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ABSTRACT
Accurate analysis of HPC storage system designs is contin-
gent on the use of I/O workloads that are truly represen-
tative of expected use. However, I/O analyses are gener-
ally bound to specific workload modeling techniques such as
synthetic benchmarks or trace replay mechanisms, despite
the fact that no single workload modeling technique is ap-
propriate for all use cases. In this work, we present the
design of IOWA, a novel I/O workload abstraction that al-
lows arbitrary workload consumer components to obtain I/O
workloads from a range of diverse input sources. Thus, re-
searchers can choose specific I/O workload generators based
on the resources they have available and the type of eval-
uation they wish to perform. As part of this research, we
also outline the design of three distinct workload genera-
tion methods, based on I/O traces, synthetic I/O kernels,
and I/O characterizations. We analyze and contrast each of
these workload generation techniques in the context of stor-
age system simulation models as well as production stor-
age system measurements. We found that each generator
mechanism offers varying levels of accuracy, flexibility, and
breadth of use that should be considered before performing
I/O analyses. We also recommend a set of best practices for
HPC I/O workload modeling based on challenges that we
encountered while performing our evaluation.

1. INTRODUCTION
I/O workload modeling is a critical but frequently over-
looked aspect of storage system simulation and evaluation.
Storage systems must be studied in the context of appropri-
ate workloads to ensure that the evaluation is both relevant
and accurate, particularly HPC storage systems that are
often subjected to large-scale, coordinated I/O workloads.
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Various methods are available for capturing I/O workloads
from real-world systems, including tracing tools [29, 31, 34,
43], server and storage device instrumentation [17,21,25] and
application characterization [9,36,42]. Various methods are
also available for reproducing I/O workloads, including trace
replay tools [29, 31, 43, 44], synthetic benchmarks [1, 6, 24],
synthetic workload generators [20, 23], and application I/O
kernels [15,19,40]. Each method offers distinct tradeoffs; no
one technique works best in all scenarios.

In this work we present a generic I/O workload abstrac-
tion layer that interchangeably supports diverse sources of
large-scale HPC I/O workload data for use in storage system
simulations, I/O replay engines, and other I/O evaluation
and analysis tools. We leverage this workload abstraction
layer in the context of multiple I/O workload consumers be-
cause we observe that each lends itself to specific classes of
I/O evaluations—simulations allowing researchers to evalu-
ate new storage designs using relevant workloads and I/O
replays allowing researchers to directly examine the impact
of some workload on a specific storage system implementa-
tion, for instance. This abstraction layer also enables re-
searchers to select the appropriate source of workload infor-
mation depending both on the type of evaluation that they
wish to perform and on the data that is available. We eval-
uate and contrast three distinct methods for generating I/O
workloads in this framework using the following sources of
workload information.

• I/O trace workloads: I/O traces provide highly de-
tailed information regarding each I/O operation issued
by a traced application, including timing information
and I/O parameters. These traces can be used to re-
produce the exact I/O pattern exhibited by the orig-
inal application. Recorder [29] is an example tracing
tool that traces HPC applications at multiple layers of
the I/O stack.

• Synthetic I/O workloads: Synthetic I/O workloads
are manually developed I/O workload descriptions used
to impose some desired I/O pattern on a storage sys-
tem. As an example, the CODES I/O language [27]
allows researchers to model real or hypothetical I/O
workloads using domain-specific language constructs.



• I/O characterization workloads: I/O characteri-
zations provide high-level statistics such as access sizes
and interarrival times for application I/O operations,
rather than complete traces. Darshan [9] is one such
tool that provides I/O characterizations that may be
used to derive representative I/O workloads for a given
application.

The primary contributions of this paper are the design and
demonstration of a modular I/O workload abstraction layer
that supports numerous I/O representations, an evaluation
of the strengths and weaknesses of three distinct modeling
methodologies, and a recommended set of best practices for
I/O researchers to use when modeling HPC I/O workloads.
We also provide preliminary design details and performance
results for an innovative technique for synthesizing represen-
tative I/O workloads from Darshan I/O characterizations.

This paper is organized as follows. Section 2 provides
background information on each of our three target sources
for representative I/O workload information, as well as de-
tails regarding the CODES storage simulation framework.
In Section 3, we explain the design of our workload abstrac-
tion API and describe the implementation of the workload
generators we analyze in this study. Section 4 demonstrates
two potential use cases for the workload abstraction. In
Section 5, we provide some best practices for modeling HPC
I/O workloads based on challenges we encountered in the
process of analyzing our workload generation techniques. In
Section 6, we discuss prior research in the area of I/O work-
load modeling and storage system simulation. In Section
7, we summarize our findings and provide some potential
avenues for future research in this area.

2. BACKGROUND

2.1 I/O event tracing with Recorder
One way to capture I/O workloads from real-world systems
is event tracing. Event tracing tools trace program functions
of interest and capture detailed information about them such
as their parameters, timing information, and return value.
Recorder [29], a multilevel tracing framework, is an I/O trac-
ing tool that works at multiple layers of the parallel I/O
stack, namely, the HDF5, MPI-IO, and POSIX layers.

Recorder has both a static and a dynamic library that may
be linked to a given application (preloaded at runtime in the
case of the dynamic library). Whenever an MPI process calls
an I/O function that is instrumented at a specific layer of
the I/O stack by Recorder, the timestamp, function name,
arguments, return value, and the duration of the function
are stored into a per-process trace file. Analysis tools can
then inspect these trace files directly in order to extract high-
resolution details of the traced application’s I/O workload.

2.2 I/O workload description with the CODES
I/O language

The CODES storage simulation framework (Section 2.4) in-
cludes a domain-specific language that decouples HPC I/O
workload models from the simulations that execute
them [27]. The CODES I/O language can express aggre-
gate I/O patterns as well as independent I/O operations
for each process. It also provides synchronization (barrier),
conditional, and loop constructs to aid in the composition
of complex sequences of I/O operations. A parser library

converts CODES I/O language files into streams of events
for consumption by arbitrary I/O analysis tools (which have
traditionally been limited to CODES storage system mod-
els). The primary advantage of the CODES I/O language
is that it allows users to describe arbitrary synthetic I/O
patterns at any scale.

2.3 I/O characterization with Darshan
Darshan is a lightweight, application-level I/O characteriza-
tion tool designed to capture I/O access pattern information
from HPC applications with minimal overhead [9]. Darshan
does not log a complete record of each I/O function call
and its parameters. Instead, it gathers compact histograms,
cumulative timers, and statistics that represent salient prop-
erties of I/O behavior. This information is recorded inde-
pendently at each process on a per-file basis and stored in
a bounded amount of memory. Darshan defers all commu-
nication and storage activity until the application is shut-
ting down, at which time it aggregates shared file records,
compresses remaining file records in parallel, and writes the
results to a single, compact log file using collective I/O.

Although Darshan does not provide the fidelity of a tradi-
tional I/O tracing tool, its lightweight design makes it suit-
able for full-time deployment on production systems. Data
collected with Darshan has been used to perform broad stud-
ies of systemwide I/O trends [8] and to classify production
applications according to I/O behavior [10]. The ALCF I/O
Data Repository [7] provides public access to Darshan char-
acterizations of hundreds of thousands of HPC jobs spanning
a variety of scientific domains. An ability to generate I/O
models based on Darshan logs therefore has the potential to
provide access to a broad sampling of HPC applications.

2.4 CODES simulation framework
CODES [13] is a storage simulation framework for exploring
the design space of exascale storage systems. It can be used
to evaluate storage algorithms and storage architectures as
well as application I/O performance. CODES is built on
top of ROSS [11], a high-performance parallel discrete event
simulation system that has been shown to process billions of
events per second [3] at scale. ROSS achieves this massive
event rate primarily through its optimistic simulation strat-
egy [12], where events are speculatively executed and rolled
back in the case of causality violations. CODES is then able
to leverage this high-performance ROSS framework to sim-
ulate exascale storage architectures and compute resources
with high fidelity while still producing timely results.

CODES is organized as a collection of component models
that have been modularized to simplify validation and facili-
tate reuse across a variety of storage system models. For ex-
ample, CODES includes four different network interconnect
models that can be enabled at runtime and accessed through
a consistent API. A model configuration language is used to
describe how model components are connected, mapped to
simulation processes, and configured. Previous simulation
studies have successfully utilized a synthetic language to de-
scribe I/O workloads generated by compute nodes [27], but
a generalized I/O workload component and API are the next
logical steps toward enabling a broader variety of simulation
scenarios.



3. WORKLOAD GENERATION
TECHNIQUES

3.1 I/O workload abstraction: IOWA
In this section we propose the design of IOWA, a novel I/O
workload abstraction for generating workloads from a range
of diverse input sources, allowing researchers more flexibility
in the types of evaluations they may perform. We outline
the following design criteria for IOWA for effectively model-
ing I/O workloads and seamlessly integrating with arbitrary
workload generator and consumer components.

• The I/O workload model should be composed of an
ordered set of processes, each identifiable by a unique
integer, referred to as a rank. Rank values range from
0 to N − 1, where N is the size of the process group.

• I/O workloads should be described in terms not only
of widely available I/O primitives but also of delays
between operations and synchronization points across
processes.

• Independent streams of I/O operations should be pro-
duced for each workload process (such that each pro-
cess can consume operations at its own rate).

• The ability to “undo” the generation of an operation
should be an optional feature of the API to provide
compatability with optimistic simulation systems, such
as ROSS.

Because of the emergence of numerous high-level I/O li-
braries (e.g., MPI-IO, HDF5, PnetCDF), many options are
available regarding at which layer of the I/O stack to model
workloads. We choose to model I/O workloads using POSIX-
like file operations because these operations are generally
broadly portable across storage system implementations and
simulation models. Support for high-level I/O operations
could be incorporated into IOWA, but this requires that I/O
consumers be able to appropriately reproduce the high-level
operation. For example, additional simulation models may
be necessary in order to convert high-level I/O operations
into the native operations offered by a given storage system
model. Similarly, replaying high-level I/O language work-
loads may require porting the language to a new platform.

The actual file I/O operations currently supported by
IOWA include open, close, read, and write. Combining these
basic I/O operations with a delay operation for representing
application computational phases provides sufficient mech-
anisms for a workload generator method to model indepen-
dent I/O workloads. However, an additional mechanism for
synchronizing across application processes is needed in or-
der to adequately model parallel I/O workloads. To address
this issue, IOWA provides a barrier operation that forces
synchronization across all application processes. Consider
the behavior of a collective, two-phase I/O [38] operation
as an example of how this construct may be used. In the
two-phase I/O algorithm, I/O operations are split into sep-
arate communication and I/O phases, where all processes
communicate with a subset of aggregator processes that are
responsible for performing the actual file I/O operations (to
sequential, non-overlapping portions of the shared file, called
file domains). The communication step acts as an implicit
synchronization point that can be represented by using a
barrier operation in IOWA.

IOWA Component

Recorder
CODES I/O 
Language Darshan ....Workload 

Generator 
Methods

Storage 
System 

Simulation

I/O Replay 
Tool

I/O Workload 
Parser

....Workload 
Consumers

Figure 1: Interaction of IOWA component with ar-
bitrary workload generators and consumers.

In Figure 1, we provide a diagram illustrating the inter-
action of the IOWA component with example I/O work-
load generator methods and workload consumers. The re-
spective workload generator methods for Recorder traces,
CODES I/O language kernels, and Darshan characteriza-
tions are described in detail in the following sections. As
part of our evaluation of different workload generator meth-
ods, we interfaced multiple workload consumer components
with IOWA, including a storage system simulation model, an
I/O replay tool, and a text-based parsing tool for debugging
purposes.

Workload consumers interface with IOWA through a min-
imalistic API, composed of only two functions. The iowa_

workload_load function is responsible for initializing the
context necessary to generate workload events (e.g., load-
ing an I/O trace into memory). After the workload has
been initialized, events for a given process may be retrieved
one at a time by using the iowa_workload_get_next func-
tion. This function returns a structure identifying the type
of workload operation, as well as any respective parameters.
The workload generator may be continually polled in this
manner until a special event is returned indicating the end
of the workload stream.

In order for IOWA to be compatible with optimistic dis-
crete event simulation (the third goal of our design), the API
must also offer some support for reverse computation [12].
This implies that each I/O event must be reversible in or-
der to resolve optimistic event timestamp conflicts. The
iowa_workload_get_next function therefore has a compan-
ion function called iowa_workload_get_next_undo that will
return an I/O operation to the IOWA abstraction layer, in
effect allowing consumers to move forward and backward
in virtual time. Reversed operations are stored in an in-
memory, per-stream queue so that they can be subsequently
reissued in the correct order without perturbing the work-
load generator module. Thus, workload generator modules
need not be reverse computation aware themselves.

3.2 Recorder workload generator
As specified in the design requirements of IOWA, we focus
strictly on modeling I/O workloads at the POSIX layer for
this study. Accordingly, we configured Recorder to trace
POSIX I/O functions of interest (e.g., read and write) to
accurately reproduce each application I/O operation. In ad-
dition, we configured Recorder to trace MPI-IO functions to
help capture synchronization points in the original work-
load. Tracing both POSIX and MPI-IO functions allows us
to correlate which workload I/O operations were issued by



high-level collective I/O operations and allows us to model
the synchronization inherent in these collective operations.

Since Recorder stores a timestamped record for each appli-
cation I/O operation, the workload generator method can be
implemented just by parsing each record in the trace file and
generating corresponding I/O workload operations for func-
tions of interest. The relevant arguments to each traced I/O
operation (i.e., the access size and offset) are stored in the
trace file, allowing the workload generator to regenerate I/O
operations of the target application with total accuracy. To
model the computational phases of the target application,
the workload generator simply calculates the time deltas be-
tween consecutive I/O operations using the timestamps and
I/O operation durations logged in the trace file.

3.3 CODES I/O Language Workload
Generator

The CODES I/O language was left mostly unchanged from
its original implementation [27], save a minor change to al-
low the language to represent delays with a finer resolution.
While the I/O language does not include any specific mech-
anisms for describing collective I/O operations, it does offer
a barrier construct that can be used in conjunction with
other independent I/O operations to adequately model col-
lective I/O behavior, as previously mentioned in Section 3.1.
The CODES I/O language workload generator method sim-
ply uses a parser to translate the given language description
into a sequence of I/O operations for each process.

3.4 Darshan Workload Generator
Darshan I/O characterizations maintain detailed records for
each file opened by an instrumented application. These file
records include counters, timers, and other statistics charac-
terizing the I/O workload imposed by the application. The
salient data that Darshan tracks in each file record include
the following:

• I/O operation counts for multiple I/O APIs (POSIX,
MPI-IO, HDF5, and PnetCDF)

• Timestamps indicating when a file was opened and
closed and when the first and last read/write opera-
tions occurred

• Cumulative timers indicating how much time was spent
performing I/O

• Histograms of I/O access sizes and the four most com-
mon individual access sizes

However, accurately reproducing I/O workloads using
Darshan logs poses a significant challenge. The compact for-
mat used by Darshan to characterize application I/O behav-
ior omits several details that would be helpful in reconstruct-
ing the original workload. For example, Darshan records the
time span in which I/O occurs and the number of I/O opera-
tions, but it does not indicate precisely how those I/O oper-
ations are distributed within that time span. For files that
are opened collectively, Darshan further collapses all indi-
vidual file records into an aggregate record for all processes,
obscuring the role of individual processes in the collective
I/O pattern. To overcome these limitations, we apply basic
heuristics to classify the I/O strategy for a given file and
then derive representative workload streams based on sim-
plifying assumptions for that classification. This approach

Darshan
file record

rank: 0
open ts: 5.0:
close ts: 10.0
1st write ts: 6.0:
last write end ts: 8.0
# writes: 2
total write time: 1.0

Rank 0 I/O Workload

merge sort used to 
combine file record 
operations into 
single workload

delay=5 open delay=1 delay=1write write closedelay=2

Figure 2: Transforming Darshan file records into an
I/O workload.

allows us to reproduce I/O using distinct strategies tailored
for certain types of workloads (e.g., independent POSIX vs
collective HDF5 workloads).

Figure 2 shows the general process of transforming Dar-
shan I/O characterizations into comprehensive I/O work-
loads. At a high level, the process involves converting Dar-
shan file records into an ordered (by timestamp) set of I/O
events, then merge sorting the events from individual records
into a complete workload stream. More specifically, the gen-
erator for a specific process iterates the records stored in the
Darshan log (sorted according to process rank first, and time
of first open second) generating I/O events for each inde-
pendent file record corresponding to its rank, as well as any
shared file records. File read and write operations are evenly
distributed across the time span in which Darshan observed
I/O activity, as illustrated in Figure 2. A uniform distri-
bution based on the total idle time observed by Darshan
(i.e., the duration between initial and final I/O operations
minus the cumulative I/O time for the file) is used to model
the computational delays between successive I/O operations.
This approach allows the regenerated workload to achieve a
similar aggregate I/O rate to the file, although it will not
capture uneven bursts of activity in the I/O stream. We
leave exploration of alternative distribution functions (e.g.
Poisson or Pareto) for future work. It is not yet clear if such
distributions would be effective at modeling the I/O request
rate for individual processes.

Regenerating I/O workloads from Darshan shared file
records is more complicated, since important data regard-
ing the I/O workload is lost when the individual file records
are condensed into a single shared record. We therefore use
heuristics to classify the I/O patterns of these shared file
records into two cases: independent I/O to a shared file and
collective I/O to a shared file. If the shared file record coun-
ters indicate that high-level (e.g., MPI or HDF5) collective
I/O operations were issued to the file, then the generator
will use synchronization operations to emulate the collective
I/O algorithm. In the independent I/O case, I/O operations
are assigned to all workload processes in round-robin fash-
ion until no operations are left to generate. In the collective
I/O case, we emulate the behavior of two-phase I/O: a sub-
set of workload processes is selected to be responsible for
performing I/O to the file (i.e., aggregator processes), and
then I/O operations are similarly assigned in round-robin
fashion across this subset of processes. In each case, we as-



sume that each set of processes submitting I/O operations
to the file is responsible for its own independent file domain.

The access size for each operation is chosen based on his-
tograms of access sizes as well as the most common access
sizes observed by Darshan. For simplicity, offsets are as-
signed sequentially in a file.

4. EXAMPLE USE CASES
In this section we examine the behavior of each of the three
workload generators for example I/O workload use cases. All
application and replay examples were executed on Mira, an
IBM Blue Gene/Q supercomputer maintained by the Ar-
gonne Leadership Computing Facility (ALCF). Mira con-
sists of 786,432 cores and 768 terabytes of memory, capable
of achieving a peak performance of about 10 petaflops. More
relevant to this study is the high-performance I/O subsys-
tem available to Mira users—a GPFS file system offering 24
petabytes of capacity and up to 240 GiB/second bandwidth.

4.1 Storage system simulation
One of the most straightforward applications of IOWA is to
generate representative workloads for storage system simu-
lations. This capability can be used to ensure that storage
architecture and algorithm models are evaluated by using
relevant workloads. To test this functionality, we integrated
IOWA into an existing discrete-event storage system model
based on Intrepid, a recently decommissioned IBM Blue
Gene/P system. This storage system model has been vali-
dated in previous work [26] and used to explore the impact
of burst buffers in HPC storage architectures [27]. The In-
trepid model already included each major component of the
IBM Blue Gene/P storage architecture, including storage
devices, file servers, I/O forwarding nodes, compute nodes,
and interconnects. The compute node entities were updated
to ingest operations from IOWA in order to inject I/O events
into the storage system.

We model the I/O pattern of VPIC-IO as our initial sim-
ulation test case. VPIC-IO is an I/O kernel of the VPIC
plasma physics simulation code developed by Los Alamos
National Laboratory [4]. VPIC-IO leverages H5Part [2],
an API that offers a high-performance parallel data inter-
face to HDF5 intended for storing time-varying datasets in
particle physics applications. VPIC-IO writes a 1D parti-
cle array into a shared HDF5 file, with each particle con-
taining eight distinct variables. We analyzed a representa-
tive VPIC configuration with 8,192 MPI processes (16 MPI
processes per compute node) in order to focus on a spe-
cific scenario with detailed simulator instrumentation. The
Recorder traces and Darshan logs were obtained by using
link-time instrumentation on Mira, while the CODES I/O
language description of VPIC-IO was crafted by hand. The
I/O language representation for VPIC-IO was particulary
cumbersome to generate, since it was responsible for emu-
lating the two-phase I/O algorithm used to implement col-
lective I/O operations.

Because the Intrepid system has been decommissioned,
we were not able to directly validate simulation behavior
against a real-world system. We can contrast the three work-
load generators in simulation, however. Figure 3 plots the
aggregate number of write operations observed over 40 dis-
tinct intervals in the simulation of each workload generator’s
representation of the VPIC-IO workload. While the write
rates of each generator appear similar, subtle differences ex-
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Figure 3: Aggregate write I/O operation counts over
40 distinct intervals for each workload generator
method when simulating the VPIC I/O workload
using the CODES Intrepid storage system model.

ist between the generated workloads causing the CODES
I/O language and Recorder workloads to experience 8% and
5% increases in execution time, respectively. The increases
are due largely to periodic dips in write request rates at
the end of each collective write operation that appear in
the CODES I/O language and Recorder workload generator
methods but not in the Darshan method.

For the CODES I/O language workload generator, this
reduced write rate is an artifact of how the composed I/O
descriptions model the two-phase I/O algorithm. While the
CODES I/O language representation of the VPIC-IO work-
load correctly reproduces the aggregate write volume of the
collective I/O operations, the lack of expressiveness in the
I/O language results in an uneven distribution of this work-
load among aggregator processes. Specifically, the I/O lan-
guage representation assumes that all I/O operations of a
collective are the same size (i.e., the size of the collective I/O
buffer), rather than using smaller I/O sizes when possible.
Hence, in the last round1 of collective I/O, only a subset of
aggregators may be performing I/O operations, rather than
breaking the operations into smaller chunks such that no
aggregators are idle.

The reason for the reduced write rate in the Recorder
workload generator is related to how this method models
delays between consecutive operations. Because Recorder is
based on a direct trace of the application’s I/O behavior, it
generates delays verbatim as desribed in the original trace.
Thus, it may inadvertently reproduce runtime anomalies,
such as straggling processes, that reduce the overall I/O rate.
The Darshan and CODES I/O language generators avoid
this issue by distributing delays heuristically to average out
any variations in delay between I/O operations.

4.2 I/O workload replay
Another application of the IOWA workload model is for re-
play of representative workloads on actual HPC systems.
This capability can be used to evaluate application perfor-

1A collective I/O operation is composed of potentially nu-
merous rounds, where a round is one repetition of the two-
phase algorithm (i.e., a communication phase and an I/O
phase). The number of rounds depends on the aggregate
I/O size, the collective I/O buffer size, and the available
number of aggregators.



 0

 50

 100

 150

 200

 250

 300

 350

 400

8K 16K 32K 64K 128K

R
u
n
 t
im

e
 (

s
e
c
s
)

Workload size (processes)

Original IOR workload
Recorder replay

CODES I/O language replay
Darshan replay

Figure 4: Measured runtime for original IOR file-
per-process workload and each IOWA generated
workload replay on Mira.

mance on new platforms or to investigate I/O tuning param-
eters using a proxy application that is simpler to configure
and execute than the original scientific application. As men-
tioned previously, we have developed a generic MPI-based
replay tool that interfaces with IOWA to regenerate work-
loads on real HPC systems. This replay tool uses POSIX
calls to replay I/O operations, MPI barrier operations to re-
play synchronization, and a sleep mechanism to replay ap-
plication computation.

We elected to use the IOR benchmark as a simple initial
test case for this functionality. IOR is the de facto standard
I/O benchmark for HPC storage systems and can be config-
ured to generate a wide variety of I/O workloads [35]. We
configured IOR to use a unique file on each process, with
each process writing 64 MiB of data using 4 MiB POSIX
write operations. Again, Recorder traces and Darshan logs
for IOR were obtained by executing IOR profiling jobs with
link-time instrumentation on Mira. The CODES I/O lan-
guage description of IOR was created by hand according to
the selected IOR configuration. Note that we configured the
replay tool to ignore the delay operations in this experiment,
since the amount of time IOR spent computing is essentially
negligible compared with the time spent doing I/O.

Figure 4 compares the runtime of the original IOR bench-
mark with the runtime of the replay tool using the three ex-
ample workload generators as we vary the scale from 8,192
MPI processes to 131,072 MPI processes. All IOR and I/O
replay executions used 32 MPI processes per compute node.
One can see that each of the workload generators tracks
closely to the performance of the original IOR workload,
with no more than 10% error at any scale. This error is
within the anticipated amount of I/O performance variance
on this platform due to contention and other external fac-
tors. This workload is straightforward for each generator
to model because it does not involve any collective I/O or
computation.

5. I/O MODELING CHALLENGES
In the previous section we demonstrated that IOWA can be
used to drive arbitrary workload consumers, such as storage
system simulation models and I/O replay tools, using I/O
workload data from a variety of sources. During the course
of our experiments, we encountered numerous challenges re-
lated to I/O modeling accuracy, however. We further ob-
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served that some of these challenges are subtle and there-
fore have the potential to mask themselves from researchers
attempting to generate representative models of I/O work-
loads for a target system. In this section we investigate
some of these key challenges and propose best practices for
addressing them.

5.1 Collective operations
Section 4.2 demonstrated the use of IOWA for replay of an
IOR workload with each process performing independent
POSIX I/O to separate files. We next modified the IOR
configuration to use MPI-IO rather than POSIX for I/O,
use an interleaved I/O pattern, and enable collective I/O.
Although this example writes the same amount of data, it
uses two-phase I/O in ROMIO [38] to redistribute data to
a subset of processes (known as aggregators) before writing
data to the storage system. The results of this experiment
are plotted in Figure 5. This example shows a greater dis-
parity between the original workload execution time and the
I/O replay execution times than we observed in the file-per-
process example. At modest scales (up to 32K processes),
the Recorder workload generator attains comparable per-
formance (no more than 5% error) to that of the original
application. At larger scales, the performance begins to di-
verge slightly, ultimately exhibiting a roughly 26% decrease
in runtime compared with the target workload at 128K pro-
cesses. The I/O language and Darshan workload generators
exhibit much worse performance than the target workload
and diverge more rapidly than than the Recorder workload
generator, resulting in an increase in runtime of over 55% in
each case at a scale of 128K processes. We determined these
pronounced performance disparities to be related to subtle
issues in the manner in which each workload generator mod-
els collective I/O behavior.

Specifically, the CODES I/O language and Darshan work-
load generators fail to match the performance of the original
application because they do not take into account platform-
specific topology information. The Blue Gene/Q MPI-IO
implementation on Mira2 contains platform-specific opti-
mizations to select optimal aggregator processes as well as
optimal file domains for each aggregator. In particular, the
aggregator selection algorithm favors bridge nodes that can

2https://repo.anl-external.org/repos/bgq-driver/
V1R2M2/bgq-V1R2M2.tar.gz
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achieve higher throughput to the storage system, and file do-
mains are chosen to reduce lock contention by aligning to the
GPFS block size. The Recorder workload generator is not
susceptible to this problem because it reproduces the precise
aggregators, offsets, and sizes from the original application.
We illustrate the problem in greater detail in Figure 6, which
shows the starting offset (i.e., file domain) for each aggre-
gator process in a 8,192 process run of the IOR shared file
workload. The Darshan and CODES I/O language genera-
tors assign file domains sequentially throughout the file in
a similar manner. However, the Recorder generator reveals
that the aggregators are actually assigned in an unexpected
manner, likely related to the layout of MPI processes and
the topology of compute nodes on Mira. This discrepancy
did not affect our simulation results (since the model does
not reflect Mira’s topology), but it is clearly an issue for
workload replay on a real system.

The Recorder workload generator, in contrast, produces a
workload stream that exceeds the performance of the orig-
inal application at larger scales. We believe that this is
due to the fact that IOWA’s POSIX-level I/O representa-
tion does not allow us to capture the communication costs
associated with collective operations at scale. Instead, the
communication costs of two-phase I/O are modeled only by
a barrier operation. When I/O time is the dominant factor
in performance, this approach is adequate; but when net-
work transfer times are significant (e.g., in the presence of
contention), this modeling strategy falls short.

These results suggest the need for more accurate mod-
els of high-level I/O libraries and, in particular, collective
I/O operations. This is a relatively simple problem to ad-
dress when using IOWA to replay I/O workloads on a real
system, assuming the necessary libraries are available for re-
playing the desired I/O operations: new operations can be
added to IOWA to model the high-level I/O operations, and
the replay tool can be linked with the necessary library to
replay these operations. This would allow IOWA to trans-
parently model the underlying implementations of these I/O
operations with minimal effort and greater accuracy. This
strategy would be difficult to adopt in simulations studies,
however, as it would require the simulator to faithfully model
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in simulation of the VPIC-IO workload using the
CODES Intrepid storage system model.

both the I/O libraries and any topology-aware optimizations
that they might contain.

Best practices: High-fidelity modeling of collective I/O
algorithms generally requires accounting for platform-specific
optimizations and topology details. I/O workload gener-
ators and consumers should capture and replay high-level
I/O operations directly or else take care to ensure that the
workload data sources include enough topology and place-
ment information for authentic workload recreation.

5.2 High-level I/O library metadata
Another challenge related to accurately modeling I/O
workloads is reproducing subtle, internal I/O traffic pro-
duced by high-level I/O libraries. For instance, a high-level
I/O library may maintain a header or other metadata for
a given dataset that is concealed from users. While these
operations may represent only a negligible fraction of the
application’s aggregate I/O, the manner in which they are
reproduced has the potential to perturb the observed I/O
performance of the workload.

To illustrate this problem, we further analyze the VPIC-
IO benchmark from Section 4.1, again using the CODES
Intrepid storage model. The VPIC-IO benchmark leverages
the HDF5 I/O library, which stores internal metadata to as-
sist in maintaining the time-varying particle datasets using
the HDF5 file format. Figure 7 indicates how these metadata
operations are regenerated (i.e., what time and by which
application process) using each workload generator’s repre-
sentation of the VPIC-IO workload. The larger, bulk data
operations are omitted from this graph for clarity.

Note that we do not illustrate how the CODES I/O lan-
guage workload generator handles this issue. Since the I/O
kernels are developed manually, the manner in which these
metadata operations are reproduced is dictated by the ker-
nel developer and is thus uninteresting to analyze further.
To accurately reproduce this type of workload, an I/O ker-
nel developer would likely need assistance from other I/O
analysis tools (e.g., a tracing tool) or an in-depth knowledge
of the high-level I/O library implementation.

Since the Recorder traces at the POSIX layer (i.e., below
the HDF5 layer), the Recorder workload generator can re-
produce the HDF5 metadata operations with total accuracy.
The metadata operations are actually submitted to the stor-
age system at the end of the I/O workload, after the eight



Table 1: Original IOR file-per-process workload run-
time with varying memory allocation strategies.

Allocation Strategy Average Runtime (sec.)
default 270.7

dynamic uninitialized 340.2
pre-open 224.9

VPIC particle variables have been collectively written to file.
Specifically, application process ranks 0–17 each perform a
single independent write before closing the HDF5 file. The
Darshan workload generator correctly detects the presence
of the independent writes in the target workload, but it does
not distribute them correctly over time or processes because
the Darshan characterization lacks the level of detail needed
to do so. One potential way to help reproduce this type of
workload more accurately would be to modify Darshan I/O
characterizations to store timing information separately for
collective I/O operations and independent I/O operations.

Best practices: Application I/O workload models should
encompass indirect traffic produced by high-level library data
structures.

5.3 Memory allocation
Another key challenge that we encountered in I/O workload
modeling was the unexpected impact of memory allocation
strategies on overall I/O performance of our replay tool.
The replay tool prototype initially produced poor agreement
with the I/O performance of the original application runs
regardless of the generator being used. The root cause was
determined to be a subtle difference in memory buffer al-
location strategies between the original application (IOR in
this case) and the replay tool.

We investigated this issue using the original IOR bench-
mark as our test case in order to eliminate the workload re-
play tool itself as a potential source of noise. Table 1 shows
the difference in average IOR execution time on Mira for
a fixed configuration as we modify the memory allocation
strategy in IOR. We collected 10 independent samples for
each configuration in order to mitigate the impact of system
noise on the results. The three test cases can be described
as follows:

• Default : IOR’s default configuration: the memory
buffer to be used for I/O is allocated after creating the
output file. All bytes of the buffer are also initialized
before the first I/O operation occurs.

• Dynamic uninitialized : A modified version of IOR in
which a new buffer is allocated (and subsequently freed)
for each I/O operation. The memory is not initialized
before it is written.

• Pre-open: Same as the default case except that the
buffer is allocated and initialized before the file is cre-
ated rather than after it is created.

The dynamic uninitialized reflects the behavior of the ini-
tial replay tool prototype, but it clearly exhibits reduced
performance compared with that of the original IOR ap-
plication. We elected to use the default approach in the
replay tool in order to be consistent with the strategy used
by IOR. In practice, a real application may be more likely
to match the pre-open behavior, however. This case reflects

the standard practice of completing a round of computation
(with results in memory) prior to opening an output file
to write checkpoint or visualization data. Unfortunately,
it is not clear how to reliably determine which method an
application is using. The performance difference between
these approaches is surprising (over 100 seconds of runtime)
and warrants further investigation into the Blue Gene com-
pute node kernel implementation. We believe that this phe-
nomenon not only would affect replay tools but also would
perturb synthetic benchmarks.

Best practices: Faithful recreation of I/O access pat-
terns is not necessarily sufficient to ensure accurate replay;
memory allocation strategies also play a key role in I/O per-
formance.

6. RELATED WORK

6.1 I/O tracing tools
Several tracing tools have been developed to address differ-
ent HPC I/O workload analysis challenges. These tools are
complementary to IOWA in that they could potentially be
integrated as generator modules. //TRACE [31] is an I/O
trace replay tool that automatically discovers inter-node de-
pendencies and inter-I/O arrival rates to accurately recre-
ate application I/O behavior. ScalaIOTrace [43] is a scal-
able, multilevel MPI-IO tracing framework that includes a
trace replay engine; it can optionally replay MPI commu-
nication workloads as well. IPM [39] is a framework for
collecting, profiling, and aggregating HPC performance in-
formation, including data on the performance of parallel I/O
operations. TBBT [44] is an NFS trace replay tool that
supports spatial and temporal scaling of trace workloads.
HDTrace [22] is a framework for tracing MPI programs and
replaying these traces on either real or simulated clusters.
HDTrace also traces PVFS client and server activity and
gathers operating system, network, I/O, and CPU statistics
to enable correlation across the software stack. The traces
can be ingested by PIOsimHD, a discrete event simulator.

6.2 Synthesizing HPC I/O workloads
Synthesizing I/O workloads is an attractive alternative to
full I/O tracing because it addresses many of the shortcom-
ings of traces (e.g., lessened storage requirements, flexibility
to modify specific workload parrameters). In general, syn-
thesizing representative I/O workloads requires some sort
of model or characterization of the target application’s I/O
behavior. In most existing research, HPC application I/O
characterizations are generated by first tracing the I/O op-
erations of a target application and performing an in-depth
analysis of this trace offline [5, 14, 18, 30, 37]. In contrast,
Darshan I/O characterizations are automatically generated
at runtime.

Some novel workload generation techniques also have been
proposed in the literature, which could be applied in the
context of HPC I/O workloads. Kao presents a workload
generator technique that allows for generating workloads ac-
cording to numerous user “populations,” each of which can
be configured independently according to user-supplied dis-
tributions [20]. This functionality lends itself to the gen-
eration of ensemble HPC I/O workloads, where numerous
users with distinct I/O requirements compete for access to
a shared file system. Another interesting approach is given
by Kurmas et al., where workloads are automatically gener-



ated by iteratively distilling the workload parameters that
have the greatest impact on I/O performance out of some
target workload [23]. This approach is interesting because
it can yield representative I/O workloads for a given ap-
plication with no human intervention. He et al. present
PIONEER [18], a parallel I/O workload characterization
and generation framework, which attempts to address open
problems in parallel I/O workload modeling, such as inter-
process correlations and I/O library request dependencies.
The PIONEER approach is to analyze a workload’s trace
files offline in order to determine interprocess correlations
and to create a generic workload presentation that is used
by all workload processes to regenerate the workload. Also,
knowledge of I/O library request dependencies is used to
enforce a sensible ordering of workload operations.

6.3 Parallel file system simulations
Several parallel file system simulators (examples of potential
consumers of IOWA workload models) have been proposed
in the literature. The design philosophy of IMPIOUS [32]
centers on the use of simple, abstract file system component
models that enable easy adaptation. PFSsim [28] and SIM-
CAN [33] are two other highly modular and configurable
parallel file system simulators based on the OMNeT++ [41]
network simulation framework. PFSsim is designed specifi-
cally for the efficient evaluation of different I/O scheduling
algorithms, whereas SIMCAN emphasizes easily simulating
a range of HPC architectures and application I/O patterns.
FileSim [16] is another parallel file system simulator that is
geared toward end-to-end I/O performance prediction and
analysis of exascale HPC systems. FileSim’s parallel simula-
tion framework has been demonstrated using large-scale file
system models containing up to 52,000 clients [16].

Each of these simulators is driven primarily by I/O traces,
although some frameworks do provide support for generating
synthetic I/O workloads as well. IMPIOUS provides users
with generic I/O workload generators that can produce both
file-per-process and shared file checkpointing workloads, com-
mon among most HPC applications. SIMCAN provides
mechanisms for modeling HPC applications using state
graphs, which can in turn be used to drive the simulation
and analysis of the storage system model.

7. CONCLUSIONS
In this work we demonstrated the design of IOWA, a novel
workload abstraction layer that may be used by diverse tools
to regenerate and analyze I/O workloads. We implemented
three workload generators based on distinct representations
of I/O workloads: I/O traces, synthetic I/O kernels, and I/O
characterizations. We used a simulation model of an HPC
storage system to analyze and compare each IOWA workload
generation technique in detail, and we used an I/O replay
engine to evaluate each generator’s accuracy in regenerating
large-scale workloads on a production HPC storage system.
We also presented a set of best practices for practitioners
interested in generating HPC I/O workloads based on some
of the challenges we encountered during this research.

We found that each workload generation method offers its
own inherent tradeoffs related to accuracy, flexibility, and
breadth of use. The Recorder generator consistently repro-
duces the target workloads with the most accuracy, making
it the best workload generation method for in-depth study
of a specific application workload of interest. The I/O lan-

Table 2: Size (in KiB) of source workload files for
each application example from this study (each us-
ing 8K workload processes).

Workload Source
I/O Workload

IOR file IOR
VPIC-IO

per process shared file
Recorder

3,745.77 2,838.97 3,921.56
(compressed)
CODES I/O

.72 13.71 27.44
Language

Darshan 1,391.97 .65 .65

guage and Darshan workload generators also perform well
for independent workloads, but they lack the necessary de-
tail to reproduce collective I/O workloads as accurately as
a high-resolution trace replay.

Of our proposed workload generation methods, the
CODES I/O language is the most suited for studying hypo-
thetical or projected workloads, since the generated work-
load pattern is crafted manually and conducive to parame-
terization. It is by far the most labor-intensive method used
in this study, however, especially when the goal is to recreate
the access pattern of a specific target application.

Darshan’s lightweight nature has led it to be enabled by
default on a number of production HPC storage systems,
providing researchers access to a broad collection of repre-
sentative HPC I/O workloads. The Darshan logs are also the
most conducive to collaboration because of their small size
and Darshan’s anonymization capability. We have demon-
strated the initial design of a workload generation tech-
nique that can produce reasonable workloads from these
Darshan I/O characterizations, enabling researchers to eas-
ily use these workloads in future studies.

Table 2 provides data on the size of the workload rep-
resentations for each workload generator for each applica-
tion workload evaluated in this study. Clearly, the CODES
I/O language and Darshan datasets are typically smaller
than the Recorder traces by orders of magnitude. Note
that we give the size of the compressed Recorder traces even
though they must be uncompressed before consumed by the
Recorder workload generator method.

To summarize, we have found that each of our proposed
workload generation techinques is amenable to specific use
cases; determining which generator to use depends on the
type of I/O analysis to be performed. We have also demon-
strated that modeling I/O workloads at the lowest level
of the I/O stack (i.e., POSIX-level) is the most generally
portable option, but likely at the cost of accuracy in model-
ing high-level I/O workloads, such as collective workloads.
In future work, we hope to integrate more workload gener-
ation techniques into IOWA, including generators utilizing
probability distributions and generators that can extrapo-
late a given workload to larger scale. We also hope to refine
our technique for synthesizing workloads from Darshan char-
acterizations by gathering more detailed information on ap-
plication I/O workloads and leveraging this data to increase
workload regeneration accuracy.

Acknowledgments
This material is based upon work supported by the U.S. De-
partment of Energy, Office of Science, Advanced Scientific



Computer Research, under contract DE-AC02-06CH11357.
The research used resources from Argonne Leadership Com-
puting Facility. This work is also supported in part by
the Director, Office of Laboratory Policy and Infrastructure
Management of the U.S. Department of Energy under Con-
tract No. DE-AC02-05CH11231.

8. REFERENCES
[1] mdtest benchmark.

http://sourceforge.net/projects/mdtest/, 2015.

[2] A. Adelmann, R. Ryne, J. Shalf, and C. Siegerist.
H5Part: A portable high performance parallel data
interface for particle simulations. In Particle
Accelerator Conference, 2005. PAC 2005. Proceedings
of the, pages 4129–4131. IEEE, 2005.

[3] D. W. Bauer Jr, C. D. Carothers, and A. Holder.
Scalable time warp on blue gene supercomputers. In
Proceedings of the 2009 ACM/IEEE/SCS 23rd
Workshop on Principles of Advanced and Distributed
Simulation, pages 35–44. IEEE Computer Society,
2009.

[4] K. J. Bowers, B. Albright, L. Yin, B. Bergen, and
T. Kwan. Ultrahigh performance three-dimensional
electromagnetic relativistic kinetic plasma simulation.
Physics of Plasmas (1994-present), 15(5):055703, 2008.

[5] S. Byna, Y. Chen, X.-H. Sun, R. Thakur, and
W. Gropp. Parallel I/O prefetching using MPI file
caching and I/O signatures. In Proceedings of the 2008
ACM/IEEE conference on Supercomputing, page 44.
IEEE Press, 2008.

[6] D. Capps and W. Norcott. IOzone filesystem
benchmark. http://www.iozone.org/.

[7] P. Carns. ALCF I/O data repository. Technical
Report ANL/ALCF/TM-13/1, Argonne National
Laboratory (ANL), 2013.

[8] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang,
R. Latham, and R. Ross. Understanding and
improving computational science storage access
through continuous characterization. ACM
Transactions on Storage (TOS), 7(3):8, 2011.

[9] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and
K. Riley. 24/7 characterization of petascale I/O
workloads. In Proceedings of 2009 Workshop on
Interfaces and Architectures for Scientific Data
Storage, September 2009.

[10] P. Carns, Y. Yao, K. Harms, R. Latham, R. B. Ross,
and K. Antypas. Production I/O characterization on
the Cray XE6. In In Proceedings of the Cray User
Group meeting 2013 (CUG 2013), 2013.

[11] C. D. Carothers, D. Bauer, and S. Pearce. Ross: A
high-performance, low-memory, modular time warp
system. Journal of Parallel and Distributed
Computing, 62(11):1648–1669, 2002.

[12] C. D. Carothers, K. S. Perumalla, and R. M. Fujimoto.
Efficient optimistic parallel simulations using reverse
computation. ACM Transactions on Modeling and
Computer Simulation (TOMACS), 9(3):224–253, 1999.

[13] J. Cope, N. Liu, S. Lang, P. Carns, C. Carothers, and
R. Ross. Codes: Enabling co-design of multilayer
exascale storage architectures. In Proceedings of the
Workshop on Emerging Supercomputing Technologies,
2011.

[14] P. E. Crandall, R. A. Aydt, A. A. Chien, and D. A.
Reed. Input/output characteristics of scalable parallel
applications. In Proceedings of the 1995 ACM/IEEE
conference on Supercomputing, page 59. ACM, 1995.

[15] Department of Energy. CORAL.
http://asc.llnl.gov/CORAL-benchmarks/, 2015.

[16] S. Eidenbenz, M. Erazo, T. Li, and J. Liu. Toward
comprehensive and accurate simulation performance
prediction of parallel file systems. Technical report,
Los Alamos National Laboratory (LANL), 2011.

[17] S. Godard. Sysstat utilities home page.
http://sebastien.godard.pagesperso-orange.fr/,
2015.

[18] W. He, D. H. Du, and S. B. Narasimhamurthy.
PIONEER: A solution to parallel I/O workload
characterization and generation. In Cluster, Cloud and
Grid Computing (CCGrid), 2015 15th IEEE/ACM
International Symposium on, pages 111–120. IEEE,
2015.

[19] M. Heroux and R. Barrett. Mantevo project.
https://mantevo.org/, 2015.

[20] W.-I. Kao and R. K. Iyer. A user-oriented synthetic
workload generator. In Distributed Computing
Systems, 1992., Proceedings of the 12th International
Conference on, pages 270–277. IEEE, 1992.

[21] Y. Kim, R. Gunasekaran, G. M. Shipman, D. A.
Dillow, Z. Zhang, and B. W. Settlemyer. Workload
characterization of a leadership class storage cluster.
In 5th Petascale Data Storage Workshop (PDSW),
pages 1–5. IEEE, 2010.

[22] J. Kunkel. HDTrace – a tracing and simulation
environment of application and system interaction.
Hamburg. University of Hamburg–2011, 2011.

[23] Z. Kurmas, K. Keeton, and K. Mackenzie.
Synthesizing representative I/O workloads using
iterative distillation. In Modeling, Analysis and
Simulation of Computer Telecommunications Systems,
2003. MASCOTS 2003. 11th IEEE/ACM
International Symposium on, pages 6–15. IEEE, 2003.

[24] Lawrence Livermore National Laboratory. IOR
benchmark. https://github.com/chaos/ior, 2015.

[25] Lawrence Livermore National Laboratory. Lustre
Monitoring Tool (Github).
https://github.com/chaos/lmt, 2015.

[26] N. Liu, C. Carothers, J. Cope, P. Carns, R. Ross,
A. Crume, and C. Maltzahn. Modeling a
leadership-scale storage system. In Parallel Processing
and Applied Mathematics, pages 10–19. Springer, 2012.

[27] N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross,
G. Grider, A. Crume, and C. Maltzahn. On the role of
burst buffers in leadership-class storage systems. In
Proceedings of 28th IEEE MSST conference, 2012.

[28] Y. Liu, R. Figueiredo, D. Clavijo, Y. Xu, and M. Zhao.
Towards simulation of parallel file system scheduling
algorithms with PFSsim. In Proceedings of the 7th
IEEE International Workshop on Storage Network
Architectures and Parallel I/O (May 2011), 2011.

[29] H. Luu, B. Behzad, R. Aydt, and M. Winslett. A
multi-level approach for understanding I/O activity in
HPC applications. In Cluster Computing
(CLUSTER), 2013 IEEE International Conference on,
pages 1–5, Sept 2013.



[30] S. Méndez, D. Rexachs, and E. Luque. Modeling
parallel scientific applications through their
input/output phases. In Cluster Computing
Workshops (CLUSTER WORKSHOPS), 2012 IEEE
International Conference on, pages 7–15. IEEE, 2012.

[31] M. P. Mesnier, M. Wachs, R. R. Sambasivan, J. Lopez,
J. Hendricks, G. R. Ganger, and D. O’Hallaron. Trace:
Parallel trace replay with approximate causal events.
In Proceedings of the 5th USENIX Conference on File
and Storage Technologies, pages 24–24, Berkeley, CA,
USA, 2007. USENIX Association.

[32] E. Molina-Estolano, C. Maltzahn, J. Bent, and
S. Brandt. Building a parallel file system simulator. In
Journal of Physics: Conference Series, volume 180,
page 012050. IOP Publishing, 2009.
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