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Abstract—Adaptive Mesh Refinement (AMR) represents a sig-
nificant advance for scientific simulation codes, greatly reducing
memory and compute requirements by dynamically varying
simulation resolution over space and time. As simulation codes
transition to AMR, existing analysis algorithms must also make
this transition. One such algorithm, connected component de-
tection, is of vital importance in many simulation and analysis
contexts, with some simulation codes even relying on parallel,
in situ connected component detection for correctness. Yet,
current detection algorithms designed for uniform meshes are
not applicable to hierarchical, non-uniform AMR, and to the
best of our knowledge, AMR connected component detection has
not been explored in the literature. Therefore, in this paper,
we formally define the general problem of connected component
detection for AMR, and present a general solution.

Beyond solving the general detection problem, achieving viable
in situ detection performance is even more challenging. The core
issue is the conflict between the communication-intensive nature
of connected component detection (in general, and especially
for AMR data) and the requirement that in situ processes
incur minimal performance impact on the co-located simulation.
We address this challenge by presenting the first connected
component detection methodology for structured AMR that is
applicable in a parallel, in situ context. Our key strategy is
the incorporation of an multi-phase AMR-aware communication
pattern that synchronizes connectivity information across the
AMR hierarchy.

In addition, we distill our methodology to a generic framework
within the Chombo AMR infrastructure, making connected com-
ponent detection services available for many existing applications.
We demonstrate our method’s efficacy by showing its ability
to detect ice calving events in real time within the real-world
BISICLES ice sheet modeling code. Results show up to a 6.8x
speedup of our algorithm over the existing specialized BISICLES
algorithm. We also show scalability results for our method up to
4,096 cores using a parallel Chombo-based benchmark.

I. INTRODUCTION

One of the most significant advances for large-scale sci-
entific simulations has been the advent of Adaptive Mesh
Refinement, or AMR [1]–[3]. By dynamically refining sim-
ulation resolution across space and time, AMR simulation
codes can drastically improve efficiency of computational
resources while meeting or exceeding acceptable error levels
for numerical accuracy. The result of this refinement is a
hierarchical, multi-level, and multi-resolution mesh (Fig. 1(a)),
which gives rise to many opportunities and challenges in data

analytics and visualization due to the intricate mesh structure.
As simulations transition to AMR, existing analysis and

support algorithms must become AMR-aware to match. Con-
nected component detection is one such algorithm, and is
important to many scientific applications in both in situ (at
simulation run time) and post-processing contexts. For exam-
ple, the BISICLES AMR ice sheet modeling code [4] relies
on the correctness-critical task of real-time isolated iceberg
detection, which can be solved with efficient in situ connected
component detection. Likewise, in the context of post-analysis,
operations such as isosurfacing, identification of regions of
interest, and hot spot isolation are often transformed into
connected component detection tasks.

Developing a connected component detection algorithm for
AMR data (Fig. 1(b)) is not a trivial task, however. Existing
detection algorithms, generally categorized as one-pass [5]–
[7], two-pass [8]–[11], and multi-pass [12], are designed for
single-level, uniform meshes, and thus are not applicable to
data that span multiple levels in an adaptive refinement mesh.
Attempting to “flatten” an AMR hierarchy to a uniform mesh
(refining all mesh levels up to the finest resolution) in order
to apply existing algorithms has its own problems: such an
operation results in an explosive increase in memory usage,
which is untenable for extreme-scale datasets, and in any case
defeats one primary goal of using AMR in the first place.

To the best of our knowledge, AMR connected component
detection has not been well-defined in the literature. Therefore,
in this paper, we formally define the general problem of
connected component detection that is specifically tailored for
AMR data (Section II). By adapting the traditional definitions
of mesh, adjacency, and connectivity, we clearly articulate the
problem to be solved, which we expect will benefit future
work in this area. We then describe our solution to the AMR
connected component detection problem in Section III-A.

Beyond the general problem of AMR-aware connected
component detection, achieving viable in situ detection is
a challenge. Any in situ processing must have minimal
performance impact on the overall simulation. Yet, parallel
connected component detection is inherently characterized as
communication-intensive, and the non-uniform, distributed na-
ture of AMR data exacerbates this state of affairs. Specifically,
the distribution of mesh data across processes in AMR sim-
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Fig. 1. Subfigure (a) shows an AMR mesh with three levels: the black mesh
is the coarsest mesh (level 0), the blue mesh is a finer mesh (level 1), and the
red mesh is the finest (level 2). The refinement ratio equals 2. Subfigure (b)
shows a connected component that has been detected, spanning all three AMR
levels.

ulations is typically both non-regular and dynamic over time,
making synchronization of connectivity information inherently
more difficult than with the regular domain decompositions
applied to uniform meshes.

To address this challenge, we present the first connected
component detection methodology for structured AMR data
that is applicable in a distributed, in situ context (Section
III-B). Our key strategy is to use a parallel, in situ, AMR-aware
communication method to synchronize component connectiv-
ity across the AMR structure distributed over many processes.
By using a hierarchical process grouping conforming to the
AMR refinement level structure, we are able to compute global
connectivity over arbitrary distributions of AMR data without
expensive all-to-all communication.

In addition, we distill our parallel in situ approach to a
general-purpose AMR-aware connected component detection
framework in the Chombo infrastructure [13], a popular block-
structured AMR framework used by many scientific applica-
tions [4], [14], [15]. In this way, we demonstrate the general
applicability of our work to scientific codes (Section IV).

Finally, we demonstrate the efficacy of our connected com-
ponent detection framework when applied to two simulation
use cases. We use our framework to provide real-time ice
calving detection for BISICLES, a large-scale AMR code,
demonstrating viability for in situ use (Section IV-B). Addi-
tionally, we apply our algorithm to the established “Packed
Channel” benchmark [16], [17], for which our algorithm
exhibits scalability up to 4,096 cores (Section IV-C).

II. PROBLEM STATEMENT

The ideal that most scientific simulations approximate is
the evolution of dependent variables (or fields), representing
physical quantities over a continuous spatial domain and over
time. Under this ideal, the connected component detection
problem is to find, at a given instant in time, the maximal
connected regions in this continuous domain where these
dependent variables meet some criteria. This process yields
“interesting regions” representing important information when
the criteria is based on domain-specific knowledge. For exam-
ple, in the BISICLES code [4], connected component detection
can identify isolated sections of ice by using a criterion such as
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Fig. 2. Subfigure (a) shows a two-dimensional example of an AMR hierarchy
with refinement ratio 2 and two levels. It also indicates pairs of adjoining cells
on the same level and on different levels, as well as a pair of overlapping cells.
Subfigure (b) illustrates the coarsening and refinement operators at refinement
ratio 2, as defined in Definition 1 of the Problem Statement.

(ice thickness) > threshold, yielding key information needed
to progress the simulation.

Of course, using a continuous domain is not possible with
a finite computer, and so simulations necessarily operate on
discretized domains. Although uniform meshes have tradition-
ally been used for this purpose, Adaptive Mesh Refinement
(AMR) has proven to be a memory- and computation- efficient
alternative. AMR assigns different levels of resolution across
the simulation domain, delivering enough precision in highly-
dynamic areas to achieve the desired accuracy, while also not
over-provisioning more static regions.

This paper presents the first general-purpose method for
connected component detection for AMR meshes, operating
under the additional constraints of a parallel, in situ context.
To clarify, we present a formal definition of connected com-
ponent detection on AMR data. Then, we restate the problem
using this formal language.

First, we define the coarsening and refinement operators,
which will be helpful later1:

Definition 1: The coarsening operator C : ZD → ZD is
defined as C (i,r) = (b i0

r c,b
i1
r c, . . . ,b

iD−1
r c), where r ∈ Z+

is a given refinement ratio. Correspondingly, we define the
opposite refinement operator R : ZD →P

(
ZD
)

as R(i,r) =
{i′ ∈ ZD |C (i′,r) = i}. Equivalently, R(i,r) = ∏

D−1
j=0 {ri j,ri j +

1, . . . ,ri j + r− 1}, where ∏ is the N-ary Cartesian product.
These operators can be naturally extended to operate on sets
of vectors.

Next, we define the components of an AMR structure.
Definition 2: An AMR structure Ω with N ∈ Z+ levels,

domain bound u∈ (Z+)D, and refinement ratio r ∈Z+ consists
of a list of AMR levels Ω0, . . . ,ΩN−1. Ω0 = {i∈ZD | 0≤ i< u}
refers to the first level, with 0 denoting the zero vector and with
< (≤) denoting the pairwise comparison of the components of
two vectors. For subsequent levels, Ωl+1 ⊂ R(Ωl ,r). Finally,
every Ωl can be decomposed into a disjoint union of ml
rectangular boxes Bl,k ⊂ ZD such that Ωl = ∪ml

k=0Bl,k and
Bl,x∩Bl,y = /0 when x 6= y.

In other words, an AMR structure is a hierarchy of meshes,
with the coarsest (lowest) level covering the whole computa-
tional domain, and successively finer (higher) levels covering

1Definitions 1 and 2 are adapted from the Chombo framework design
document [13]. For brevity, we have simplified these definitions to only those
elements pertinent to our specific problem.



portions of the next-coarser level. All mesh cells on a given
level have the same spacing, with the grid spacing at each
finer level reduced by a given refinement ratio relative to the
next-coarser level. Additionally, in the specific case of block-
structured AMR considered in this paper, each level’s mesh can
always be decomposed in a set of non-overlapping rectangular
regions called boxes. Figure 2 sums up this definition with an
example of a block-structured AMR hierarchy.

Definition 3: A cell at level l of AMR structure Ω is
defined as a pair c = (l, i) with i ∈Ωl . The set of all cells in

an AMR structure Ω is denoted by σ(Ω) =
N−1⋃
l=0

(l, i) | i ∈Ωl .

Now, we define some properties of AMR cells.
Definition 4: Given two cells c1 = (l1, i1),c2 = (l2, i2) in

AMR structure Ω, we define the adjoining predicate A :
σ(Ω)×σ(Ω)→{true, f alse} as

A(c1,c2) =


i1− i2 ∈ E if l1 = l2
∃ j ∈ R

(
i2,rl1−l2

)
A((l1, i1),(l1, j)) if l1 > l2

A(c2,c1) else

with E = {e0,−e0, . . . ,eD−1,−eD−1} the set of
unit vectors aligned with a coordinate axis (such as
(1,0,0),(−1,0,0),(0,1,0)). Cells c1 and c2 are said to be
adjoining iff A(c1,c2).

Informally, two adjoining cells would be touching if the
AMR hierarchy were “collapsed” or “flattened”.

Definition 5: Given two cells c1 = (l1, i1),c2 = (l2, i2) in
AMR structure Ω, we define the overlap predicate B : σ(Ω)×
σ(Ω)→{true, f alse} as

B(c1,c2) =


i1 = i2 if l1 = l2
i1 ∈ R

(
i2,rl1−l2

)
if l1 > l2

B(c2,c1) else

Cells c1 and c2 are said to overlap iff B(c1,c2).
Definition 6: Given an AMR structure Ω, a cell-classifying

predicate ψ : σ(Ω) → {true, f alse} classifies each cell as
either a foreground (true) or background ( f alse) cell. When ψ

is understood by context, the set of foreground and background
cells of Ω under ψ are denoted as ΩFG and ΩBG, respectively.

Note, ψ is typically is based on one or more dependent
variables defined over the cells in Ω. Going back to our earlier
example, BISICLES might choose ψ as a threshold on the ice
thickness variable, thus identifying icebergs (foreground cells)
disconnected from the main ice sheet by regions of thin or no
ice (background cells).

Finally, we bring together previous concepts to define
“connectedness” and “connected components”.

Definition 7: Given an AMR structure Ω with cell-
classifying predicate ψ defining foreground cells ΩFG, we
define the adjacency relation ∆ on the foreground cells as
∆ = {(c1,c2) ∈ΩFG×ΩFG | A(c1,c2)∧¬B(c1,c2)}.

Definition 8: Given the adjacency relation ∆, we define the
connectivity relation ∆+ as the transitive closure of ∆. Because
∆+ is an equivalence relation, it partitions ΩFG into a set of
connected components P = {ρ1, . . . ,ρ|P|} with ρx ∩ρy = /0↔

x 6= y and ΩFG = ∪ρ∈Pρ . We say two cells c1,c2 ∈ ΩFG are
connected iff (c1,c2) ∈ ∆+.

That is, two foreground cells are connected if there exist
zero or more other foreground cells that form a path of
adjacent pairs (under adjacency relation ∆) between them. The
resultant set of connected components P is a set of “regions”
of cells, within which any two cells are connected.

We can now rephrase the problem statement more formally:
Definition 9: Given an adaptive refinement mesh Ω and

a cell-classifying predicate ψ , detect the set of connected
components P of foreground cells ΩFG under the connectivity
relation ∆+.

Beyond this basic definition, in order to feasibly run in
situ with real-world simulations, any connected component
detection method must meet two additional constraints. First,
in order to operate in parallel, Ω must be assumed to be
distributed across multiple parallel processes. Second, when
running in situ (that is, concurrent with a simulation), the so-
lution must have limited runtime disturbance to the simulation
(i.e., computation and communication overhead).

III. METHOD

Returning to the contributions for this paper, we propose a
methodology that achieves two key goals, covered individually
in the following subsections. First, we show how to solve the
connected components detection problem for AMR data (as
defined in the previous section); our key insights that make this
possible are discussed in Section III-A. Second, we show how
to extend these principles to a parallel, in situ context, focusing
on minimizing communication and maximizing parallelism
by using an AMR-aware communication pattern, discussed in
Section III-B.

A. Connected Component Labeling for AMR Data

The central challenge in detecting connected components
for AMR data is that connected components may span multiple
AMR levels and boxes. Previous detection algorithms for
uniform grids rely on scanning the entire dataset one or more
times, examining the neighbors of each visited cell to build
up connectivity information. However, with hierarchical, non-
uniform AMR, these operations are not straightforward. For
instance, there is no obvious traversal order over a non-uniform
AMR structure, nor is it clear that existing neighbor-masking
methods would produce correct results for a given traversal
order.

Our key insight is to depart from scanning the AMR
hierarchy as a single, indivisible mesh. Instead, we embrace
the AMR structure by detecting components within each AMR
box separately, followed by joining these components in a
global context. This has the advantage of a regular access
pattern admitted by the individual uniform-mesh boxes.

This strategy is captured in Algorithm 1, which can be
broken down into two phases. Phase I (lines 2 to 7) de-
tects connected components within each level. Following this,
Phase II (lines 9 to 12) then joins these intra-level components
across levels, forming finalized global components.
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Fig. 3. An example showing the communication pattern in our parallel, in situ connected component detection over four AMR boxes. On the left, the
component being detected is illustrated with both expanded and collapsed views.

As a preliminary detail, we briefly review the SAUF [8]
algorithm, as we utilize this algorithm in some parts of
our AMR detection solution. SAUF is a two-pass labeling
algorithm with an array-based union-find structure. It operates
on a uniform, rectangular grid, and employs a cell-classifying
predicate ψ to divide cells into foreground and background
groups (the same as in our problem statement). The first pass
in SAUF assigns provisional labels to each cell in raster order
(Fig. 4). During the pass, label equivalences are recorded in an
array-based union-find structure (denoted UF). In the second
pass, every provisional label is replaced by its corresponding
final label as computed in the UF .
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Fig. 4. An example showing provisional labels produced by the first pass
of the SAUF algorithm on a 4× 6 box (left), along with the corresponding
union-find structure UF (right). The dashed arrow indicates the scan traversal
order (raster order). The UF structure indicates that labels 1, 2, and 4 are
equivalent, and thus collectively form a component (label 3 represents a
second component).

Phase I: In this first phase, each level of the AMR hierarchy
is considered separately. For a given level `, we first identify
provisional components within the level by performing the
first pass of the SAUF algorithm on each AMR box. This
invocation yields a union-find structure UF̀ and provisional
component labels L` for each box (line 3). To maintain a
global label space, a next label counter s is kept. Each levels
labeling starts at s (line 3), and updates s afterward (line 6). All

Algorithm 1: General connected component detection
algorithm for AMR data

Input : N-level AMR data, Ω

Input : Cell-classifying predicate, ψ

Output: Labelled AMR data, L
1 //Phase I
2 for `= {0, ..., N−1} do
3 UF̀ , L` = labeling boxes(s,Ω`,ψ)
4 LP̀ = collect label equiv on box boundary(L`)
5 UF ′` = union label equivs(LP̀ ,UF̀ )
6 s = s+ |UF ′` |
7 GUF = GUF

⊕
UF ′`

8 //Phase II
9 for `= {1, ..., N−1} do

10 LP′` = collect label equiv across levels(L`,L`−1)
11 GUF ′ = union label equivs(GUF,LP′`)
12 update all labels(L`,GUF ′)

level-wise union-find structures are concatenated as they are
generated, building a global union-find structure (line 7). Hav-
ing identified box-local components, the algorithm proceeds to
connect components across the whole level. It first walks the
boundary of each box, building a list of label equivalence pairs
between the boundary cells of the current box and those of
any neighboring boxes (line 4). The labels from the resultant
equivalence pairs are then merged in the union-find structure
UF̀ , connecting components between boxes (line 5).

Phase II: At this point, box-local components have been
captured and joined into level-wise components, as described
by the associated global union-find structure. However, larger
connected components spanning multiple AMR levels may



still exist. For example, in Figure 3, a component in box “B2”
on AMR level 1 (marked in purple color) and a component
in box “B3” on AMR level 1 (marked in green color) belong
to the single global connected component as they are bridged
via the black (rightmost) component in “B1” on level 0.

Therefore, we now collect the label equivalence pairs be-
tween adjacent levels (line 10). The same boundary-walking
operation is performed as in Phase I, except it pairs cells on
a given level with neighboring cells on the next-coarser level,
rather than those on the same level as before. These cross-level
equivalence pairs are merged in the global union-find structure
(line 11). Because equivalence pairs detected between adjacent
levels are all recorded in the same global union-find structure,
components spanning more than two levels will be detected,
as the union operation is transitive.

The global union-find structure is now complete, with all
labels in each component having been merged together. At the
end of Phase II, provisional labels throughout all boxes are
replaced with final labels via lookups in the global union-find
structure (line 12).

B. In Situ AMR-aware Connected Component Labeling

We now turn our focus to designing a viable parallel, in
situ connected component labeling method. In contrast to the
above algorithm, the challenge for an in situ approach is
in efficiently handling connected components that span not
only multiple levels and boxes, but also multiple parallel
processes. Furthermore, due to various load-balancing tech-
niques employed by simulation codes, our method cannot
assume any particular distribution of AMR data. Thus, our key
strategy is to design a low overhead communication pattern,
which enables parallel, in situ synchronization of component
connectivity information distributed across many processes.
Thus, our key goal is to design a low-overhead communication
pattern, which enables parallel, in situ synchronization of
component connectivity information distributed across many
processes under any arbitrary data layout.

To achieve this goal, we propose an AMR-aware commu-
nication strategy, as depicted in Figure 3, with more detailed
pseudocode in Algorithm 2. Similar to Algorithm 1, our in
situ approach proceeds in two phases. However, this time,
our approach emphasizes the inter-process communication,
and employs the ghost cell communication primitive (which
copies labels from the boundaries of adjacent boxes on the
same or next-coarser level), which is available in most AMR
applications. The first phase detects level-wise components
(components residing entirely within one AMR level) by
exchanging ghost cell labels between AMR boxes within each
level, followed by a gather/scatter of lightweight connectivity
metadata. The second phase then joins these level-wise com-
ponents into global components using an inter-level ghost cell
label copy, together with another connectivity gather/scatter.
This resolves inter-level “bridge” scenarios where two level-
wise components are (only) connected via component(s) on
finer and/or coarser level(s).

Algorithm 2: In situ connected component detection
Input : Total AMR levels, N
Input : Cell-classifying predicate, ψ

Input : Distributed AMR data on each process, D
Output: Labelled AMR data on each process, L

1 p = get current proc rank
2 //I. Level-wise detection phase
3 for `= {0, ..., N−1} do
4 all processes that have data at level ` (in parallel) do
5 UF̀ [p],L`[p] = local labeling(D`[p],ψ)
6 o f f set labels within level(UF̀ [p],L`[p])
7 exchange ghost cell labels(L`[p])
8 LP̀ [p] = collect label equiv(L`[p])
9 aggregate to group leader(UF̀ [p],LP̀ [p])

10 if p is group leader then
11 UF ′` = set label equiv(LP̀ ,UF̀ )
12 send UF to master(UF ′` )
13 UF ′` [p] = spread UF to every proc in group
14 update local labels(L`[p],UF ′` [p])
15 //II. Global detection phase
16 for l = {1, ..., N−1} do
17 f ill ghost cell labels upward(L`[p],L`−1[p])
18 all processes that have data at level ` (in parallel) do
19 LP′`[p] = collect label equiv(L`[p])
20 aggregate to group leader(LP′`[p])
21 if p is group leader then
22 send label equiv to master(LP′`])

23 if p is master proc then
24 GUF,GLP = recv UF label equiv
25 GUF ′ = set label equiv(GLP,GUF)
26 distribute UF to group leaders(GUF ′)

27 for `= {0, ..., N−1} do
28 all processes that have data at level ` (in parallel) do
29 if p is group leader then
30 UF ′′` = recv UF f rom master proc
31 broadcast UF in group(UF ′′` )
32 UF ′′` [p] = spread UF to every proc in group
33 update local labels(L`[p],UF ′′` [p])
34 return L

1) Level-wise Detection Phase: As in the serial version,
we first compute box-local connected components on each
level. The difference is that now, this step is performed
independently on every process. As a result, this invocation
yields, for each process p, a union-find structure UF̀ [p] and
provisional component labels L`[p] defined over each box
(line 5 of Algorithm 2).

After identifying box-local components, our algorithm pro-
ceeds to coordinate components across the whole level. The
challenge we face is that a level-wise component could span
multiple processes. Furthermore, because the distribution of
boxes across processes is unpredictable, these could be any
processes. The naı̈ve approach would be to aggregate all label
data to one central process, which could then compute level-



wise components with full context. However, this is clearly
infeasible in a large-scale, in situ environment where com-
munication is expensive and memory is limited; a distributed
method is needed.

Thus, we instead adopt a more refined communication pro-
cess. We base our strategy on a limited exchange of labels via
ghost cells; that is, each process sends only the labels along the
outer boundary of each local box, and only to processes with
adjacent boxes. This greatly reduces data transfer, and also
limits communication pairs to far fewer than those in an all-
to-all collective (especially if simulation load balancing takes
box locality into account [18]). Additionally, AMR simulations
typically already have ghost cell communication primitives
available; for instance, Chombo exposes the exchange function
for this purpose.

Once ghost cell labels have been exchanged (line 7 of
Algorithm 2), the next step is to relate local labels across
processes. To do this, each process p walks the boundaries
of its local boxes, building a list of label equivalence pairs
LP̀ [p] between the local boundary cells and surrounding
ghost cell labels (line 8). These ghost cell labels represent
adjacency information from other processes, and so these
equivalences are essentially union operations that can join
labels on different processes.

However, these label equivalences must be resolved in a
level-wide context to be meaningful. Therefore, the next step
is to elect a “level leader” process, to which all processes
send their local LP̀ [p] and UF̀ [p] to be aggregated (line 9).
These metadata structures are very small, so communication
and memory costs are low. At the level leader, all UF̀ [p]
are merged into a single union-find structure UF̀ for the
whole level (still line 9), and all label equivalences LP̀ [p] are
applied, finalizing the union-find structure as UF ′` (line 11).
The level leader then partitions UF ′` into updated union-find
structures UF ′` [p] and scatters to each process its pertinent
portion (line 13). Lastly, each process applies its new UF ′` [p]
structure to update all local labels (line 14). At this point,
all labels have been resolved in level-wide context, and so
level-wise components have been computed. Note: line 12 is
intentionally skipped here, and will be revisited in the next
phase.

We now clarify one detail that was glossed over previously.
Generally, ghost cell exchange only copies cell values (labels,
in our case), but does not indicate source processes. If the
labels exchanged are processor-local (i.e., 0-based for each
process), it is impossible to differentiate labels from different
processes. Therefore, before the ghost cell label exchange, all
processes perform an “MPI Scan” to communicate their local
label counts and offset their labeling to a processor-unique
ranges (line 6). This way, no ambiguity exists when labels are
exchanged.

2) Global Detection Phase: At this point, all connected
components have been expanded to a level-wide context. How-
ever, as stated before, it is still possible for larger connected
components to exist that span multiple AMR levels. Therefore,
connectivity information must now be shared between levels.

Once again, we leverage ghost cell communication, as AMR
simulations will generally also support cross-level ghost cells
populations. However, normally such cross-level ghost cells
are filled using some form of interpolation, in order to map
field values from coarser cells to the finer cells. For instance,
Chombo supplies a f illInterp primitive for this purpose, and
we use this function to transfer the labels.

Thus, sharing inter-level connectivity begins with perform-
ing a ghost-cell copy of box labels from each level to next-finer
level (line 17 of Algorithm 2). After populating the ghost cell
labels, each process p performs the same box boundary walk
as in the level-wise detection phase to produce a new list of
label equivalence pairs LP′`[p] (line 19). This time, however,
the equivalences relate components on different levels, rather
than different boxes on the same level. LP′`[p] are then sent
to the same “level leaders” elected before, forming level-wise
LP′` (line 20).

In order to reconcile inter-level label equivalences LP′`, they
must be gathered to a single process to achieve global context.
Therefore, a “master” process is elected from the level leaders;
LP′` are then further aggregated to the master (line 22). Also,
back on line 12, which we glossed over during the previous
phase, the level leaders sent their finalized level-wise union-
find structures UF ′` to the master. Thus, at this time, the master
will receive and concatenate level-wise union-find structures
UF ′` into a global GUF and level-wise label equivalences LP′`
into a global GLP (line 24).

The master then applies all label equivalences GLP to GUF
(line 25), and distributes to each level leader its respective
portion UF ′′` of GUF (line 26). These union-find structures are
further partitioned and distributed to each process p as UF ′′` [p]
(lines 30 through 32), which are then used to update all local
labels once more (line 33). At this point, all labels on all
processes have achieved global context and are fully finalized,
representing the maximal global connected components in the
AMR structure.

Similar to the first phase, relating labels across multiple
processes is more nuanced than first described. Multiple levels
may have a given label x, and these labels are unrelated.
A label-offsetting operation must be performed, as before.
However, this time we have a more efficient option besides
MPI Scan. The block-structured AMR model we consider
enforces a “proper nesting” constraint, which means cells at
level ` may never adjoin any cell on level `− 2 or less.
Thus, ghost cells in this phase necessarily come from only
the next-coarser level. Since all labels are level-relative, and
the source level is known, no ambiguity exists. Therefore,
when the master receives level-wise UF ′` and LP′`, it offsets
the labels using this knowledge, avoiding an extra round of
communication.

3) Hierarchical Group Computing: The methodology de-
scribed thus far makes the assumption that all processes
participate in every step of the algorithm. However, a key
observation is that not all processes have data (boxes) for
every AMR level. This is especially true for coarser levels,
which have relatively few boxes to distribute. Therefore, such



processes would be idle when participating in a given level,
limiting potential parallelism.

Therefore, we refine the communication structure of the
algorithm using a hierarchical grouping strategy. Processes are
now collected into (potentially overlapping) “level groups,”
one for each AMR level, where each level group contains all
processes that actually have data at the corresponding AMR
level. Each “level leader” discussed in the previous section
is elected from the corresponding level group, collectively
forming the “leader group.” Finally, the “master” process
is elected from the leader group. In our implementation,
level leaders and the master are chosen arbitrarily from their
respective groups. A more sophisticated strategy could take
network placement, etc. into account; we leave exploration of
this topic as future work.

The key feature of this strategy is that communication for
each level is restricted to the corresponding level group. In
Algorithm 2, lines 4, 18, and 28 demonstrate this optimization.
This has the effect of limiting the scope of collective communi-
cations, which potentially reduces overall communication cost
and network contention at the level leaders and the master.
This has the additional consequence of allowing processes
without data at a given level to begin work on the next level
without blocking.

Finally, the hierarchical grouping allows a computational
optimization, as well. During the global detection phase, inter-
level label equivalence pairs generated by processes are first
aggregated to the level leaders before being forwarded to the
master. Duplicate pairs may be initially generated when a large
component on one level adjoins another large component on
the next coarser/finer level, as many processes may report the
same equivalence. With the hierarchical grouping, the level
leaders can remove these duplicates before forwarding to the
master, parallelizing the task and reducing communication.

IV. EXPERIMENTAL EVALUATION

To evaluate our connected component detection methodol-
ogy, we collect experimental results using two AMR simu-
lations. The first, BISICLES, is a large-scale AMR ice sheet
modeling code for climate modeling. Using this application,
we demonstrate the performance of our connected component
detection under two real-world simulation configurations. Sec-
ond, we use a “packed channel” benchmark to test scalability
and collect timing breakdowns for our method. In both cases,
we apply our method in an in situ context, operating on AMR
data distributed across many parallel processes.

A. Experimental Setup

All experiments were conducted on the “Edison” supercom-
puter at the National Energy Research Scientific Computing
Center (NERSC). Edison consists of 5,576 compute nodes,
each with two 12-core 2.4 GHz Intel “Ivy Bridge” processors
and 64 GB memory.

We integrate our connected component detection algo-
rithm directly with the Chombo block-structured AMR frame-
work [13] (specifically, a development version of Chombo

3.2). Chombo is a popular AMR framework used by many
scientific applications [4], [14], [15]. Both BISICLES and the
packed channel example are Chombo-based; our experiments
with these codes demonstrate our Chombo integration.

B. BISICLES – Real-Time Ice Calving Detection Use Case

The BISICLES AMR code models ice sheet dynamics in
regions such as Antarctica and Greenland. Connected com-
ponent detection is of particular interest in BISICLES, as
this algorithm could be used to detect ice calving events that
occur during the simulation. Ice calving occurs when a large
iceberg breaks from the main floating ice shelf and floats on
its own. Large-scale calving events (e.g., an iceberg of size
comparable to the city of Atlanta breaking off the edge of
a glacier) are of scientific interest, e.g., in studying global
climate change [19], [20]. Furthermore, calving events also
impact the correctness of a BISICLES simulation. If a calving
event produces a section of disconnected ice which is not
detected and removed in real time, the simulation’s underlying
mathematical model becomes ill-posed and will fail. Thus,
BISICLES relies on real-time connected component detection
to identify and remove isolated icebergs.

Fig. 5. An example of an ice calving event on the Pine Island Glacier ice shelf
during the simulation run is shown. The glacier is shown before (subfigure
(a)) and after (subfigure (b)) the calving event occurs, wherein a rectangular
region of ice (approximately 30km × 26km in real size) detaches from the
main shelf and becomes an isolated floating iceberg. Subfigure (c) shows an
ice thickness mapping over the whole of the Antarctica glacier, surrounded
by ocean (dark blue).

Figure 5 shows an example of an ice calving event at the
Pine Island Glacier ice shelf, with images before (subfigure
(a)) and after (subfigure (b)) the calving event. An ice calving
event occurs when a region of ice meets two criteria. First,
the region must be separated from the main ice shelf by ice
that falls below some thickness threshold; this maps exactly
to the connected component detection problem with a cell-
classifying predicate based on ice thickness. Second, such
an isolated region must also be fully floating, meaning that
no part is grounded (i.e., sitting on solid ground underneath
the ice); this latter condition can be trivially checked for
any isolated region. Thus, the challenge is in detecting new
connected components in real time, and this is where our
method comes in.

We conduct two experiments with BISICLES. First, we



consider a BISICLES run that includes a large ice calving
event, which we use to demonstrate detection and to measure
performance. The second configuration proceeds for many
timesteps with no calving events; this shows that our method
performs well even when no calving is occurring (relevant
because ice calving is rare on a timestep-by-timestep basis).

1) Performance with an ice calving event: We conduct this
experiment on the Antarctic continental ice sheet, which plays
a vital role in global oceanic and climatic systems. The simu-
lation begins with a base resolution of 8km and generates finer
AMR levels up to a finest resolutoin of 500m using refinement
ratios of 2. Our detection algorithm is invoked every timestep
during the simulation run, using a cell-classifying predicate of
ice thickness > 1.0 (in other words, cells with ice thickness
under 1 meter are considered to be empty of ice). Whenever
our method detects a new connected component, we perform a
simple scan of the “groundedness” field over the component to
determine if it is floating; if so, it is reported to the simulation
for proper recording and handling.

We compare the performance of our method, which we term
PCCL for Parallel Connected Component Labeling, with the
performance of an existing specialized ice calving detection
method currently implemented in BISICLES, which we refer
to as Ad Hoc 1. The Ad Hoc 1 algorithm relies on an iterative
method to find connected components. The data is repeatedly
scanned with a sort of flood-fill algorithm, interleaved with
several communication rounds using Chombo’s ghost cell
primitives to enable the fill to cross box boundaries. The loop
ends once the detection results stabilize, or once a maximum
number of iterations are expended.

Figure 6 shows that our PCCL approach consistently outper-
forms this built-in BISICLES Ad Hoc 1 method, with greatly
increased speedups at larger per-process data sizes. This is
because our proposed approach uses less communication,
resolving global connectivity using only two communication
phases, whereas the iterative Ad Hoc 1 requires a variable (and
potentially much larger) number of communication rounds.

Fig. 6. Speedup of PCCL over Ad Hoc 1 for real-time ice calving event
detection in BISICLES.

2) Performance with no ice calving event: Since ice calving
is rare on a timestep-by-timestep basis, it is crucial to ensure
the detection process does not impose undue overhead during
timesteps with no ice calving event. Thus, we also test the
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performance of both methods on a configuration of BISICLES
where no calving occurs for many timesteps.

Figure 7 shows the speedup of the PCCL method over the
Ad Hoc 1 method under the no-calving configuration. Two
trends can be observed from the figure. First, as the data
size per process increases, the relative speedup of our method
increases commensurately. There is slight dip in speedup
around certain data sizes; we theorize that the AMR load
balancing algorithm is distributing boxes in a more scattered
fashion for these sizes, leading to slightly increased commu-
nication. Regardless, PCCL consistently yields speedups over
Ad Hoc 1, from 2x to 6x. Second, at a fixed data size per
process, PCCL yields steady speedups (up to 6x) for more
consecutive timesteps. The primary reason for these speedups
is that our method admits an optimization. Before the global
detection phase, candidate components can be quickly checked
for viability as calved icebergs by testing the “groundedness”
property. If all components on all levels are grounded, Phase
II can be skipped entirely, as no floating components could
be produced. This optimization is only made possible by our
method; whereas, the Ad Hoc 1 approach cannot support this
optimization, as no components are available to check until
the very end of its execution.

C. Packed Channel – Large-scale Chombo Benchmark

We now turn to a simulation benchmark – the packed
channel [16], [17], for further performance evaluation. This
simulation unsurprisingly models a “packed channel,” which is
an idealized approximation of realistic pore spaces for porous
media flow obtained from image data of laboratory experi-
ments. Numerical experiments can be run in these channels,
which exhibit similar properties to the experimental medium
such as porosity, tortuosity, and heterogeneity, effectively
mimicking the natural material without the time-consuming
process of imaging a real experiment. In turn, the results
of this numerical simulation can be used to predict bulk
parameters such as permeability, dispersivity, and reaction
rates for better continuum scale models. We choose the packed
channel for this set of experiments because the obstructions



(filled circular regions) modeled within the channel form well-
defined connected components, making them ideal candidates
for detection with our algorithm (see Figure 8).

Fig. 8. A depiction of a 2D packed channel dataset. The circular regions
in the channel represent obstructions, with the remainder consisting of “pore
space” through which fluid may flow. We color the circular regions, showing
the connected components our method aims to detect.

Data preparation for the packed channel proceeds as fol-
lows. First, the initial data is generated on a uniform mesh.
We then apply a second tool to refine the grid at and around
the boundaries of the circular obstructions, to increase the res-
olution around these intricate surfaces. Next, the AMR mesh
data is partitioned using Chombo’s load-balancing mechanism
(“LoadBalance”), spreading the data across parallel processes.
Finally, we invoke the connected component detection algo-
rithm, which runs in a parallel, in situ context, exactly as if
the data were generated in real time.

As stated in Section I, to our knowledge, no general-purpose
connected component detection method exists for AMR data.
BISICLES provides a specialized ice calving detection routine
(Ad Hoc 1), however it actually computes an indistinguish-
able set of cells representing isolated, floating ice, which
may belong to any number of connected components. While
this simpler formulation works for ice calving, as grounded
components are specially eliminated before being returned, it
cannot solve problems where each connected component must
be separately identified. Nonetheless, Ad Hoc 1 is the closest
analogue to our method we can find for comparison, so we
adapt it to the packed channel by removing the “grounding”
constraint, terming the modified version “Ad Hoc 2.” Despite
our method being “disadvantaged” by solving the harder, gen-
eral version of the connected component detection problem, it
still outperforms the special-purpose Ad Hoc 2 in the following
results.

Figure 9 shows the performance comparison between PCCL
and Ad Hoc 2 on the packed channel dataset (≈ 850 MB
data) using a varying number of processes. PCCL is shown
to achieve a consistent speedup over Ad Hoc 2, up to 1.4x.
A detailed breakdown of each method’s performance is also
given, showing three timings:

• “Local Computation” includes core-local operations, pri-
marily the local labeling algorithm (a fixed number of
passes for PCCL, and iterative passes for Ad Hoc 2).

• “Chombo Communication” consists of time to invoke
Chombo’s built-in ghost cell communications, the fill-
Interp and exchange functions.

• “Communication” indicates any other communication in-
duced by the method (only PCCL invokes it, for aggre-

Fig. 9. A timing breakdown comparison between PCCL and Ad Hoc 2 for an
AMR dataset with 800 million total cells when run on Edison. PCCL achieves
a consistent speedup over Ad Hoc 2, up to 1.4x.

gating and spreading label equivalence).
The “Local Computation” portion of both methods scales well,
with PCCL exhibiting generally lower local compute times.
We attribute this to the relative computational efficiency of a
two-pass-based method, versus the multi-pass underpinnings
of Ad Hoc 2. We see that our “Communication” cost also
scales well, which we attribute to our hierarchical grouping
strategy that relieves the potential communication bottleneck
at the master process.

Finally, we note that the sum of “Communication” and
“Chombo Communication” is similar for both PCCL and Ad
Hoc 2, which at first glance is unexpected, as the multi-pass
Ad Hoc 2 ought to invoke much more communication. Upon
closer examination, we discover that the iterative Ad Hoc 2
only requires one iteration to solve this dataset. As a multi-
pass-type algorithm, Ad Hoc 2 is heavily dependent on the
specific data, and it turns out that packed channel represents
a best-case scenario. In contrast, the realistic BISICLES data
used earlier require a larger number of iterations compared to
Ad Hoc 2, and thus yields higher speedups for our method.
We observe that, even under ideal conditions for Ad Hoc 2,
PCCL yields superior overall performance.

V. RELATED WORK

Connected Component Labeling (CCL) on uniform meshes
has been explored in both serial and parallel contexts. The
main trend in the serial CCL research is to develop a fast
way of propagating a component’s connectivity throughout
the grid. Proposed approaches generally fall into one of three
categories, based on the method of connectivity propagation.

Multi-pass algorithms [12] perform “sweep” operations
(scanning the dataset and connecting labels via immediate
neighbors) in alternating directions until the labeling becomes
stable. An inherent drawback is that sweep operations could
become quite costly when components exhibit certain complex
geometries [12].

Two-pass algorithms [8]–[11] combine an initial scan of the
data, which updates an auxiliary union-find structure, with a
second update scan to convert provisional labels to final labels
using the union-find structure. Variants of this approach differ



in the representations for the union-find structure; we use the
array-based union-find structure espoused by [8].

One-pass algorithms [5]–[7] perform labeling with a single
scan, during which unlabeled cells are identified, followed by
a flood-fill-like assignment of the same label to all connected
cells. Although termed single-scan, one-pass algorithms can
perform worse than a two-pass algorithm when components
have complex geometry [8]. Also, one-pass algorithms rely
on contour tracing, which is hard to parallelize due to the
difficulty of capturing the global geometry of components.

On the parallel front of CCL research, especially in a
shared memory environment, the research challenges center
around both load balancing and reducing communication. For
example, two parallel CCL methods are proposed in [21].
In the first, the mesh is distributed in equal-size pieces to
each process, on each of which local labeling computation
is performed. Global labels are then computed through a
binary tree based merging process wherein boundary labels
are communicated. The second proposed method, designed
for isosurface extraction, assigns cells to each process based
on value ranges. This strategy eliminates the need for con-
nectivity exchange, as components divided by cell values
already reside on the same process. Another multi-phase
approach is described in [22], and labels a uniform mesh
distributed across processes. This approach has four phases:
first, identify local connected components; second, build a
global labeling across all processes; third, determine which
components span which processes; and fourth, merge global
labels to produce a consistent labeling across all processes.
A last approach is presented in [23], which detects and tracks
features (analogy of the connected components) on AMR data
across multiple time-steps. In this approach, it first performs
local feature detection in parallel while a simulation is running,
and then aggregates detected features to an external processing
center, “viz-accumulator”, where the global features are finally
identified.

Two major differences stand between our work and these
existing parallel CCL methods. First, existing approaches
work on single-level, uniform meshes, whereas our work
deals with multi-level, hierarchical AMR meshes for the first
time. Second, we address the connected component detection
problem in an in situ context, as opposed to the post-processing
environments considered in existing work.

VI. CONCLUSION AND FUTURE WORK

In this work, we formally define, and then solve, the
connected component detection problem for block-structured
AMR. We then extend our proposed method to further address
this problem in the parallel, in situ context. By using a
multi-phase AMR-aware communication pattern, we are able
to efficiently synchronize connectivity information across the
AMR hierarchy. We additionally optimize the inter-process
communication pattern in our approach by using a hierarchical
grouping strategy to avoid expensive all-to-all communication.
We argue that in our methodology, processing connected com-
ponent detection in the maximum parallelism and exchanging

components’ connectivity with the least amount of data size
are general to the connected component detection on the block-
structured N-dimensional AMR data.

Our results show that our method can be used to solve
the particular analysis problem of ice calving event detection
in the BISICLES simulation, outperforming previous special-
purpose algorithms used for this task with up to 6.8x speedup.
Speedups are also observed (up to 6x) during timesteps when
no ice calving occurs. Additionally, we show scalability up to
4,096 cores on the Edison supercomputer, demonstrating the
viability of our method for large-scale, parallel, in situ use in
real-world applications.
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