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ABSTRACT
Estimating I/O time of applications is critical for computing sys-
tem research and developments, such as performance tuning and
job scheduling. Parallel I/O systems on large-scale HPC systems
typically use several I/O servers attached to a number of hard disk
drives to read and write data concurrently. As a result, the re-
sponse time of individual I/O servers affects the overall I/O perfor-
mance and modeling the response time distribution holds the key
to estimate I/O time. Existing studies have generally considered
that the response time follows a Uniform or a Normal distribution.
However, none of these studies considered supercomputing envi-
ronments that are actively used by a number of users to verify the
existence of Uniform or Normal distributions. In this study, we
collected ≈ 2,500,000 measurements on two peta-scale class su-
percomputers that are actively used by ≈5000 users. These two
systems, Hopper and Edison at the National Energy Research
Scientific Computing Center (NERSC), typically support hundreds
of concurrent jobs. Our performance measurements include the
overheads introduced by the entire parallel I/O stack (I/O library,
network, parallel file system software, cache and hardware). Our
study shows that the response time of parallel I/O system follows
a heavy-tailed property, in contrary to the widely accepted Normal
or Uniform distributions. In exploring for new models, we identify
that a mix of Power Law and Normal distributions is a good fit for
the response time of parallel I/O systems that are actively used by
hundreds of jobs concurrently.

General Terms
Peta-scale storage system, performance and benchmarking
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1. INTRODUCTION
Estimating the time that applications spend on reading and writ-

ing data is a common task for their I/O performance tuning [19, 20,
10, 31] and job scheduling [14] on HPC systems, and SQL query
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plan optimization [2, 30] in database systems. One specific exam-
ple is the Scientific Data Services Framework (SDS) [8, 7, 9] we
are working on. SDS is a persistent service, which organizes the
same dataset in different layouts and selects a copy of the data for
achieving best performance based on the I/O request pattern. To
select the best copy, the service needs to predict performance of
accessing data stored in different organizations [18]. The perfor-
mance estimation in SDS depends on estimating the I/O time. To
accurately estimate the I/O time of applications, one key require-
ment is to determine the probability distribution of the response
time of underlying parallel I/O system [11]. In this work, we aim
to identify the probability distribution of the response time of a par-
allel I/O system.

In parallel I/O systems, a file is partitioned into multiple chunks
that are then assigned onto independent devices, i.e., hard disks
[15]. From the perspective of a user, a large file request is usually
partitioned into multiple small requests and these small requests
are served by storage devices concurrently. Once all these small
file requests are finished, the large file request is considered to be
complete. In other words, the performance of the large file request
is determined by the longest response time of all involved small
requests.

Generally, let R be a big file request, divided into n(n ≥ 1)
small requests {r1, r2, . . . , rn}, and {tr1 , tr2 , , . . . , trn} be the re-
sponse time of these n small requests, the response time TR of R
can be expressed as Eq. 1, where ψ is the overhead of merging
these small requests. Widely accepted method to calculate TR with
Eq. 1 is order statistics [13]. The idea of order statistics is to firstly
determine the probability distribution of TR using the probability
distribution of each tri(i ∈ [1, n]) and then calculate TR based on
its determined probability distribution. As merging all these small
requests into big one usually takes fixed time, ψ can be treated as a
constant value and therefore it has small impact on computing TR

with the order statistic theory.

TR = max
n
{tr1 , tr2 , . . . , trn}+ ψ (1)

The details of applying order statistics to calculate TR and to fur-
ther tune the performance of I/O systems and applications are out
of the scope for this paper. Here we focus on the discussion of
the probability distribution of the response time of each small file
request, which is the first step to estimate the response time of TR.

In existing research [21, 25, 11, 26], a single Uniform or a single
Normal probability distributions was used to model the response
time of a parallel I/O system. Using Normal distribution to de-
scribe the response time implicitly assumes that the most-frequent
values (long or extremely long response time in this case ) are rare
and occur near the tail ends. Using Uniform distribution to model
the response time implicitly assume that all response times have
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equal chance to happen. From the Eq. 1 above and its associated
discussions, we know that the distribution of the response times, es-
pecially the long response times, is essential to model the parallel
I/O performance. However, none of the efforts have tried to eval-
uate these distributions on a parallel I/O system in production. A
typical parallel I/O system consists of multiple layers, such as hard
disk drives, server-side cache, network, client-side cache, parallel
I/O middleware, high-level I/O libraries, etc. All these layers need
to be considered carefully in the evaluation of these two probability
distributions.

To verify the parallel I/O response time distribution, in this study,
we develop a method to sample the response time of individual I/O
servers employed by two Lustre file systems [15]. These two Lustre
file systems are separately used by two peta-scale HPC systems lo-
cated at NERSC. These systems, Hopper and Edison1, are currently
serving around 5, 000 active users from different disciplines, such
as Lattice Gauge Theory, Fusion, Energy, and Material Science.
The sampling method developed here (Section 2) emphasizes the
parallel file system that essentially delivers the parallelism of un-
derlying hardware. Our method is wrapped as batch jobs, which run
at computing nodes and send file requests to sample the response
time of Lustre periodically. In the path of file transfer, the network
transfer overhead is measured. We also test the response time with
and without cache separately. The sampled response times are an-
alyzed to validate the Uniform or the Normal distribution. Our key
observations include:

• Response times of the parallel I/O systems on Hopper and Edi-
son show a heavy-tailed behavior rather than properties of a sin-
gle Uniform or a single Normal distribution (Section 3). Based
on our observations, 14.6% of the response times are long or ex-
tremely long. These long response times result in a long tail to
the right of the density function plotted for the overall response
times. In contrast, based on the theory of Normal or Uniform
distribution, these long response times shaped as a heavy tail
only happen rarely (≈ 2.5% for Normal and ≈ 0% for Uni-
form). Although the generality of our validations are limited by
the number of systems for sampling, Edison and Hopper are rep-
resentative HPC systems with I/O intensive workload nowadays.
• Response times of the parallel I/O systems of Hopper and Edi-

son can be fitted with a mixed distribution of Power Law [6] and
Normal. As the performance variability of parallel I/O system,
we find that a single distribution function failed to model the en-
tire response time. In that sense, we employ a partition method to
divide the response times into head and tail groups and fit them
separately. The tail group, representing the long or extremely
long response times, can be fitted with Power Law distribution.
The head group, representing the short response times, can be fit-
ted with Normal distribution. While the properties of this mixed
distribution needs to be further explored on different systems,
our study provides a foundation for building sophisticated per-
formance models for parallel I/O systems (Section 4).

2. TEST ENVIRONMENT AND METHOD-
OLOGY

In this section, we report the details of Edison and Hopper sys-
tems and our method for sampling the response times.

2.1 Parallel I/O Systems of Hopper and Edi-
son

1http://www.nersc.gov/systems/
hopper-cray-xe6/, http://www.nersc.gov/users/
computational-systems/edison/

Table 1: Lustre file systems statistics on September 2014
/SCRATCH2 of Edison /SCRATCH2 of Hopper

# of OSSs 18 26
# of OSTs 72 156
# of Users 1382 4597

Hopper and Edison, two supercomputing systems installed at
NERSC, are capable of delivering 1.28PF (petaflop) and 2.39PF
performance, respectively. Based on our observations of the length
of the job queues on these two systems in September 2014, there
are on average 255 and 330 application jobs running concurrently
on Hopper and Edison separately. In other words, each system
is serving hundreds of applications at a time. These applications
come from diverse fields, such as Lattice Gauge Theory (26%),
Fusion Energy(17%), Material Science(15%), Combustion (13%),
etc. [1]. These applications usually read initial data and dump
check-point or intermediate/final results from or to the parallel I/O
systems. The combination of the vast number of currently running
jobs and the diversity of I/O operations makes Hopper and Edison
suitable environments for profiling and analyzing parallel I/O sys-
tem.

Lustre file system [15] is used by both systems to partition files,
allocate partitioned files, and coordinate parallel data accesses. The
hardware used as the back-end are 7200 RPM hard drives. These
hard drives are organized as a RAID. Then, multiple RAIDs are
connected to OSTs (object storage target) and OSSs (object stor-
age servers) of Lustre through a high speed network. Usually, each
OST in Lustre can be regarded as a standalone device like a single
hard disk drive. Hence, the parallelism of the I/O systems of Hop-
per and Edison is determined by the number of OSTs in its Lustre
file system. We summarize these configurations in Table 1.

2.2 Measurement Method
The response time of reading and writing is measured as the to-

tal amount of time when these two basic I/O operations are finished
by the parallel I/O system. As the cache and network might have
effect on the I/O response time, our sampling method is divided
into two functions Sample-NoCache and Sample-Cache. Sample-
NoCache is used to test the response time without cache effect. It
invalidates the cached data through reading and writing a RAM-
sized data multiple times. The data used for reading test tends to be
retrieved from disk. To test the time of writing data, file synchro-
nization (fsync) is called by Sample-NoCache to dump data to disk.
Sample-Cache function tests the response time of cached data. In
such a case, file data is read and written without cache-flush and
file synchronization. Sample-Cache function also reflects the net-
work effect on the response time to some extent. It is because that
RAM access is fast and therefore network transferring consumes
most of time in accessing data from remote RAM cache of Lustre
Server. Both functions employ standard method of MPI-IO inter-
face to read and write the data. We also tested the POSIX-IO and
the difference from MPI-IO is small in results. Hence, we only
report the results from MPI-IO in this work.

We set the file request size to be equal to or be a multiple of the
striping size of parallel file system (i.e., Lustre). As the big file
requests are partitioned into multiple independent small requests
at first and then these small requests are sent to different OSTs of
Lustre, the file requests arriving at one OST can be regarded as
being independent from the file requests arriving at other OSTes.
Even though, in real applications, the file request size might be less
than the striping size, a consistent ratio can be applied to reflect
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this case. Nevertheless, we tested the request size which is smaller
than the striping size of Lustre. We choose these request sizes from
512KB to 1024MB and try to cover basic striping size of most
existing systems. For example, 1MB striping size is employed by
Lustre and 64MB by HDFS (Hadoop Distributed File System).

To ensure none or ignore-able interference to existing systems
and running applications, we run our sampling program as a batch
job periodically with normal user privileges. The actual interval
for running the sampling programs varies because the batch sys-
tems of Hopper and Edison start a job based its resource require-
ment and wall-clock length. Since Sample-NoCache is immune to
cache effect, we run it as normal job in a long period. Once a job of
Sample-NoCache starts to run, it tests the response time of reading
and writing certain request size once. As shown in next section,
the sampling period lasts almost the whole year. The results from
Sample-NoCache are expected to reflect the long-term condition of
the whole system. To simulate the cache effect, we run Sample-
Cache with a 30 minutes job. Once the job starts to run, it repeat-
edly calls Sample-Cache to test the response times. Short interval
ensures that the data for test is kept in RAM cache by parallel I/O
system. We create different files for different request sizes before
we start to run our sampling code. Thus, the OST assigned for each
test file is fixed.

3. OVERVIEW OF SAMPLED RESPONSE
TIME

Table 2: Summary statistics of sampled response time
# of Jobs Total Observations

Edison-NoCache 14977 14977
Edison-Cache 12 927691
Hopper-NoCache 13868 13868
Hopper-Cache 12 1581364
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Figure 1: Pictorial demonstration of the I/O responses time
trace log

We started to sample the response time of parallel I/O systems on
Hopper and Edison in February 2014. Several interruptions were
caused by the system maintenance events. Here we report the most
recent and the longest continuously results. Table 2 summarizes
these results. The response times without cache effect for Edison
were sampled from August 13, 2014 to September 17, 2014 and for
Hopper from October 1st, 2014 to January 13, 2015. Considering
that the size of sample results for cache results is too large, we
only reported here the response times with cache effect that were
sampled on February 20, 2015 for both Edison and Hopper. In total,
we ran 28869 jobs to obtain the samples of the response time.

Figure 1 presents a pictorial demonstration of the response time
sampled from Edison. We observed the same trend on Hopper. But
as the limited of page size, we only report results from Edison here.

The X-axis is the time to sample and the Y-axis is the sampled re-
sponse time in seconds. For simplicity, we only present the figures
for the request size of 64MB on Edison. We can see that the re-
sponse time for both read and write operations has high variability.
As tests were conducted on production systems, such variability
might come from the interference of the applications running cur-
rently on the systems. In other words, if a user wants to read/write
data from the parallel I/O systems, such variability is what the user
is expected to experience. We can also see that the cache helps
to smooth and reduce the response time of reading data, but it has
small help to reduce variability of writing data.

4. STATISTICAL ANALYSIS OF RESPONSE
TIME

In this section, we analyze the statistic properties of the sampled
response time. Specifically, we demonstrate that the ill-fitting of
single Uniform or single Normal distribution. We also identify that
the mix distribution of log-normal and normal can provide the good
fit for the response time.

In the following analysis discussions, the sample refers to the
response times which are tested with a fix requests size, having
cache or without cache, and on Edison or Hopper. As we tested 12
requests sizes from 512KB to 1GB. In total, we have 48(2×2×12)
samples. For simplicity, we will not repeatedly present the same
results for all samples. We randomly choose the stripe size 64MB
on Edison and the request size 16MB on Hopper as the example to
show our main results. As cache is important factor for response
time, we show the results for cache and non cache separately.

4.1 Ill-fitting of single Uniform and single Nor-
mal distribution
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Figure 2: Histograms of the response time of request size 64MB
on Edison.
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Figure 3: Skewness-kurtosis graph for Uniform, Normal, and
sampled response time

Fig. 2 presents the histograms (also called density) for the re-
sponse times tested with the request sizes 64MB on Edison and
the request size 16MB on Hopper. The density of other request
sizes show similar pattern and thus are not repeated to show here.
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It is easy to identify that the histograms of the response times are
asymmetrical, have a peak, and decay (long tail) to the right. It
is known that the histogram for Normal is symmetrical and has a
peak and for Uniform is symmetrical. Hence, Uniform and Nor-
mal are not good fit for these response times. To further assure
this statement, we compute the Skewness and Kurtosis values [6]
for our sampled response times, Normal distribution, and Uniform
distributions. Skewness and Kurtosis values are widely used by
scientists to select the distributions for data. Fig. 3 presents the
computed results. The vertical axis is Kurtosis value and horizon-
tal axis is Skewness value. Except the two plots (triangle and plus)
for Normal and Uniform, each of other points represents one test
sample using a certain request size with or without cache. We can
see that the Skewness and Kurtosis values of almost all sampled re-
sults are far from that of Uniform and Normal distributions. Hence,
neither single Uniform nor single Normal distribution are good fit
for the response time of parallel I/O systems on Hopper and Edison.

4.2 Mix distribution for Response Time
As the single Uniform or single Normal distribution are not good

fit for the response time, we now move on to find out that which
distribution fits the response time. After trying to fit the response
times with most single probability distributions, including Gamma,
Cauchy, Weibull, Log Normal, Power Law, and Exponential, we
noticed that none of them fit the whole data very well. For example,
the Cauchy distribution fits the peak (i.e., small response time) very
well while it provides poor fit for the decay parts (i.e., big response
time). On the other hand, the functions proposed for heavy tail
distributions fit the decay parts very well but they fail to match
smaller response times.
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Figure 4: Example shows the idea of dividing the whole re-
sponse times into two groups, head and tail, and fitting them
independently.

Based on these observations, the method we employ to fit the
distribution of response time is that dividing each sample data into
two groups, head and tail, and fitting these two groups separately.
This method is similar to the work in [24], where the authors fit the
same distributions for each partition and combine the fitted results
together. Our method, however, needs to fit different distributions
for different groups. Another reason is that, as stated by most re-
searchers [6], heavy tail distributions only exist in parts (tails) of
the data. These researchers always find a minimum value xmin

and fit the heavy tail distribution with the data bigger than xmin.
An example of our partition method is shown in Fig. 4, where

the horizontal axis is the response time and the vertical axis is den-
sity. The head group with the small response times shows peak
and symmetric characters. The tail group containing big response
times shows decay and asymmetric properties. Through partition,
more accurate distributions is possible to be found for modeling

the response time. In the following paragraphs, we will describe
our methods used to partition each sample into groups and find the
proper probability for each group.

To describe our partition method formally and clearly, we de-
fine a value named pivot to partition the data, as shown in Fig. 4.
The head are the response times which are less than pivot and the
tail are the response times which are greater than pivot. The pivot
is similar to the xmin value used in fitting heavy tailed distribu-
tions. To determine the xmin for heavy tailed distributions, the
Kolmogorov-Smirnov distance[6] between the real data and fitted
distribution is computed for each value at first. Then, the one with
minimum Kolmogorov-Smirnov distance is selected as xmin. Em-
ploying the similar idea of estimating xmin , we propose a method
to determine pivot. For each response time ti, i ∈ [2, n − 1], we
compute the Kolmogorov-Smirnov distances for both head group
and tail groups, which are partitioned based on ti.

For the tail group, it owns asymmetric and decay properties, as
shown in Fig. 4. The candidate probability distributions for such
data include Power Law, Exponential, Log Normal, Weibull, and
Gamma. Maximum likelihood method is popular and widely ac-
cepted. Hence, we use maximum likelihood method to find the
probability distributions of the response time[6]. Most researchers
estimate xmin for the Power Law and Log Normal distributions and
then only fit the data that are bigger than xmin. Since we have al-
ready partition the data based on pivot, we fitted these distributions
to the whole tail group without computing xmin for it.

For the head group of the response times, it presents symmetric
and peak properties, as shown in Fig. 4. The candidate proba-
bility distributions for such data include Normal and Cauchy. We
also employed the maximum likelihood method to find the param-
eters of these candidates distributions. Because that xmin in not
necessary in fitting for Normal and Cauchy, we apply Normal and
Cauchy to the whole head group.
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Figure 5: Percentage of Response in Tail and Head group
Results Discussion The partition method divides each response

time sample into head and tail groups based on pivot. Fig. 5 gives
the percentage of the response times partitioned into each group.
For example, the bottom left blue box indicates that 13% of the
read response times sampled for Edison-NoCache fall in the tail
group. We can see that even most response times are in the head
groups, the long response times consume a big portion in all cases,
even with caches. On average, 14.6% of the response times in the
whole sample belong to the tail groups and therefore 85.6% of re-
sponse times falls in the head groups. As discussed earlier, the head
group represents the short response times and the tail group repre-
sents long response times. In that sense, we can say that a single file
request for users have around 14.6% chance to experience poor per-
formance and 85.6% chance to get good performance. Even users
have much higher chance to have good performance than poor per-
formance in a single file request, user might have higher chance
to have poor performance in parallel I/O operations. It is because
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Figure 6: Edison-NoCache, Request Size 64MB

that, in parallel I/O operations, users might read data from multi-
ple sources and they can obtain long response time from multiple
OSTs.

When a pivot is determined, each sample can be partitioned into
head and tail group. We presented the results for partitioning the re-
sponse time of writing 64MB striping size on Edison without cache
in Fig. 4. As we computed the Kolmogorov-Smirnov distance of
Normal and Cauchy for the head group, we can see that the head
group (top right) extracted from the original data (left) shows a peak
and symmetric distribution. For the tail group, we use the heavy-
tailed distributions (e.g., Log Normal, Power Law, etc.) to compute
the Kolmogorov-Smirnov distance. We can see that the tail group
show decay and symmetric property. We observed the same pattern
in other request sizes. In summary, our partition method can divide
the whole data into two independently groups, one with peak and
symmetric distribution and another one with asymmetric and decay
distribution.

To help visualizing the fitted results, we presented the cumula-
tive distribution functions (CDF) for both empirical data and fitted
distributions on Edison in Fig. 6. As the space is limited and we ob-
served the same trends on Edison with cache and on Hopper, their
results are not reported here. The results indicates that Normal dis-
tribution matches the head groups better than Cauchy distribution
in all cases. It is reasonable to conclude that small response times
follow Normal distribution. The minimum response time can be
regarded as the optimal response time that the storage system can
provide. As the response time of parallel I/O system follows the
Normal distribution, most (94%) of small response times gather
around a average values but only 3% of them are optimal ones. As
we discussed earlier, the parallel I/O system we sampled on Hopper
and Edison are extensively shared by hundreds of applications at
one time. The interference of these concurrent applications might
have impact on disk access, network transfer, or cache capability.
Among the distributions fitted for the tail groups, we found that
Power Law matches the response times in most cases. Log Nor-
mal provides competitive fits. The Weibull and Gamma are poor
fits for the response times in tail group. Typically, Power Law is
one example of heavy-tailed distribution, for which the probability
density function goes to zero as a power. In parallel I/O system, the
Power Law distribution indicates that large population of response
time in tail group falls in the tail. In other words, users tend to get
extreme long response time with high probability. We test the re-
sponse time with the striping sizes from 512KB to 1GB. We have
observed this heavy tailed distribution in all cases.

5. RELATED WORK
Several efforts [28, 5, 18, 27] estimate performance of parallel

I/O systems in order to reduce the I/O latency. Many of these mod-
els, however, assume the absence of interference from other jobs.
Our work considers the existence of interference in throughout the
system. Our analysis can be used as a building block for accurate

modeling, which are needed for designing future parallel I/O sys-
tems and its associated optimizations.

The Charisma project [22] characterized parallel I/O workloads
on Intel iPSC/860 and CM-5 systems. The authors analyzed job
query length, quantity and size of the files accessed by applica-
tions, I/O request size, and I/O access patterns. The trace logs
of various I/O benchmarks were analyzed for both static and dy-
namic I/O workload property [29]. Carns et al. analyzed the I/O
workloads of four applications, MADBench2, Chombo, S3D-IO,
and HOMME, on IBM Blue Gene/P [3, 4]. This analysis included
statistical properties of file request size, datatype distribution, and
collective I/O operations. Various other research efforts also traced
and analyzed statistics of I/O operations [17, 23, 12]. Among these,
[23] found correlations of inter-arrival rates of I/O operations that
exhibit Poisson or Markov distribution.

Recently, Kim et al. [16] characterized storage cluster, Spider,
at the Oak Ridge Leadership Computing Facility (OLCF) in an
observation of parallel file system logs collected for six months.
The focus of the study included system utilization, distribution of
read/write sizes, and inter-arrival for I/O requests. In 2013, the
Darshan log gathered on Hopper from January 1 to March 13 were
analyzed at application-level and system-level [4]. The metrics au-
thors analyzed include redundant I/O traffic, metadata overhead,
access patterns (i.e, small independent writes).

6. CONCLUSIONS AND FUTURE WORK
Single Uniform or single Normal distributions is generally used

in modeling the response time performance of a parallel I/O sys-
tem. In this study, we tried to verify them in two real parallel I/O
systems separately used by two peta-scale super computers, Hop-
per and Edison. We sampled these two parallel I/O system around
one years and therefore our overall sample size for response time
is over 2, 500, 000. Our finding is that the response time of these
two parallel I/O system exhibits heavy-tailed property rather than
the property of Uniform and Normal distribution. Through parti-
tioning the response times of each sample into head group and tail
group, we proposed a mix distribution of Power Law and Normal to
fit the response time of parallel I/O systems. The evaluated results
manifested that it fits the response time very well. We believe that
the mix function of Normal and Power Law is pioneering work in
building new and accurate performance model for parallel I/O sys-
tem. Further work includes exploring the mathematical characters
of this mix distribution of Power Law and Normal. Then, we want
to explore the application of this mix distribution in real applica-
tions, such as collective I/O decision and striping size selection.
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