1D array.

based parallel file systems perform very poorly when disk
has to be accessed many times and to write small data to
non-contiguous locations as the overheads of accessing and
seeking different locations on disk is costly. To reduce the
number of independent accesses to the file system by each
process, MPI-IO provides the collective buffering feature, also
known as two-phase I/O [10]. With collective buffering, MPI-
IO assigns a subset of the processes to be aggregators, which
gather data that will be written to contiguous sections of the
file into buffers (phase 1). As a result, these aggregators can
write out large chunks of contiguous data (phase 2) resulting
in fewer accesses to the file system. In Figure 3, we show how
MPI-Processes of Chombo work with collective buffering. In
HDF5, collective buffering of MPI-IO can be turned on by
specifying a dataset transfer property in an HDF5 write call.

There are several modes of collective buffering implementa-
tions in MPI-IO. The CB2 mode of the collective I/O routine
performs optimizations for Lustre file systems. Lustre uses
several Object Storage Targets (OSTs) to provide parallel
access to the file system. A file can be split into blocks across
these OSTs to read/write the file in a parallel fashion. The
size of each block is called a stripe, and the size of the
block is called the stripe size. The number of OSTs used
for storing a file is called the stripe count. Several studies
have shown that the write performance of Lustre significantly
deteriorates when the amount of data written to an OST is
not a multiple of the stripe size [6]. Also, Howison, et al.
demonstrated that choosing the number of MPI-IO collective
buffering aggregators to be equal to the number of OSTs gives
the best performance on Lustre. As a result, in the CB2 mode,
the aggregator buffer size is set to a multiple of the stripe size,
and the number of aggregators is set equal to the number of
OSTs. On Cray machines, CB2 mode is the default, and we
maintain this default in our experiments.

Fig. 3. Illustration of collective buffering. Chombo first copies the data on a
box (denoted by B0, B1, . . . ) into a 1D buffer (green), and then sends these
buffers to HDF5. In collective buffering, aggregators (A0, A1, . . . ) collect
the data sent by each of the processes (P0, P1, . . . ) into buffers (in green) to
write out as many contiguous chunks as possible. Note that aggregators only
have access to a subset of all the boxes at a time in this implementation of
Chombo.

1) Using collective I/O in Chombo: One of the require-
ments of HDF5 to work using MPI-IO collective buffering
is that all the processes have to participate in collective I/O.
Because collective I/O synchronizes writes across processes,
all processes must issue the same number of write calls, or
the application will hang. In Chombo, because every process
calls a write operation for each of its boxes, and the number of
boxes are not equal across all MPI processes, some processes
may not call write functions the same number of times. To
overcome this hurdle, we have a process call a write function
with empty data, if the process has finished writing out all of
its data, and other processes still have more data to write.

III. AGGREGATED COLLECTIVE BUFFERING (ACB)

Even in the collective buffering mode, each MPI process of
Chombo only sends a single box to the aggregators, which
restricts the amount of performance tuning that collective
I/O can achieve. For example, if the boxes are organized in
lexicographic order on the processes, which is the case in some
applications, each collective I/O call contains non-contiguous
chunks that cannot be aggregated further. Consequently, if we
can send multiple boxes on a process in a single write call,
collective I/O can perform much better. This is the motivation
for our aggregated collective buffering (ACB) approach.

In ACB, we copy several boxes on the process into a buffer,
instead of only copying one box into the buffer. In Figure
4, we show an example aggregation of boxes on processes
and how they are sent to MPI-IO aggregators that write out
the data to file system. We generate a union of hyperslabs
to specify the locations of the boxes in the file. In HDF5, a
hyperslab specifies a contiguous section in a file. Using a union
of hyperslabs, a HDF5 user can specify a set of file regions



Fig. 4. In Aggregated Collective Buffering (ACB), the boxes (B0, B1,...)
on the MPI processes (P0, P1,,PN) are first aggregated into a buffer for each
process. These buffers along with the locations of the boxes in the file are sent
in an HDF5 write function call. MPI-IO aggregators (A0, A1,,Am) collect the
boxes from all the processes and reorganize them into new buffers to minimize
the number of write calls.

in a single HDF5 write call. The hyperslabs in the union can
have different shapes and can be non-contiguous. With this
utility, we can maintain lexicographic order of boxes in the
file, and write multiple non-contiguous boxes in a single HDF5
write. A union of hyperslabs is generated using the function
H5S_SELECT_OR [12]. Once we have the union, we pass the
buffer and hyperslab union into a HDF5 write.

Note that ACB works at the Chombo level. In particular,
the aggregation of boxes occurs in the Chombo code before
any data is sent to HDF5 for writing, and is separate from the
aggregation performed by collective buffering.

Because ACB only aggregates boxes on a single process, it
does not require any extra communication. In particular, we
do not collect or shuffle boxes across multiple MPI processes.
The trade off is that ACB requires extra memory to aggregate
all the boxes. In the future, we will explore how MPI datatypes
can be used to reduce the amount of extra memory used [7].

We have implemented ACB within the Chombo library
source code. In particular, we added a for loop to aggregate the
boxes into a single buffer, and another for loop to form a union
of the hyperslabs. Because the method does not change the file
layout, none of Chombo’s read functions (or the applications
that depend on these functions) have to be modified.

We expect ACB will perform best when MPI-IO collective
buffering is turned on. As a result, we only consider the
performance of ACB in the collective buffering mode in this
paper. However, ACB can be used in independent I/O mode,
and we plan to explore this case in the future. Also, the number
of boxes that are aggregated into the buffer is a configurable
parameter in ACB. In this paper, we consider the effect of
aggregating all the boxes on an MPI process into the buffer.
Exploration of how different numbers of boxes affect the
performance of ACB is another future direction.

Fig. 5. Two views (front and side) of the AMR grid used in experiments on
Chombo I/O benchmark.

IV. RESULTS

A. Experimental Setup

We evaluate the performance of the three methods (indepen-
dent I/O, collective buffering, and ACB) using the Chombo I/O
benchmark. The benchmark was designed to study Chombo’s
write performance without the extra overhead of floating
point computations. The benchmark provides control over the
size of the data file through a vector parameter called the
replicating factor. In constructing the AMR grid for the test,
the benchmark takes a unit grid and duplicates the grid in each
of the coordinate directions. The replicating factor specifies the
number of times the grid should be replicated in each of the
coordinate directions. Figure 5 shows one unit of the grid (or
equivalently the resulting grid when the replicating factor is
set to (1, 1, 1)). This grid contains 3 levels, and is 64×64×64
on the coarsest domain. The refinement ratio is (4, 4, 4) for
all levels. In our experiments, we vary the replicating factor to
create different size files. The Chombo I/O benchmark also has
options for the load balancing scheme. We use the algorithm
described in Section II with Morton ordering.

Our experiments were performed on the supercomputers
Edison and Cori (Phase 1) at the National Energy Research
Scientific Computing Center (NERSC). Edison is a Cray
XC30 supercomputer with a Lustre parallel file system peak
aggregate I/O bandwidth of 72 GB/s. Cori, which is designed
for data-intensive simulations, is a Cray XC40 supercomputer
system with a Lustre file system that has a peak aggregate
I/O bandwidth of 744 GB/s. On Edison, 96 Object Storage
Targets (OSTs) are available for storing files (scratch2 file
system) and on Cori, 248 OSTs are available. On Cori, the
ratio of the number of Object Storage Servers (OSS) to OSTs
is one (1), i.e., each OSS manages one OST. On Edison, the
number of OSSs is 24, i.e., each OSS manages four OSTs.

B. Scalability Tests

First, we explore the scalability of the three methods (inde-
pendent I/O, collective buffering, and ACB) for the Chombo
I/O benchmark. Figures 6 and 7 show the write times of the
three methods at three different scales on Cori and Edison,
respectively. For the 61 GB file, we used 576 processes (24



Fig. 6. Scalability runs on Cori.

Fig. 7. Scalability runs on Edison.

compute nodes). The resultant HDF5 file was striped across
24 OSTs with a stripe size of 4 MB on both Cori and Edison.
For the 494 GB file, we used 3072 processes (96 compute
nodes). The file was striped across 96 OSTs with a stripe size
of 8 MB on Cori and Edison. Finally, for the 987 GB file,
5856 processes (244 compute nodes) were used. The file was
striped across 96 OSTs on Edison and on 244 OSTs on Cori,
with a stripe size of 16 MB.

On both systems, collective buffering and ACB outperform
the current implementation of Chombo with independent I/O.
The write times scale differently on the two systems because
of striping differences. On Cori, the 494 GB file is striped
across 96 OSTs, and the 987 GB file is striped across 244
OSTs. On Edison, however, both files are striped across 96
OSTs, the maximum number of OSTs available on Edison.

On Cori, collective buffering achieves a speedup of 2.6× to
5.3× over independent I/O, while ACB is 5.7× to 9.6× faster
than independent I/O, resulting in an extra factor of 1.6× to
1.8× performance improvement over collective buffering. On
Edison, collective buffering is only 1.1× to 1.6× faster than
independent I/O, whereas ACB is 2.6× to 3.8× faster than
independent I/O. This is a factor of 2× to 2.6× additional

Fig. 8. Striping test on Cori. The test was run with 3072 MPI processes
across 96 nodes, and it output a 494 GB data file. For each stripe count, we
tested against stripe sizes of 4 MB, 8 MB, and 16 MB.

Fig. 9. Striping test on Edison. The test was run with 2304 MPI processes
across 96 nodes, and it output a 494 GB data file. For each stripe count, we
tested against stripe sizes of 4 MB, 8 MB, and 16 MB.

speedup over collective buffering.

C. Striping Tests

In our scaling studies, we chose a particular set of striping
parameters. Next, we explore how much striping effects the
performance of the three methods. In these tests, we vary the
stripe count and stripe size for the 494 GB file test case, and
record the write times. On both Cori and Edison, we look at
stripe sizes of 4 MB, 8 MB, and 16 MB. For the experiments
on Cori, we choose the stripe count to be 48 OSTs, 72 OSTs,
96 OSTs, 120 OSTs, and 196 OSTs. On Edison, however, we
are restricted to a maximum of 96 OSTs, so we vary the stripe
count among 36 OSTs, 48 OSTs, 60 OSTs, and 96 OSTs.
Figures 8 and 9 show the results of this study.

The striping tests demonstrate that all three methods per-
form better when the file is striped across more OSTs, espe-
cially on Edison. The stripe size does not significantly affect
the write times for collective buffering and ACB, but increas-
ing stripe size slightly improves performance for independent
I/O mode.

On Cori, collective buffering is 2.3× to 6.1× faster than
independent I/O, while ACB is 3.9× to 9.1× faster than
independent I/O. This is a 1.5× to 1.8× speedup over collec-
tive buffering. On Edison, ACB provides even more speedup
over collective buffering than Cori. In particular, collective



Ind.
I/O,
48
OSTs

Ind.
I/O,
96
OSTs

Coll.
I/O,
48
OSTs

Coll.
I/O,
96
OSTs

ACB,
48
OSTs

ACB,
96
OSTs

MPI-
IO
writes

115268 115268 119808 119808 6912 6912

POSIX
writes

115628 115268 164270 164270 63241 63241

Top
access
size

4M 4M 4M 4M 8M 8M

Count
of top
access
size

115201 115201 42640 42689 63174 63177

Access
size 2

272 272 8M 8M 272 272

Count
of
access
size 2

15 15 4779 4830 16 16

TABLE I
TABLE OF STATISTICS FROM DARSHAN. IND. I/O = INDEPENDENT I/O.
COLL. I/O = COLLECTIVE I/O (USING COLLECTIVE BUFFERING). TOP

ACCESS SIZE REFERS TO THE WRITE SIZE ACCESSED MOST OFTEN.
ACCESS SIZE 2 IS THE SECOND MOST ACCESSED WRITE SIZE. 4M =

4599936 AND 8M = 8388608

buffering is only 1.1 × to 1.6× faster than independent I/O,
whereas ACB is 2× to 3.4× faster than independent I/O.

D. Analysis of Write Calls Using Darshan Characterization

To understand the performance behavior of the three meth-
ods, we used Darshan, an I/O characterization tool, to collect
statistics on the underlying write calls. We analyzed the
statistics for two test cases on Edison: the 494 GB file striped
across 48 OSTs with a stripe size of 8 MB and the 494 GB
file striped across 96 OSTs with a stripe size of 8 MB. Table
I compares the total number of POSIX write calls and MPI-
IO write calls for the three methods as well as the top two
access sizes. Figures 11 and 10 display the distributions of
MPI access sizes and POSIX access sizes, respectively.

In the tests, the total number of boxes is 115628, and the
graphs confirm that independent I/O uses a separate write
operation for each box. For collective I/O, the 2304 processes
collectively call write 52 times (the number of ‘layers” of
boxes) for a total of 119808 write calls. In ACB, on the other
hand, the 2304 processes make one collective write call on
each of the 3 levels, for a total of 6912 write calls.

As predicted, independent I/O makes several small write op-
erations. In particular, most of the independent I/O operations
are only 4 MB in size, with a few smaller writes. ACB, on
the other hand, has several large write calls between 100 MB
and 1 GB. At the POSIX level, this translates into 8 MB-sized
writes, based on the Lustre stripe size. Because of the small
number of relatively large and contiguous data writes, ACB
achieves a significant performance benefit.

In contrast, the distribution of POSIX writes for collective
I/O is much more spread out. At the MPI level, most of
the collective calls are between 4 MB and 10 MB. However,

Fig. 10. Distribution of write sizes at the MPI level for a 494 GB file test
case on Edison. The file was striped across 96 OSTs with a stripe size of
8 MB. The test was run with 2304 MPI processes across 96 nodes. Note
that the y-axis is on a log scale. Because all three methods had very few
write accesses in the 1K-4M range, we don’t include those accesses in this
distribution.

Fig. 11. Distribution of write sizes at the POSIX level for a 494 GB file
test case on Edison. The file was striped across 96 OSTs with a stripe size
of 8 MB. The test was run with 2304 MPI processes across 96 nodes. Note
that the y-axis is on a log scale.

these calls are divided into several POSIX write operations of
varying sizes. From Table I, most of the write operations are
4 MB in size, and some of them are 8 MB in size. Collective
buffering also requests several small writes between 0 and
100 bytes. We posit that the smaller write operations may be
aggregated on the server side, which reduces the write time
for collective I/O over independent I/O.

V. CONCLUSION

In this paper, we introduced aggregated collective buffering
(ACB), a new strategy for improving Chombo’s I/O per-
formance, and tested this method using the Chombo I/O
benchmark on Edison and on Cori. On both systems, ACB
outperforms independent I/O and collective I/O modes of MPI-
IO. Using the Darshan I/O tool, we analyzed the number
of write calls made by each of the three methods. ACB’s



performance can be attributed to the relatively small number
of large-sized write operations it makes.

For simplicity, we considered the case where ACB ag-
gregates all boxes on a process. In general, the number of
aggregated boxes is a parameter that can be set to balance
the tradeoff between extra memory usage and performance. In
the future, we will study how this parameter affects ACB’s
performance.

Although we implemented ACB within Chombo, there is
potential for applying this method to other applications. Other
AMR-based codes have data structures similar to boxes, and
ACB may be modified to work with other applications. Finally,
Cori provides burst buffers, a non-volatile storage that is
between processes’ memory and the disk-based parallel file
system. Burst buffers offer a different way to optimize I/O
performance, and we will explore in the future how ACB
performs on burst buffers.

ACKNOWLEDGMENT

This work is supported by the Director, Office of Science,
Office of Advanced Scientific Computing Research, of the
U.S. Department of Energy under Contract No. DE-AC02-
05CH11231. This research used resources of the National
Energy Research Scientific Computing Center (NERSC).

REFERENCES

[1] M. Adams, P. Colella, D. T. Graves, J.N. Johnson, N.D. Keen, T. J.
Ligocki, D. F. Martin, P.W. McCorquodale, D. Modiano, P.O. Schwartz,
T.D. Sternberg, and B. Van Straalen. Chombo software package
for AMR applications-design document. Lawrence Berkeley National
Laboratory Technical Report LBNL-6616E, 2000.

[2] Protonu Basu, Samuel Williams, Brian Van Straalen, Leonid Oliker, and
Mary Hall. Converting stencils to accumulations for communication-
avoiding optimization in geometric multigrid. Workshop on Stencil
Computations (WOSC), 2014.

[3] J. Bell, A. Almgren, V. Beckner, M. Day, M. Lijewski, A. Nonaka, and
W. Zhang. Boxlib users guide. Lawrence Berkeley National Laboratory
Technical Report, 2013.

[4] Philip Carns, Kevin Harms, William Allcock, Charles Bacon, Samuel
Lang, Robert Latham, and Robert Ross. Understanding and improving
computational science storage access through continuous characteriza-
tion. ACM Transactions on Storage, (7:8:1-8:26), October 2011.

[5] Anshu Dubey, Katie Antypas, Murali K. Ganapathy, Lynn B. Reid,
Katherine Riley, Dan Sheeler, Andrew Siegel, and Klaus Weide. Ex-
tensible component based architecture for flash, a massively parallel,
multiphysics simulation code. Parallel Computing, 35(10-11):512–522,
2009.

[6] Mark Howison, Quincey Koziol, David Knaak, John Mainzer, and John
Shalf. Tuning hdf5 for lustre file systems. Proceedings of 2010 Workshop
on Interfaces and Abstractions for Scientific Data Storage (IASDS10),
September 2010.

[7] Rob Latham, Chris Daley, Wei keng Liao, Kui Gao, Rob Ross, Anshu
Dubey, and Alok Choudhary. A case study for scientific i/o: improving
the flash astrophysics code. Computational Science and Discovery, 2012.

[8] Jianwei Li, Wei keng Liao, A. Choudhary, and V. Taylor. I/o analysis
and optimization for an amr cosmology application. Proceedings 2002
IEEE International Conference on Cluster Computing, 2002.

[9] P. McCorquodale, P. Colella, G. Balls, and S.B Baden. A scalable
parallel poisson solver with infinite-domain boundary conditions. Pro-
ceedings of the 7th Workshop on High Performance Scientific and
Engineering Computing, 2005.

[10] B. Nitzberg and V. Lo. Collective buffering: Improving parallel i/o
performance. HPDC 97: Proceedings of the 6th IEEE International
Symposium on High Performance Distributed Computing, 1997.

[11] Chaopeng Shen, David Trebotich, Sergi Molins, Daniel T Graves,
BV Straalen, DT Graves, T Ligocki, and CI Steefel. High performance
computations of subsurface reactive transport processes at the pore scale.
Proceedings of SciDAC, 2011.

[12] The HDF Group. Hierarchical data format version 5, 1997-2016.
[13] D. Trebotich, B.V. Straalen, D. Graves, and P. Colella. Performance of

embedded boundary methods for cfd with complex geometry. J. Phys.:
Conf. Ser., 2008.

[14] P. Wauteleta and P. Kestenera. Parallel io performance and scalability
study on the prace curie supercomputer. White paper, Prace, 2011.

[15] Yongen Yu, Douglas H. Rudd, Zhiling Lan, Nickolay Y. Gnedin, Andrey
Kravtsov, and Jingjin Wu. Improving parallel io performance of cell-
based amr cosmology applications. 2012 IEEE 26th International
Parallel and Distributed Processing Symposium, 2012.


