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Abstract—Scientific experiments and simulations produce
mountains of data in file formats, such as HDF5, NetCDF, and
FITS. Often, a relatively small amount of data holds the key
to new scientific insight. Locating that critical information in
these large files is challenging because existing solutions need
significant user involvement in preparing the data, generating
indexes, and answering queries. Data management systems that
support querying, such as SciDB, require a costly process of
loading data from scientific data formats to these systems. The
search results also need to be converted back to a format needed
by the subsequent data analysis and visualization tools. These
steps are time-consuming, tedious, and possibly error-prone.

Toward providing efficient data management directly on
these scientific file formats, we introduce a framework called
Scientific Data Services (SDS). SDS targets to provide efficient
data management optimizations as services. In this paper, we
introduce the design and implementation of one such service,
the parallel querying service. To answer the queries efficiently,
we transparently augment user data with bitmap indexes and
ordered datasets. We design the querying service to manage
these augmented datasets and to redirect queries automatically to
bitmap indexes or to ordered datasets based on their availability
and the expected query response time. The generation of bitmap
indexes and sorted datasets and querying are parallelized to work
on large supercomputers. We show that SDS achieves 22X, 55X,
and 62X speedups compared to conventional full-scan approach
of sifting through data in answering three queries from a plasma
physics analysis application.
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I. INTRODUCTION

Large-scale simulations and experiments are generating
high-resolution data that could lead to better understanding of
various physics phenomenon around us. The ability to quickly
analyze the massive amounts of data is critically important
to scientific discoveries. As high-performance computing is
advancing towards extreme scale, even more data is expected
[15]. Often, a relatively small amount of data records hold the
key to new scientific insights. In such a case, an effective data
querying mechanism could significantly accelerate the data
analysis process. In this work, we report our effort in designing
and developing such a parallel querying mechanism.

Scientific data is typically stored on parallel file systems,
such as Lustre [17] and GPFS [27]. These parallel file systems
treat the data as “sequences of bytes” [16]. Such an abstraction
simplifies file system design and implementation, but fails
to capture even simple semantic information about the data,
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Fig. 1. SDS in the parallel I/O stack

which significantly limits the support for data analysis. For
example, in a plasma physics simulation [6], each particle
contains a few properties, such as energy and spatial locations
(x, y, and z). A typical analysis by domain scientists is to
select a subset of the particles satisfying some user-specified
conditions on these properties. High-level I/O libraries, such
as HDF5 [14], PnetCDF [21], and ADIOS [23], have been
developed to facilitate the management of these properties, but
they offer little or no support for value-based queries.

A large amount of data outside of the scientific community
are managed by database management systems (DBMS). A
key distinction between DBMS and file systems is that DBMS
maintains certain semantic information about user data through
a high-level data model called relational data model. Recently,
several such data management systems have been developed
specifically for managing scientific data, for example, SciDB
[4], PostSQL [26], ArrayDB [25], and SciHadoop [5]. While
these systems provide relational queries across multiple vari-
ables either with SQL queries or with SQL-like interfaces,
they require loading data from existing files to a format
that these systems work with. This loading process is often
time consuming and error-prone as it requires extensive user
involvement [3]. Moreover, results produced by these systems
need to be converted back to data formats that visualization
tools and analysis tasks can understand. To avoid the loading
and the conversion processes, a number of research efforts
have explored the option of directly indexing scientific data
files [1], [9]. For example, Chou et al. developed FastQuery
[9] to generate bitmap indexes to support queries on a number
of different file formats. However, to use these systems, ap-
plication developers have to make significant changes to their
analysis programs. To improve the usability and to provide
transparent parallel functionality, we develop an option that
minimizes changes to the user program for data analysis.

Our parallel querying capability is a new service in the
Scientific Data Services (SDS) framework, where the overall
objective is to provide easy-to-use scientific data management



services [12], [33]. As shown in Fig. 1, SDS is a lightweight
layer in the parallel I/O stack, between the applications and
parallel file system. Developing an efficient querying capability
to handle scientific file formats and to run on massively
parallel systems has many challenges. Solutions are needed
for loading only the data that satisfies given query conditions.
These solutions have to make use of the abundant parallelism
available on large-scale clusters. The analysis programs have
to transparently request for data in their original data formats
without the need to understand the physical placement of the
data. Towards solving these challenges, we develop SDS to
separate logical and physical views of user data. Using SDS,
applications can access data in an array data structure, while
the actual data access to the underlying physical data can
be optimized through reorganization or indexing. We provide
a query interface for searching the data of interest, called
SDSQuery [12]. This interface permits applications to directly
read the interesting portions of data defined by query condi-
tions. We develop optimizations such as balancing the data
reads among parallel processes and selecting the best physical
organization of the data to obtain efficient performance. In
this paper, we describe bitmap index generation and query
execution strategies on large HDF5 datasets. In summary, the
main contributions of this paper are as follows:

• We introduce a parallel querying service and explore
generating bitmap indexes and sorting

• We propose a method for query execution to select
among the original, reordered, and indexed datasets.

• We implement a balanced reader to distribute the
data reading workload as equal as possible among the
participating computing processes.

• We extensively evaluate the performance of the SDS
querying service using a real plasma physics dataset
and demonstrate the usability of the SDS framework.

The rest of the paper is organized as follows: In Section II,
we provide a brief background to querying and using bitmap
indexes towards querying. We also present an overview of
the SDS framework. We present details of the SDS server,
parallel methods for generation of indexed or ordered files for
supporting query evaluation, and transparent query processing
in Section III. In Section IV, we report performance evaluation
results of SDS querying service using the data and queries from
a real plasma physics application. We review related work in
Section V, and conclude the paper with a brief discussion of
future work in Section VI.

II. BACKGROUND

Query-driven analysis of data reduces data movement in
scientific data exploration. Instead of accessing all the data
records and scanning through them for information, querying
for the interesting features in the form of conditional state-
ments, such as “temperature > 100 AND pressure >
200”, reduces the amount of data movement. While database
management systems (DBMS) support these types of queries
using SQL statements, support for such queries on scientific
data formats is primitive. Our team has been working on
various technologies including FastBit bitmap indexing and
FastQuery towards that goal. In this section, we present a brief

introduction to those technologies and an introduction to the
Scientific Data Services (SDS) framework, which is aimed at
providing data management tasks as transparent services.

A. Bitmap Indexing

Bitmap indexes show a significant advantage over other
data structures in querying low-cardinality data [29]. The basic
idea of bitmap index is to pre-build the bit arrays (bitmaps)
with data and then use them to answer the data selection
query. For our work, we use an open-source bitmap indexing
library named FastBit [34]. This library has many state-of-
the-art bitmap indexing techniques [35], and is demonstrated
to work well in a variety of scientific applications [34].

The FastBit library supports thread-based parallelism. To
work on large datasets on massively parallel computers, we
have developed FastQuery. It partitions the user data into
fixed size blocks, manages the bookkeeping of the blocks,
invokes FastBit to generate indexes and evaluates queries. This
parallelization strategy has shown to work well in a number of
examples [9]. FastQuery implements I/O drivers for accessing
array data stored in different file formats, such as HDF5,
PnetCDF and ADIOS. However, using FastBit and FastQuery
requires users to make significant changes to their analysis
programs to instantiate query processing objects and to per-
form query execution. Moreover, users have to build bitmap
indexes explicitly before using them for query execution. These
steps are often tedious and time consuming. Through SDS, we
provide services that generate the indexes transparently and
select the right options for query evaluations.

B. Scientific Data Services Framework

In our previous paper [12], we have described the design of
the Scientific Data Services (SDS) framework that automates
data management tasks such as reorganizing data layout on file
system to improve read performance. The SDS framework has
two components: SDS Clients and SDS Server. In Fig. 2, we
show a high-level overview of the SDS framework. The Server
is responsible for monitoring data usage patterns, executing
data optimizations such as generating indexes and sorting
data, and managing the metadata related to the optimized
datasets. The server can make decisions to sort or to generate
bitmap indexes based on observed data usage patterns. We
also provide an administrative interface for users of SDS to
initiate data optimizations without waiting for the server to
observe and detect possible data optimizations. The current
implementation of SDS uses one Server to support a number
of Clients, and the Server runs on a compute node with static
IP address. The clients use this IP address to request the
server and to identify the optimized datasets. The clients,
accessed by an analysis application using a runtime library,
run on the compute nodes where the analysis runs. When
the analysis opens a file to read or to query data from a
HDF5 file, a designated SDS client requests the SDS Server
for the availability of optimized datasets for the HDF5 file.
The designated SDS client is typically the master process, i.e.,
Rank 0, of Message Passing Interface (MPI) programs. When
optimized datasets are available and deemed beneficial to read
them, the designated client broadcasts that information to all
other MPI processes. A full description of the components of



the Server and the Clients are available in [12]. In this paper,
we focus on the challenges and solutions of parallel querying.
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Fig. 2. An overview of SDS architecture. An application links with the
SDS Client library, where each MPI process links with an SDS Client. The
Client on MPI Rank 0 contacts the SDS Server to find the location of the data
organized by the Server for faster access than the original data and broadcasts
the location information to all the Clients.

III. SDS PARALLEL QUERYING SERVICE

A parallel querying service directly on scientific data files
has multiple challenges. First, there isn’t a widely used query
interface for applications to specify query conditions or to
execute the search operations. As a prototype query interface,
we devise a simple API on top of HDF5. This API can
compose query conditions in a string. The conditions on each
variable can be joined together with AND and OR operators.
The next challenge is in generating secondary datasets effi-
ciently and transparently while keeping the original data files
intact. In Section III-A, we describe transparent augmented
data generation. Finally, the query execution has to be efficient.
We explain the operation of query execution in Section III-B
that includes a discussion of the selection of efficient datasets
based on the expected query performance.

A. Augmented Data Generation

As mentioned earlier, the SDS framework has Server and
Client components. The server is responsible for generating
datasets that would provide better performance, for placing
them on storage space managed by SDS, and for managing
their location. In Fig. 3, we show the components of the SDS
server and the interactions among them.
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Fig. 3. Main components of SDS Server and their interactions.

When optimized datasets are created by SDS, the metadata
of these datasets, such as the identity of the original data, lo-
cation, access permissions, and type of optimization are stored
in a lightweight database, called SDS Metadata Manager. We
implemented the Metadata Manager using Berkeley DB and
use the original data file as a key to find the optimized datasets.

The Request Dispatcher accepts requests from Clients and
the Admin Interface. The SDS server can detect data usage
patterns and then decide to perform various optimizations, or a
user or an administrator can use the Admin Interface to suggest
an optimized organization of the original data. We also use
the Admin Interface for indexing or sorting the original data.
A request can either register a file for possible optimizations
or start a specific data service such as indexing. When the
file is registered, the information such as access patterns and
preferred data service can also be provided. A request from an
SDS client or an administrator can be directed to SDS Service
Evaluator and Request Evaluator, respectively. We implement
the communication between client and server with the use of
protocol buffers1.

In this paper, we use two types of augmentation of data
to support querying: bitmap indexes and ordered dataset based
on a given column. We describe the two types in the following
subsections. The SDS Service Evaluator, shown in Fig. 3,
parses the request given to the Admin Interface and initiates a
batch job creation request to the Service Job Manager. The SDS
Service Job Manager composes a job batch script based on
the requested augmentation and submits it to a parallel system
where the SDS server is running. The Service Job Manager
has access to a pool of executable binary files to perform
augmentations, such as FastBit bitmap indexing and sorting
data. The Job Manager determines the number of processes to
use for running these services based on the size of the data, and
memory requirement. The Job Manager monitors the progress
of the submitted batch jobs and stores the metadata in the
Metadata Manager at the completion of the jobs.

1) Parallel Bitmap Index Generation: To build the bitmap
index from the data, we have implemented an MPI program
based on FastBit library. The data from the original file is
equally partitioned into multiple chunks based on the number
of processes participating and the rank of each process. Then,
each chunk is read into the memory by individual process
concurrently. The FastBit library is called in the following
index construction steps. The bitmap construction functions of
FastBit first split the data into bins with different boundaries. In
each single bin, one representative key is selected. The distinct
values of these representative keys are selected and the original
data are mapped into 0 or 1 based on these distinct values.
In the process of index creation, the compression method
named Word-Aligned Hybrid compression (WAH) is employed
to reduce the index file size. Our previous implementation of
parallel bitmap index generation, which resulted in FastQuery,
writes the produced bitmaps from different cores into a single
HDF5 file. However, due to synchronization requirements
of the HDF5 library, we noticed significant inefficiencies in
writing metadata to the bitmap file. To tackle this problem,
SDS writes the bitmaps into separate individual binary files in
a single directory, where the directory name is the original data
file name. As writing one file-per-process (fpp) is considered
to achieve peak I/O performance [7], parallel bitmap index
generation strategy will avoid costly synchronization overhead.
The index files are named with a prefix of the HDF5 dataset
that has been indexed. After the indexes are generated, the
SDS Job Manager stores the directory location, the indexed
HDF5 dataset name, and the number of index files into the

1https://code.google.com/p/protobuf/



Metadata Manager.

2) Sorted Organization of Data: In typical data analysis
operations, selecting the data located in a certain range is a
common practice. For example, in mass spectrometry imaging
data analysis [11], accessing a range of consecutive spectra in
images with certain mass-to-charge ratio (m/z) values is one
basic requirement. The data requests are typically expressed
within the logically contiguous space of the data. However,
the physical data layout of the requested data may have been
scattered across the whole file. In such cases, accessing data
from different regions of a file performs poorly due to a
large number of disk accesses. By reorganizing data into a
contiguous region and accessing large chunk of data with fewer
requests to disk can achieve serious performance benefits.

SDS can order the datasets using parallel sorting and
manage the sorted datasets. Our parallel sorting algorithm
is based on the classic Sample Sorting algorithm [22]. This
algorithm partitions the data into chunks and assigns each
chunk to one processor. Each processor applies a quick sorting
on the local chunk and sample its local sorted chunk. One
process (typically rank 0 of MPI) then gathers chunks from all
processes together and samples it again. The final sample at
rank 0 processor is used to choose pivots, which are sent to all
processors. After receiving the pivots, all processors exchange
the data based on its pilots. When exchange is done, each
processor sorts its local data again and writes the results to
file. The sorted data for each process is combined into single
sorted file. SDS Job Manager stores the ranges of sorted data
and the size of each chunk in the Metadata Manager.

B. Parallel Querying

The SDS Client library, which is linked to each MPI
process at runtime, performs query evaluation and execution,
reads data either from the augmented datasets or from the
original data files, and returns the data that satisfies a given
query condition to the application. In Fig. 4, we show the
internal structure of the SDS Client. The SDS Client library
is capable of handling the HDF5 API and the SDSQuery
API. The Parser intercepts either of the API calls and the
Server Connector contacts the SDS Server for locating any
optimized datasets. The Server Connector uses protocol buffers
to communicate with the SDS Server. As mentioned above,
only the SDS Client linked to the MPI Rank 0 contacts
the server and broadcasts all the other processes with any
information received from the server. If optimized datasets
are available, Query Evaluator evaluates the query condition
and determines the co-ordinates or indexes of the data records
that satisfy the given query and passes the co-ordinates to the
Balanced Reader. The Reader executes the query, i.e., reads
the data from the augmented datasets. If optimized datasets
are not available, the Balanced Reader reads the entire data
from the original files and scans for information that satisfies
the given query condition.

We will now elaborate the operation of the Query Evaluator
and Balanced Reader for different types of augmented datasets.

1) Selection among Augmented Datasets: When there are
multiple augmented datasets, such as ordered and indexed
datasets, choosing a dataset that would give the best querying
performance is a challenge. We have developed a heuristic
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Fig. 4. An overview of the SDS Client and the interactions among various
components

algorithm, shown in Fig. 5, that selects a dataset based on the
availability, on the number of variables in a query condition,
and on the number of data records to read after evaluating a
query. When a query comes to the parser, the query string
is sent to the server and the Query Evaluator obtains the
metadata related to the availability of augmented datasets and
the ranges of data to be read. If none of the augmented
datasets are available, the original data files are chosen for
reading the entire data and for scanning the data where query
conditions match. When augmented datasets are available, the
Query Evaluator assesses each of the datasets and selects an
augmented dataset that it estimates to give the best query
execution performance.

If the number of variables in a condition is equal to one,
reading an ordered dataset for that variable results in reading
contiguous data and provides the best performance. In this
case, reading an indexed dataset will involve reading data from
different and possibly non-contiguous locations causing poor
performance than reading an ordered dataset. If an ordered
dataset is not available, then this algorithm chooses an indexed
dataset. If an augmented dataset is unavailable, then the SDS
reads the original data files and scans through the entire data.

If there are multiple variables being evaluated in a query
condition, the selection is dependent on whether there are
indexes or ordered datasets based on any of the variables and
the number of records to load from the data. Evaluating a
query from ordered datasets needs a simple calculation of
the chunks of data to be loaded. The evaluation of sorted
dataset is based on the first variable that has been based for
sorting all the records. Evaluating bitmap indexes involves
reading the bitmap indexes and identifying all the coordinates
where the matching data records are available. Query Evaluator
uses FastBit software for obtaining the coordinates through
evaluating a query, where FastBit uses various optimizations to
reduce the number of records to be loaded to memory [34]. Our
current implementation of Query Evaluator selects the dataset
with the least number of records to load. The Balanced Reader
reads the data either from the augmented datasets or from the
original data files based on the selected dataset.

The Evaluator processes the ranges of sorted chunks and
passes them to the Balanced Reader on each process to
read data in those chunks. When using the indexed files, the
Evaluator reads the index files from the location returned by
the Server, and obtains the coordinates. If the size of index files
is larger than the memory of a process, the Evaluator splits
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the load into multiple chunks and iterates through the chunks.
After each iteration, the Evaluator sends the coordinates to the
Balanced Reader to read the data. When using the coordinates
from indexed datasets, there is a possibility of load imbalance
among the processes, i.e., some processes may not have
enough coordinates to read while some are overloaded. The
Reader balances the load, where the overloaded processes
send the coordinates to underloaded processes. The Balanced
Reader uses the number of hits to distribute the reading load
as evenly as possible to all the participating processes by
dividing the number of hits by the number of processes. In an
unsorted dataset, the Balanced Reader exchanges the number
of coordinates among processes, while in a sorted dataset,
it exchanges the number of coordinates and the size of the
data to be read. The Post Processor is not used in reporting
the querying results, but is available to perform any matrix
transformations or expansion of compressed data [12].

Through dynamic interception of SDS Query calls and
evaluation of queries makes the operation of SDS Client trans-
parent without the need of user involvement. The automatic
augmented data generation to support querying directly on
scientific file formats is an important feature making the SDS
framework a vital tool for data management. We plan to
integrate our recent work on performing complex operations,
such as JOIN operations on different HDF5 datasets that
would make SDS even more compelling.

IV. EVALUATION

We have conducted all the experiments reported in this
paper on Edison 2, a Cray XC30 supercomputer at the National
Energy Research Scientific Computing Center (NERSC). Each
compute node of Edison is configured with two 12-core Intel
“Ivy Bridge” processors at 2.4 GHz and 64 GB DDR3 1600
MHz memory. We used a Lustre file system of Edison, which
has a peak performance of 72 GB/sec. The number of OSSs
and OSTs for this file system is 36 and 144, respectively. In
our tests, the stripe size for all files is set to be 1 MB, and the
stripe count is 144. We used one of the 24 resource manager

2http://www.nersc.gov/users/computational-systems/edison/

nodes, called MOM nodes, for running the SDS Server. The
server runs as a daemon and submits the indexing and sorting
jobs to batch system to run on compute nodes. The SDS Client
processes of the jobs running on compute nodes contact the
Server for locating SDS optimized files.

We have analyzed the overheads involved in creating the
augmented datasets needed to support querying and compared
the times for executing a query. We have used the data and
analysis queries from a real plasma physics application, called
magnetic reconnection simulation and analysis based on Vector
Particle-in-cell (VPIC) code [6]. The number of particles in the
data are 1.2 trillion and each particle has seven properties, i.e.,
x, y, z, Ux, Uy , Uz , and Energy, representing the location, the
momentums, and the energy of the particles. The total size of
each variable is 467 GB and the total size of the file is 3.2 TB.
The queries of the analyses done on this data include searching
for location of highly energetic particles in the entire dataset,
and searching for the momentums of highly energetic particles
in certain locations. In the former analysis, the query condition
is based on the Energy variable, i.e., Energy > value. In the
latter, the query condition extends to x, y, and z, along with
Energy. Table I shows the queries we used in this evaluation.

TABLE I. QUERIES INVOLVED IN ANALYZING VPIC DATA

Query ID Query Condition String
Q1 Energy > 1.7
Q2 Energy < 1.3&&308 < X < 309&&149 < Y < 150
Q3 Energy > 1.3&&300 < X < 310&&140 < Y < 150

We divide the evaluation into two parts: (i) generation of
augmented datasets and (ii) execution of queries. In augment-
ing the datasets, we compare the performance and storage
space requirements with different types of augmented datasets.
In the execution of queries, we compare performance with the
support of augmented datasets. We also compare the query
evaluation overhead for selecting the best augmented dataset
based on the estimated cost of accessing the selected data. We
also show the benefit of using a balanced load among processes
in reading data from the storage compared to an imbalanced
approach.

A. Augmented Data Generation Overheads

The cost of augmented data generation in SDS is analogous
to building indexes to accelerate queries in database manage-
ment systems. In SDS, we expect to generate bitmap indexes or
ordered datasets transparently when the system is idle through
observing data usage patterns or by taking user commands
through the Admin Interface. In the current implementation,
we require the user to initiate augmented data generation. The
available options are to generate sorted data according to a
specified variable and to index one or more variables either in
the original data or in the sorted data. In our comparisons, we
represent these options as Sorting, Indexing original data, and
Indexing sorted data. We compare the execution time overhead
for generating these datasets and for storing them, and discuss
the trade-offs.

1) Execution time overhead: In Fig. 6, we compare the
execution times for generating the three augmented datasets
mentioned above for the VPIC data using different numbers
of CPU cores. We also show the execution time for generating
a single HDF5 index file using FastQuery [9]. We can observe



that the index generation overhead with FastQuery increases
as we increase the number of processes. This is due to the
increased metadata storing overhead in the HDF5 index files.
In our current implementation of bitmap index generation, we
use one file-per-process, where the metadata is small and stored
in individual files without the need for synchronization. We
observe that the cost of parallel sorting is higher than that of
index generation as all the variables have to be read and written
to a replicated file according to one variable’s sorted order,
whereas indexing is performed only by reading the variable to
be indexed. In this figure, we also show that we can easily use
thousands of CPU cores and can generate indexes in the order
of a few tens of seconds. As generation of these datasets can
occur off-line in the background, this overhead does not affect
the analysis performance directly.
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Fig. 6. Time to construct augmented datasets for one variable (Energy) of
the VPIC dataset using different numbers of CPU cores

2) Storage overhead: In Table II, we show the storage
requirements of augmented data produced by multiple methods
using different number of MPI processes. FastQuery produces
a single HDF5 file with a size of varying from ≈8 GB to ≈37
GB as the number of processes increases. Because FastQuery
collects all the bitmaps into one single file, it has to maintain
offsets of where bitmaps end for each process. As a result,
the size of the index file grows with the number of processes.
Indexing the original data with FastBit directly by SDS and
producing multiple binary files generate a number of files equal
to the number of processes. The file size is constant at 67 GB.
Maintaining individual files with their own bitmaps reduces
compression of bitmaps compared to storing one single file
causing increase in the size of bitmap indexes. However, this
is only 14% of the size of the Energy variable and using it for
searching is reasonable. Sorting the original data according to
the Energy variable replicates the original data in a different
order. The size of the sorted file is equal to the size of the
original data, i.e., 3.2TB. Indexing the sorted data reduces the
bitmap index size significantly as bitmaps compress efficiently.
In this case, we can delete the sorted data as we can use the
bitmap indexes to locate the queried data. The increase in the
file size with the number of processes is due to the creation of
more files. However, the storage footprint of the largest index
using 12,000 processes is ≈0.7 GB, which is quite small.

From the time and the storage space overheads for creating
augmented datasets, we can see that generating bitmap indexes
is less costly compared to replicating the entire data. In the
following discussion, we evaluate the performance of analysis

TABLE II. SIZE OF AUGMENTED DATA (IN GB) PRODUCED WITH
1500, 3000, 6000, AND 12000 PROCESSES

1500 3000 6000 12000
FastQuery 7.8 9.3 19 37
Bitmap indexes of original 67.88 67.79 67.77 67.77
Bitmap indexes for sorted 0.09 0.18 0.35 0.69
Sorted 3264.94 3264.94 3264.94 3264.94

using these augmented datasets.

B. Query Execution Performance

We analyze the performance of executing the three queries
listed in Table I. The overall query execution involves multiple
steps: SDS Client requests the Server for the availability and
location of augmented datasets, query evaluation, and reading
data from storage to memory. The overhead of SDS Client
and Server interaction is negligible as the communication
involves a few bytes of data transfer. We have already shown
in our previous paper [11] that this communication overhead is
negligible even when a large number of clients requesting the
server simultaneously. In this paper, we focus on discussing
query evaluation time and overall query execution time. We
will discuss running Q1 from the list, where the query contains
a condition on one variable, and then running Q2 and Q3,
where a condition contains multiple variables. We execute
these queries using a different number of CPU cores to
evaluate parallel query execution. In all these tests, we use
the augmented datasets produced with 6,000 CPU cores, i.e.,
the number of bitmap files is equal to 6,000.

1) Single Variable Condition (Q1): In Fig. 7, we compare
the performance of executing Q1 with a different number of
CPU cores ranging from 8 to 1024. Our comparison includes
query execution time for conventional analysis, i.e., scanning
entire data to find the records that satisfy a given condition
(labeled “full-scan”), and for analysis using sorted data (“using
sorted data”), bitmap indexes for the original dataset (“using
original data indexes”), and bitmap indexes for the sorted
dataset (“using sorted data indexes”). There are a few missing
values in processing the data with full-scan using a small
number of cores. Because partitioning a large number of data
records on a small number of processes caused out-of-memory
(OOM) errors, using at least 512 or 1024 processes was needed
for the full-scan approach.

As can be observed, using the sorted data for query
execution obtains the best performance, i.e. 55X faster than
full-scan using 1024 cores. Using bitmap indexes also obtain
7X to 10X speedup compared to the full-scan. The crucial
performance benefit with sorted data comes from reading a
small number of contiguous data records in the storage, where
the data records are sorted according to the variable in the
condition string. The query evaluation cost of using bitmap
indexes involves loading the bitmap indexes whereas query
evaluation of sorted datasets involves simply knowing the
ranges and locations of the sorted data chunks. We present the
query evaluation costs for using the three augmented datasets
in Fig. 8. We note that while using sorted data obtains the best
performance, the overhead of sorting is significant compared
to maintaining indexes as discussed above in Section IV-A.
Depending on the storage space availability, SDS can adapt
to generate one of these augmented datasets. When using the
indexes, SDS still obtains reasonable speedups.
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Fig. 7. Query execution time for Q1 (Energy > 1.7) with different numbers
of CPU cores and with using different augmented datasets
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Fig. 8. Query evaluation overhead for Q1

2) Multiple Variable Conditions (Q2 and Q3): Fig. 9 shows
the performance of query execution of multi-variable query
condition Q2, and Fig. 11 shows that for condition Q3. In Q2,
the condition on Energy (i.e., Energy < 1.3) matches 97%
of the data records and in Q3, the condition Energy > 1.3
matches 3% of the data records. The locations of x and y
coordinates are narrower in Q2 than those in Q3. Examined
evaluation options include full-scan, using sorted data, using
indexes on original data, and using indexes on sorted data.

For Q2, using bitmap indexes on original data obtains
the best performance as FastBit software evaluates all the
conditions simultaneously and selects the condition that has
the least number of data records to load. In this case, using
bitmap indexes on original data is 22X faster compared to
full-scan. Using sorted dataset performs the worst among the
augmented datasets as it evaluates Energy variable first and
loads almost all the data to memory. It also suffers OOM errors
when using a small number of cores. We are currently working
to solve the OOM errors with the use of an iterator to partition
fixed size chunks equal to the memory capacity.

In evaluating Q3, using sorted dataset performs the best
(62X faster than full-scan) as the number of records to load
is small. While using bitmap indexes of sorted and original
datasets achieves 12X and 14X speedups, respectively, our
SDS selects sorted dataset. In the absence of sorted dataset,
SDS still achieves significant speedups.

In Fig. 10 and 12, we show the evaluation overheads of Q2
and Q3. They reiterate that the overhead with sorting is low
and much of the query execution time with indexing is due to
the evaluation overhead.
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Fig. 10. Query evaluation overhead for Q2
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3) Balanced vs Imbalanced Reads: In Fig. 13, we show the
importance of balancing the data reading load among processes
when using the indexed datasets. In sorted dataset, the load
can be balanced easily based on splitting the number of data
records equally among the processes. When using the bitmap
indexed data, data records at the selected coordinates may have
the imbalanced read workload for each process. The plot in
Fig. 13 compares the times to read data from the storage when
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Fig. 12. Query evaluation overhead for Q3
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Fig. 13. Performance Comparison between Balanced Read and Unbalanced
Read for query Energy > 1.7

the workload is imbalanced and balanced. We can clearly ob-
serve that balancing the load achieves significant performance
improvement. We observe similar trend in executing the Q2
and Q3 queries.

V. RELATED WORK

Parallel file system plays a significant role in data-intensive
scientific applications [19]. Often, a file stored in parallel file
system may have a fixed layout throughout its life time. But,
the diversity of data analysis patterns in scientific applications
[10], [28] needs different data layouts. To bridge this gap, file
reorganization methods are widely explored [36], [20], [31],
[32], [2], [13]. Typically, these methods aim at deriving an
optimal data layout for specific data operations and cannot
easily generalize for multiple operations. In contrast, the SDS
framework aims at improving I/O operations with automatic
and transparent data reorganization and augmentation.

Meanwhile, the data model and associated interface of most
existing parallel file systems are still based on ‘sequences
of bytes’ concept, which makes it hard to extract semantic
information from the data. A few high-level libraries, including
HDF5 [14] and Parallel netCDF (PnetCDF) [21], are currently
in use as popular scientific data formats. Such libraries provide
the scientific applications an abstract view (typically arrays)
rather than a physical view of the data. To facilitate the array
based data accesses, both HDF5 and PnetCDF provide high-
level programming interfaces rather than POSIX-IO interface.
Since most of the scientific applications need to access a

subset of the values [6], [8], [18], [24], these libraries also
provide functions like H5Sselect hyperslab to select a part of
an array. However, when analysis applications need to select
data records based on values of a data property, such as
range queries, users of HDF5 and PnetCDF need to write
special functions to extract the desired data records. Efforts
to design new query interface for HDF5 and PnetCDF have
been in progress recently [24], [30], [37]. The key distinction
of SDS is that the SDS framework supports value-based query
interface and provides efficient data query operations through
its transparent services. For example, the selection of indexes
or reorganized data or sorted data is transparent to the users.
The SDS approach makes it easier to take advantage of
efficient data management services.

Successes of database management research have been
extended to serve scientific data querying in the recent years.
SciDB [4], PostSQL [26], ArrayDB [25], and SciHadoop [5]
are typical examples of recently developed such data manage-
ment systems. The most related to SDS is SciDB[4], which is
based on array model, and works on a distributed architecture.
One motivation for SciDB is that most of the scientific datasets
are generated and stored in array formats. For example, in a
high-energy particle dataset, each variable can be represented
as a column and each particle’s properties can be stored as
a tuple. But, a typical characteristic of scientific data is that
the size is extremely large. For example, a single file of a few
trillion particle plasma physics simulation can be larger than
100 TB. To take advantage of massive parallelism on large
clusters, the data is written to files. Transferring that data into
data management systems such as SciDB is extremely time-
consuming. With SDS, we target in place data analysis to avoid
data transferring time while providing efficient value based
querying. In our recent work [3], we have demonstrated that in
place analysis of SQL queries outperforms PostgreSQL by 4X
and Apache Hive by 10X. Based on the foundations of FastBit
and FastQuery, SDS targets at using cutting edge massively
parallel systems to achieve efficient data management with
minimal user involvement while managing data in existing
file formats that have extensive analysis and visualization tool
support.

VI. CONCLUSIONS AND FUTURE WORK

Data analysis plays a key role in extracting knowledge
from large scientific data. To support efficient data analysis,
we have recently proposed Scientific Data Service (SDS), a
lightweight transparent optimization layer in the parallel I/O
stack. In SDS, data is abstracted as multi-dimensional arrays,
instead of byte sequences stored in a parallel file system. In
this work, we present the design and development of a parallel
querying as a service of SDS. The key features of the querying
service include an easy-to-use interface, cost-based selection
of augmented datasets, and efficient query execution. The
querying service parallelizes the index generation, sorting, and
query answering tasks without user intervention. Furthermore,
by taking advantage of the flexibility offered by SDS, we
are able to automatically balance the workload of different
processes and to improve query processing speed.

To assess the performance of the querying service, we have
evaluated it with three different queries of a plasma physics
analysis task. Our evaluations show that the querying service



achieved up to 60X faster than the conventional full-scan
process of the answering the same queries. The extensions of
this effort include automatic identification of variables to be
sorted or indexed and efficient storage management for placing
replicas of data.
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