
Pattern-driven Parallel I/O Tuning

Babak Behzad
University of Illinois at
Urbana-Champaign

Surendra Byna
Lawrence Berkeley National

Laboratory

Prabhat
Lawrence Berkeley National

Laboratory

Marc Snir
Argonne National Laboratory,

University of Illinois at
Urbana-Champaign

ABSTRACT
The contemporary parallel I/O software stack is complex
due to a large number of configurations for tuning I/O per-
formance. Without a proper configuration, I/O becomes a
performance bottleneck. As high performance computing
(HPC) is moving towards exascale, poor I/O performance
has a significant impact on the runtime of large-scale simu-
lations producing massive amounts of data. In this paper,
we focus on developing a framework for tuning parallel I/O
configurations automatically. This auto-tuning framework
first traces high-level I/O accesses and analyzes data write
patterns. Based on these patterns and historically avail-
able tuning parameters for similar patterns, the framework
selects best performing configurations at runtime. If pre-
vious history for a pattern is unavailable, the framework
initiates model-based training to acquire efficient set of tun-
ing parameters. Our framework includes a runtime system
to apply the selected configurations using dynamic linking,
without the need for changing application source code. In
this paper, we describe this framework and evaluate it using
multiple I/O kernels extracted from real applications and
demonstrate substantial I/O performance improvement.

1. INTRODUCTION
HPC applications from various scientific domains produce

and consume massive amounts of data. For example, plasma
particle codes such as VPIC [5] simulating ten trillion parti-
cles can produce ≈300 TB data per time step [6]. Similarly,
cosmology datasets also simulate trillions of particles pro-
ducing data in the range of 10’s of TB in size [21]. Since
many scientific simulations need to write massive datasets
to parallel storage and read them for post-processing anal-
ysis, efficient parallel write and read operations are critical
to scientific discovery.

The contemporary parallel I/O software stack includes
high-level I/O libraries, i.e., HDF5 and NetCDF, I/O mid-
dleware such as MPI-IO, parallel file system such as Lustre

c© 2015 Association for Computing Machinery. ACM acknowledges that this con-
tribution was authored or co-authored by an employee, contractor or affiliate of the
United States government. As such, the United States Government retains a nonexclu-
sive, royalty-free right to publish or reproduce this article, or to allow others to do so,
for Government purposes only.
PDSW 2015 November 15-20, 2015, Austin, TX, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-4008-3/15/11 ...$15.00.
DOI: http://dx.doi.org/10.1145/2834976.2834977.

and GPFS. Each of these layers offer various configurable
tuning parameters. When these configurations match “well”
through all the layers, read or write operations perform effi-
ciently. Manual characterization, tuning, and optimization
of parallel I/O performance on multiple platforms have been
proven to be effective [27, 13]. However, finding the right
combinations of tunable parameters is complex on large-
scale supercomputers because the search space is enormous.
For example, on a Lustre file system using HDF5 chunk-
ing it can contain up to 336,000 possible configurations [4].
Finding these parameters automatically is even more chal-
lenging. While auto-tuning has been extensively studied in
optimizing computational algorithms [24, 10, 14, 23, 26, 8,
25], applying the same techniques to parallel I/O tuning is
nontrivial. One of the challenges is the sensitivity of paral-
lel I/O performance because of interdependent parameters
of various software layers. Additionally, in contrast to com-
putational kernel tuning, where the compute nodes are not
shared by other users, the parallel I/O system is shared by
hundreds of applications.

In our prior work, we have shown the effectiveness of I/O
tuning at multiple layers of tunable parameters using genetic
algorithms [4]. We have improved the configuration search
process significantly by developing an empirical performance
prediction model for a selection of I/O kernels derived from
real scientific simulations [1, 2]. Despite these efforts, the
challenge of tuning an arbitrary I/O phase at runtime in
a simulation remains an open issue. For instance, when
a simulation needs to perform a large write operation, an
I/O autotuning framework is required to identify the char-
acteristics of the write operation, to find optimal tunable
parameters, and to apply them at runtime without the need
to stop the simulation for recompiling the simulation code
with the optimal configurations.

In this paper, we address the requirements of an autotun-
ing framework mentioned above. We first define high-level
I/O patterns to characterize write operations. We use our
tracing library to collect high-level I/O calls, such as HDF5
data model definition and write calls. This library uses bi-
nary instrumentation to redirect a set of HDF5 calls to col-
lect the required information. We analyze these traces to
obtain the I/O pattern information of a simulation’s I/O
phase. We then match the patterns with previously tuned
I/O kernels for obtaining their optimal configurations. We
provide a runtime library to apply the selected optimal con-
figuration without the need for recompiling the code. If a
matching previously tuned pattern was not available, we use
our empirical prediction model to find tuning parameters at

43

offline and store them in the database for future use.
Overall, this paper has the following contributions:

• We provide a new representation for I/O patterns based
on the traces of high-level I/O libraries, such as HDF5.
This definition contains the global view of I/O accesses
from all MPI processes in parallel applications.

• We develop a trace analysis tool for identifying I/O
patterns of an application automatically.

• We show that using our runtime library, users can
achieve significant portion of the peak I/O performance
for arbitrary I/O patterns.

The remainder of the paper is structured as follows: In
Section 2, we introduce our auto-tuning framework and present
the functions of various components in the framework. We
describe our experimental setup to test the framework and to
evaluate performance improvement in Section 3. We present
the related work in Section 4 and conclude the discussion in
Section 5.

2. I/O AUTOTUNING FRAMEWORK
Figure 1 illustrates an overview of our proposed I/O auto-

tuning framework. It consists of two phases: The first phase
is the tuning phase, which performs extraction of the I/O
pattern of an application. Once a pattern is extracted,
there is a look-up phase in which the pattern is queried in
a database of patterns and corresponding tuned configura-
tions for the best I/O performance. If the pattern is found
in this database, then the model associated with the pat-
tern are stored in an XML file. In the adoption phase, the
application is dynamically linked with our H5Tuner library
for setting the selected tuning parameters in the XML file
at runtime.

Tuning	
Phase	

Adop0on	
Phase	

Applica0on	
Extract	 I/O	
Kernel	 and	
Pa;ern	

Lookup	 for	
Tuned	

Parameters	

Pairs	 of	 pa;erns	 and	 tuned	
parameters	

Tuned	
parameter	
set	 (XML	
file)	

Tuned	
parameter	
set	 (XML	
file)	

Applica0on	

H5Tuner	
Dynamic	
Library	

HPC	
System	

HDF5	
File	

Model-‐based	
tuning	

Pa;ern	
previously	
tuned?	

Yes	

No	

Figure 1: An overview of our I/O autotuning frame-
work

Our previous work [1, 4] describe the adoption phase in
detail. This paper describes the tuning phase of the frame-
work, on detecting I/O pattern and matching a detected
pattern with the history of tuned parameter. In order to
have a simpler description of these components, we use a
sample parallel HDF5 application distributed along with the
HDF5 source code, called pH5Example. The code creates two
two-dimensional HDF5 datasets and writes them to a file.

2.1 I/O Traces
To be able to automatically extract the I/O activities of

an application, we need to first extract the characteristics of

I/O operations it is conducting. The I/O trace of an applica-
tion is used towards this end. In our previous work, we have
developed a multi-level I/O tracer tool, called Recorder [16];
It uses dynamic library pre-loading and intercepting I/O
functions at different levels of the I/O stack. We observe
that the best level of the I/O stack to define I/O patterns
is at the higher-level I/O libraries such as HDF5. There-
fore, we made use of the Recorder to capture all the HDF5
I/O operations of an application. At the end of one run of
the application on P processes, P trace files are generated
by the Recorder library. Figure 2 shows the trace file for
process 0 of a four-process run of pH5example code. There
are different function calls traced, causing to first create a
HDF5 file (named "ParaEg0.h5"), then create two datasets
(named "Data1" and "Data2"), then each process selects a
hyperslab of these datasets, they write the data to them and
close the file.

1396296304.23583 H5Pcreate (H5P_FILE_ACCESS) 167772177 0.00003
1396296304.23587 H5Pset_fapl_mpio (167772177,MPI_COMM_WORLD,
469762048) 0 0.00025
1396296304.23613 H5Fcreate (output/ParaEg0.h5,2,0,167772177) 16777216
0.00069
1396296304.23683 H5Pclose (167772177) 0 0.00002
1396296304.23685 H5Screate_simple (2,{24;24},NULL) 67108866 0.00002
1396296304.23688 H5Dcreate2 (16777216,Data1,H5T_STD_I32LE,
67108866,0,0,0) 83886080 0.00012
1396296304.23702 H5Dcreate2 (16777216,Data2,H5T_STD_I32LE,
67108866,0,0,0) 83886081 0.00003
1396296304.23707 H5Dget_space (83886080) 67108867 0.00001
1396296304.23708 H5Sselect_hyperslab (67108867,0,{0;0},{1;1},
{6;24},NULL) 0 0.00002
1396296304.23710 H5Screate_simple (2,{6;24},NULL) 67108868 0.00001
1396296304.23710 H5Dwrite (83886080,50331660,67108868,67108867,0) 0
0.00009
1396296304.23721 H5Dwrite (83886081,50331660,67108868,67108867,0) 0
0.00002
1396296304.23724 H5Sclose (67108867) 0 0.00000
1396296304.23724 H5Dclose (83886080) 0 0.00001
1396296304.23726 H5Dclose (83886081) 0 0.00001
1396296304.23727 H5Sclose (67108866) 0 0.00000
1396296304.23728 H5Fclose (16777216) 0 0.00043

Figure 2: A sample I/O trace generated by the
Recorder for a simple parallel application called
pH5Example

The following subsection discusses how we make use of
the information in the trace files to come up with the I/O
pattern of the application.

2.2 Extraction and Identification of High-level
I/O Patterns

For performing automatic tuning of writing large datasets,
we first need to identify the I/O pattern of the write opera-
tion. We define these patterns from observing the high-level
I/O library calls, i.e., HDF5 calls.

As mentioned previously, high-level I/O libraries give us
much more information in order to define and distinguish
the way different applications conduct the I/O operations.
One example and probably the main one is the concept of
selection in HDF5. Selection is an important and a very
powerful feature of HDF5 library that lets the developers
select different parts of a file and different parts of memory
in order to conduct I/O operations. It also is the main
mechanism for the processes to choose different parts of the
file in a parallel I/O application. Therefore, we base our
definition of I/O patterns on the concept of selection. In
summary, we will define the I/O pattern of an application
as a coverage of the datasets based on the selections they
make.

44

In HDF5 terminology, hyperslabs are portions of datasets,
either a logically contiguous collection of points in a datas-
pace, or a regular pattern of points or blocks in a datas-
pace. In a parallel HDF5 program, once each process defines
both the memory and file hyperslabs they execute a partial
read/write [11]. In HDF5, the hyperslabs are selected using
H5Sselect_hyperslab function. The four parameters that
can be passed to this function are start, stride, count, and
block: The start array is used by each process to specify
the starting location for the hyperslab; The stride array
specifies the distance between two consecutive selected ele-
ments or blocks. The count array for specifying the number
of the elements/blocks to select; Finally, the block array
specifies the size of the block selected from the dataspace.

In order to be concrete, we illustrate the definition of I/O
patterns with an example application we have used in this
paper. Figure 3 shows the four hyperslab selection of a par-
allel four-process run of pH5Example.

H5Sselect_hyperslab (...,H5S_SELECT_SET,{0;0},{1;1},{6;24},NULL) 0

H5Sselect_hyperslab (...,H5S_SELECT_SET,{6;0},{1;1},{6;24},NULL) 0

H5Sselect_hyperslab (...,H5S_SELECT_SET,{12;0},{1;1},{6;24},NULL) 0

H5Sselect_hyperslab (...,H5S_SELECT_SET,{18;0},{1;1},{6;24},NULL) 0

Rank 0:

Rank 1:

Rank 2:

Rank 3:

herr_t H5Sselect hyperslab(hid_t space_id, H5S_seloper_t op, const
hsize_t *start, const hsize_t *stride, const hsize_t *count, const
hsize_t *block)

Function Signature:

Figure 3: The four HDF5 hyperslab selection func-
tion calls across different ranks of a parallel four-
process run of pH5Example

As it can be seen, all the processes are calling the same
function with the same arguments except for start. The
values of these start arrays are {0, 0}, {6, 0}, {12, 0}, and
{18, 0}. The values of count arrays on all the ranks are {6,
24}. The call specifies that the 2D dataset is decomposed
in the first dimension, with each process accessing a distinct
horizontal slice.

In order to abstract these patterns, we make use of ar-
ray distribution notation that was also used in High Perfor-
mance Fortran (HPF)[19]. High Performance Fortran uses
data distribution directives to help the programmer to dis-
tribute data between processes. Among these directives,
DISTRIBUTE directive is used to specify the partitioning of
the array data on to an abstract processor array. The basic
distributions are BLOCK, CYCLIC, and DEGENERATE. A differ-
ent distribution can be used for each dimension. Below is a
short description of each of these distributions:

1. Block Distribution: In a block distribution, each
process gets a single contiguous block of the array.

2. Cyclic Distribution: In a cyclic distribution, ar-
ray elements are distributed in a round-robin manner.
This means that the first element is on the first pro-
cess, the second element on the second process and so
on.

3. Degenerate Distribution: Degenerate distribution,
represented by *, is basically no distribution or serial

distribution. It means that all the elements of this
dimension is assigned to one processor.

Using this terminology for the sample pH5Example ap-
plication is straightforward. First of all, there is one HDF5
dataspace in the whole application created by the use of
H5Screate_simple() function. It is a 2D dataspace of size
24× 24. Then there are two datasets created on this datas-
pace named Data1 and Data2. Then each of the ranks are
selecting their own decomposition of the space and create
two datasets of the size of the selected set as their memory
dataset. Finally there are two H5Dwrite() function calls to
write to Data1 and Data2. Using HPF terminology we can
abstract pH5Example as the following:

• pH5Example:
<2D, (BLOCK, *), (6, 24)>

<2D, (BLOCK, *), (6, 24)>

The advantage of this representation is that it is succinct
enough in order to be stored in a key-value store as the
I/O pattern repository. Currently, we are using text files
to store the patterns without requiring a global database.
However, as the number of patterns grow, in order to store
the patterns associated with their I/O performance model,
we can use a key-value store database. The schema of this
database should include the dimensions of the patterns, their
decompositions, their sizes, and the corresponding I/O per-
formance model.

3. SETUP AND EVALUATION RESULTS
We have conducted all the experiments presented in this

paper on two platforms, Edison and Hopper, located at
the National Energy Research Scientific Computing Center
(NERSC): Edison is a Cray XC30 system consisting 5, 576
twenty-four core Lustre file systems. We have used a Lus-
tre partition of the file system in these experiments that
has a maximum of 96 OSTs with 48 GB/s peak I/O band-
width. Hopper is a Cray XE6 system, where we used a
Lustre file system with 156 OSTs and a peak bandwidth of
about 35GB/s for storing data.

In this paper we chose different I/O benchmarks and ker-
nels. I/O kernels are simpler applications that issue the
same I/O operations as a full-scale HPC applications. The
four I/O kernels we have looked at are: Vector Particle-In-
Cell (VPIC-IO), VORPAL-IO, and Global Cloud Resolving
Model (GCRM-IO) and FLASH-IO. Below is a brief descrip-
tion of these I/O benchmarks.

• IOR—I/O benchmark: IOR [15] is an I/O bench-
mark developed at LLNL for the procurement of the
ASCI Purple. Since it is highly-configurable and con-
tains different I/O interfaces, it serves as one of the
main HPC I/O benchmarks.

• VPIC-IO—plasma physics: Vector Particle-In-Cell
(VPIC)[5] is a computer code simulating plasma be-
havior. VPIC-IO, replays only the I/O operations of
VPIC application by creating a file, writing eight vari-
ables and closing the file.

• VORPAL-IO—accelerator modeling: VORPAL[17]
is an acceleration modeling and computation plasma
framework developed by Tech-X Corporation. VORPAL-
IO, replays only the I/O operations of VORPAL.

45

P0 = [{0}, {1}, {8 M}, {0}]
P1 = [{8 M}, {1}, {8 M}, {0}]
P2 = [{16 M}, {1}, {8 M}, {0}]

...

[start, stride, count, block]

P0 P1 P2 ... Pn

0 8 M 16 M 24 M

(a) VPIC-IO

P0 = [{0,0,0}, {1,1,1}, {1,26,327680}, {0,0,0}]
P1 = [{0,0,327680}, {1,1,1}, {1,26,327680}, {0,0,0}]
P2 = [{0,0,655360}, {1,1,1}, {1,26,327680}, {0,0,0}]

...
.
.

[start, stride, count, block]

(b) GCRM-IO

P0 = [{0,0,0}, {1,1,1}, {60,100,300}, {0,0,0}]
P1 = [{0,0,300}, {1,1,1}, {60,100,300}, {0,0,0}]
P2 = [{0,100,0}, {1,1,1}, {60,100,300}, {0,0,0}]

...
.
.

[start, stride, count, block]

(c) VORPAL-IO

Figure 4: I/O pattern of the (a) VPIC-IO (b) GCRM-IO (c) VORPAL-IO benchmark

• GCRM-IO—global atmospheric model: Global
Cloud Circulation Model (GCRM)[18], is a faily new
atmospheric model taking large convective clouds into
global climate models.

• FLASH-IO—high-energy density model: FLASH
I/O benchmark routine mimicks the I/O of the FLASH
parallel HDF5 write operations. It has the data struc-
tures in FLASH application and writes a checkpoint
file, a plotfile with centered data, and a plotfile with
corner data.

Figures 4(a)-4(c) show the I/O accesses of the three appli-
cations we are considering in this work. These I/O accesses
are the range of accesses based on the four parameters of the
hyperslab selection. It can be observed that VPIC-IO is a
1-dimensional application and VORPAL-IO and GCRM-IO
have 3-dimensional I/O accesses. We can also see how each
processes are writing the same amount of data by having
the same count arrays. The processes access different parts
of the file in parallel by having different values for the start

array.
Each process is writing a contiguous amount of data with

8 MB of size one after the other in the VPIC-IO bench-
mark. This is a very common and simple I/O pattern and
we will see how it is abstracted. A more complex I/O access
is GCRM-IO’s. It is a 3-dimensional I/O benchmark decom-
posed only along one dimension as Figure 4(b) shows. Since
only one dimension is decomposed in GCRM, we can see
that the size of the whole dimension is used in the count ar-
ray for the other two dimensions and the value of the start

is 0.
The last I/O benchmark with the most complex I/O pat-

tern is VORPAL-IO. It writes a 3-dimensional grid with a
3-dimensional decomposition along each of the dimensions.
The size of the block that each process is writing is fixed and
therefore the count array is the same for each of the pro-
cesses. However, each of the processes have different values
along the 3 dimensions of the start array.

Using the notation described in Section 2, we can repre-
sent our three applications as below:

• VPIC-IO:
<1D,BLOCK,8388608>

<1D,BLOCK,8388608>

... (5 more times) ...
<1D,BLOCK,8388608>

• GCRM-IO:
<3D,(*,*,BLOCK), (1,1,327680)>

<3D,(*,*,BLOCK), (1,1,327680)>

... (7 more times) ...
<3D,(*,*,BLOCK), (1,1,327680)>

• VORPAL-IO:
<3D,(BLOCK,BLOCK,BLOCK),(60,100,300)>

<3D,(BLOCK,BLOCK,BLOCK),(60,100,300)>

... (17 more times) ...
<3D,(BLOCK,BLOCK,BLOCK),(60,100,300)>

We now show our results in four subsections. Note that
for the results of this paper, we use all the developed models
in our previous paper [1]. Therefore, there was no tuning for
any application for this work and we have used the models
developed for them in our previous work.

3.1 An application with the same I/O pattern
In order to have IOR issue write patterns similar to VPIC-

IO, we configured it to use its HDF5 interface. Since VPIC-
IO writes 8 datasets, we need to configure IOR accordingly.
This is done by using 8 MB segments (-s 8), writeFile (-w),
32 MB blockSize (-b 32m) and transfer size of 32 MB (-t
32m).

Figure 5(a) shows the performance of the autotuned con-
figuration which was proposed for IOR, as it has the same
pattern as VPIC-IO, on 512 and 4096 cores of Hopper, and
Edison in [1]. As mentioned before, there was no modeling
effort done for this application and yet we can see that we
are able to get up to 4.21 GB/s and 15.01 GB/s on 512 and
4096 cores of Hopper. On Edison these numbers are 9.34
GB/s, 16.70 GB/s.

3.2 An application with similar I/O pattern
Resemble-VORPAL-IO is a synthetic benchmark gener-

ated by Record-and-Replay framework [3]. It has very simi-
lar I/O pattern to VORPAL-IO benchmark but with differ-
ent block sizes of 64× 128× 256 instead of 60× 100× 300 of
VORPAL-IO. The purpose of these experiments is two-fold:
(a) To show that applications with similar I/O patterns with
slight differences only in block sizes can use the same I/O
configuration to obtain good I/O performance. (b) Requir-
ing a threshold for the similarity between I/O patterns can
save dramatic I/O tuning time.

Figure 5(b) shows the performance of the autotuned con-
figuration which was proposed for Resemble-VORPAL-IO
on 512 and 4096 cores of Hopper and Edison in [1]. Simi-
lar to the previous experiment, there was no modeling effort
done for this application and yet we can see that we are able
to get up to 3.32 GB/s and 7.89 GB/s on 512 and 4096 cores
of Hopper respectively. On Edison the highest bandwidth

46

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

512 cores - Hopper 4096 cores - Hopper 512 cores - Edison 4096 cores - Edison

I/O
 B

an
dw

id
th

 (G
B

/s
)

Default Configuration
Autotuned Configuration

(a) IOR

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

512 cores - Hopper 4096 cores - Hopper 512 cores - Edison 4096 cores - Edison

I/O
 B

an
dw

id
th

 (G
B

/s
)

Default Configuration
Autotuned Configuration

(b) Resemble-VORPAL-IO

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

512 cores - Hopper 4096 cores - Hopper 512 cores - Edison 4096 cores - Edison

I/O
 B

an
dw

id
th

 (G
B

/s
)

Default Configuration
Autotuned Configuration

(c) FLASH-IO

Figure 5: The I/O performance of the autotuned (a) IOR (b) Resemble-VORPAL-IO (c) FLASH-IO appli-
cation on Hopper and Edison compared the default configuration.

achieved by this mechanism was 8.75 GB/s and 13.07 GB/s
on the same number of cores.

3.3 A new application
The last experiment is designed to test an arbitrary appli-

cation that has not been tuned before. For this experiment,
we chose to test a well-known I/O kernel called FLASH-IO
because it is popular in the HPC I/O community and also
hard to tune. The same as previous experiment, we ran
FLASH-IO at two scales, 512 and 4096 cores of Hopper and
Edison. The way that we calculate the bandwidth for this
application is a little bit different than the other ones as
it produces three files. The definition of bandwidth here is
basically just the sum of all the output sizes divided by the
runtime of the whole I/O benchmark which is a conservative
way of defining the I/O bandwidth of an application.

FLASH-IO is different from the other applications we have
looked at mainly because it writes many datasets with dif-
ferent I/O patterns. In order to overcome this problem the
framework considers the largest datasets in size and looks
up for those patterns in the database. Based on the out-
put of H5Analyze tool, FLASH-IO has 34 datasets, out of
which 24 of them have the same size as the largest size of
the file. On 4096 cores, this is about 40GB for each dataset.
These datasets are 4D and their pattern of these dataset are
also the same: <BLOCK, DEGENERATE, DEGENERATE, DEGEN-

ERATE>. Although the exact same pattern does not exist for
this pattern, GCRM-IO has the most similar pattern to this
application and therefore the framework uses the proposed
configurations for GCRM-IO.

Figure 5(c) shows the performance of the autotuned con-
figurations which was proposed for FLASH-IO based on GCRM-
IO model, on 512 and 4096 cores of Hopper, and Edison by
our framework. Similar to the previous experiment, there
was no modeling effort done for this application and yet we
can see that we are able to get up to 2.09 GB/s and 5.95
GB/s on 512 and 4096 cores of Hopper respectively. On
Edison the highest bandwidth achieved by this mechanism
was 3.34 GB/s and 8.23 GB/s on the same number of cores.

4. RELATED WORK
I/O patterns have been an important concept in the I/O

community and several research projects have been exploit-
ing them in different contexts. Out of these we can men-
tion I/O Signature is a notation proposed by Byna et al [7]
consisting of five dimensions of I/O operations: operation,
spatial offset, request size, repetitive behavior, and tempo-
ral intervals. These are then gathered by a framework for

each application and stored persistentlly for later look up
in order to help prefetching. Additionally, statistical mod-
els (such as Markov models) have been proposed for a long
time for being able to produce and predict I/O operations
and file system performance. [22, 20]. These are then more
used in the context of prefetching, caching or scheduling,
as compared to our work which is tuning I/O operations in
order to increase I/O bandwidth that applications gain.

In recent years, due to complexities of gaining I/O per-
formance in modern HPC applications, I/O patterns have
started to gain more attention. In particular, He et al. [12]
tries to “rediscover these structures in unstructured I/O”
using “gray-box” technique. In terms of framework design
there are some similarities such as the way the pattern de-
tection engine works. Additionally, Omnisc’IO [9] uses an
algorithm based on Sequitur algorithm which given a se-
quence of symbols, builds a grammar for text compression.
Most of this work uses the idea of I/O patterns with the
main difference that they are based on low-level I/O layers,
i.e. POSIX layer as opposed to high-level I/O layers. Our
approach is more portable, accurate, and simpler than the
POSIX version given the parallel nature of the applications.

5. CONCLUSIONS
Poorly tuned Parallel I/O becomes a major performance

bottleneck in HPC applications that need to write or read
data. This is not due to incapability of I/O subsystems, but
mainly due to the complexity of its tuning. In this paper, we
propose a pattern-driven autotuning framework to solve this
problem. The framework consists of components to extract
I/O patterns, tune configuration for the detected patterns,
store them in a database of patterns associated with their
I/O model, and finally map an arbitrary I/O pattern to a
previously tuned model in order to improve its I/O perfor-
mance. We show that using these patterns, one can tune
different sets of applications ranging from the ones which
have tuned before the ones which are similar to the ones
before, and totally new ones.

6. ACKNOWLEDGMENTS
This work is supported by the Director, Office of Science,

Office of Advanced Scientific Computing Research, of the
U.S. Department of Energy under Contract No. DE-AC02-
05CH11231. This research used resources of the National
Energy Research Scientific Computing Center.

47

7. REFERENCES
[1] B. Behzad, S. Byna, S. M. Wild, M. Prabhat, and

M. Snir. Improving Parallel I/O Autotuning with
Performance Modeling. In Proceedings of the 23rd
International Symposium on High-performance
Parallel and Distributed Computing, HPDC ’14, 2014.

[2] B. Behzad, S. Byna, S. M. Wild, M. Prabhat, and
M. Snir. Dynamic Model-driven Parallel I/O
Performance Tuning. In IEEE Cluster 2015, 2015.

[3] B. Behzad, H.-V. Dang, F. Hariri, W. Zhang, and
M. Snir. Automatic Generation of I/O Kernels for
HPC Applications. In Proceedings of the 9th Parallel
Data Storage Workshop, PDSW ’14, pages 31–36,
Piscataway, NJ, USA, 2014. IEEE Press.

[4] B. Behzad, L. Huong Vu Thanh, J. Huchette, S. Byna,
Prabhat, R. Aydt, Q. Koziol, and M. Snir. Taming
Parallel I/O Complexity with Auto-Tuning. In
Proceedings of 2013 International Conference for High
Performance Computing, Networking, Storage and
Analysis (SC 2013), SC ’13, 2013.

[5] K. J. Bowers, B. J. Albright, L. Yin, B. Bergen, and
T. J. T. Kwan. Ultrahigh performance
three-dimensional electromagnetic relativistic kinetic
plasma simulation. Physics of Plasmas, 15(5):7, 2008.

[6] S. Breitenfeld, K. Chadalavada, R. Sisneros, S. Byna,
Q. Koziol, N. Fortner, Prabhat, and V. Vishwanath.
Recent Progress in Tuning Performance of Large-scale
I/O with Parallel HDF5. In Proceedings of the 9th
Parallel Data Storage Workshop, PDSW ’14, 2014.

[7] S. Byna, Y. Chen, X.-H. Sun, R. Thakur, and
W. Gropp. Parallel I/O Prefetching Using MPI File
Caching and I/O Signatures. In Proceedings of the
2008 ACM/IEEE Conference on Supercomputing, SC
’08, pages 44:1–44:12, Piscataway, NJ, USA, 2008.
IEEE Press.

[8] K. Datta, M. Murphy, V. Volkov, S. Williams,
J. Carter, L. Oliker, D. Patterson, J. Shalf, and
K. Yelick. Stencil computation optimization and
auto-tuning on state-of-the-art multicore architectures.
In Proceedings of the 2008 ACM/IEEE conference on
Supercomputing, SC ’08, pages 4:1–4:12, 2008.

[9] M. Dorier, S. Ibrahim, G. Antoniu, and R. Ross.
Omnisc’IO: A Grammar-based Approach to Spatial
and Temporal I/O Patterns Prediction. In Proceedings
of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’14,
pages 623–634, Piscataway, NJ, USA, 2014. IEEE
Press.

[10] Frigo, Matteo, Johnson, and S. G. FFTW: An
adaptive software architecture for the FFT. In Proc.
1998 IEEE Intl. Conf. Acoustics Speech and Signal
Processing, volume 3, pages 1381–1384. IEEE, 1998.

[11] T. H. Group. HDF5 Tutorial - Parallel Topics http:

//www.hdfgroup.org/HDF5/Tutor/parallel.html,
Feb. 2011.

[12] J. He, J. Bent, A. Torres, G. Grider, G. Gibson,
C. Maltzahn, and X.-H. Sun. I/O Acceleration with
Pattern Detection. In Proceedings of the 22Nd
International Symposium on High-performance
Parallel and Distributed Computing, HPDC ’13, pages
25–36, New York, NY, USA, 2013. ACM.

[13] M. Howison, Q. Koziol, D. Knaak, J. Mainzer, and

J. Shalf. Tuning HDF5 for Lustre File Systems. In
Proceedings of 2010 Workshop on Interfaces and
Abstractions for Scientific Data Storage (IASDS10),
Heraklion, Crete, Greece, Sept. 2010. LBNL-4803E.

[14] B. Jeff, A. Krste, C. Chee-Whye, and D. Jim.
Optimizing matrix multiply using phipac: a portable,
high-performance, ansi c coding methodology. In
Proceedings of the 11th international conference on
Supercomputing, ICS ’97, pages 340–347, 1997.

[15] LLNL. IOR https://github.com/chaos/ior, Feb.
2015.

[16] H. Luu, B. Behzad, R. Aydt, and M. Winslett. A
multi-level approach for understanding I/O activity in
HPC applications. In Cluster Computing
(CLUSTER), 2013 IEEE International Conference on,
pages 1–5, 2013.

[17] C. Nieter and J. R. Cary. VORPAL: a versatile
plasma simulation code. Journal of Computational
Physics, 196:448–472, 2004.

[18] D. A. Randal and A. Arakawa. Design and Testing of
a Global Cloud-Resolving Model. Report, 2009.

[19] H. Richardson. High Performance Fortran: history,
overview and current developments. Technical report,
1.4 TMC-261, Thinking Machines Corporation, 1996.

[20] H. Simitci and D. A. Reed. A Comparison of Logical
and Physical Parallel I/O Patterns. International
Journal of High Performance Computing Applications,
12:364–380, 1998.

[21] S. W. Skillman, M. S. Warren, M. J. Turk, R. H.
Wechsler, D. E. Holz, and P. M. Sutter. Dark Sky
Simulations: Early Data Release. ArXiv e-prints, July
2014.

[22] E. Smirni and D. A. Reed. Lessons from
Characterizing Input/Output Bahavior of Parallel
Scientific Applications. International Journal on
Performance Evaluation, 33:27–44, 1998.

[23] R. Vuduc, J. Demmel, and K. Yelick. Oski: A library
of automatically tuned sparse matrix kernels. In
Proceedings of SciDAC 2005, Journal of Physics:
Conference Series, 2005.

[24] R. C. Whaley, A. Petitet, and J. J. Dongarra.
Automated empirical optimization of software and the
ATLAS project. Parallel Computing, 27(1–2):3–35,
2001.

[25] S. Williams, K. Datta, J. Carter, L. Oliker, J. Shalf,
K. A. Yelick, and D. Bailey. PERI: Autotuning
memory intensive kernels for multicore. In Journal of
Physics, SciDAC PI Conference: Conference Series:
123012001, 2008.

[26] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick,
and J. Demmel. Optimization of sparse matrix-vector
multiplication on emerging multicore platforms. In
Proceedings of the 2007 ACM/IEEE conference on
Supercomputing, SC ’07, pages 38:1–38:12, 2007.

[27] W. Yu, J. Vetter, and H. Oral. Performance
characterization and optimization of parallel i/o on
the cray xt. In Parallel and Distributed Processing,
2008. IPDPS 2008. IEEE International Symposium
on, pages 1 –11, april 2008.

48

