
Optimizing FastQuery Performance on Lustre File System

Kuan-Wu Lin
National Tsing Hua Univeristy

Hsinchu, Taiwan
vidcina@lsalab.cs.nthu.edu.tw

Jerry Chou
National Tsing Hua Univeristy

Hsinchu, Taiwan
jchou@lsalab.cs.nthu.edu.tw

Surendra Byna
Lawrence Berkeley National

Laboratory
Berkeley, CA, USA

SByna@lbl.gov

Kesheng Wu
Lawrence Berkeley National

Laboratory
Berkeley, CA, USA

KWu@lbl.gov

ABSTRACT
FastQuery is a parallel indexing and querying system we
developed for accelerating analysis and visualization of sci-
entific data. We have applied it to a wide variety of HPC
applications and demonstrated its capability and scalabil-
ity using a petascale trillion-particle simulation in our pre-
vious work. Yet, through our experience, we found that
performance of reading and writing data with FastQuery,
like many other HPC applications, could be significantly af-
fected by various tunable parameters throughout the parallel
I/O stack. In this paper, we describe our success in tuning
the performance of FastQuery on a Lustre parallel file sys-
tem. We study and analyze the impact of parameters and
tunable settings at file system, MPI-IO library, and HDF5
library levels of the I/O stack. We demonstrate that a com-
bined optimization strategy is able to improve performance
and I/O bandwidth of FastQuery significantly. In our tests
with a trillion-particle dataset, the time to index the dataset
reduced by more than one half.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

Keywords
I/O performance, Tuning, FastQuery

1. INTRODUCTION
Many scientific applications produce and consume large amounts
of data. For instance, the Intergovernmental Panel on Cli-
mate Change (IPCC) multi-model CMIP-3 archive is about
35 TB in size. The next generation CMIP-5 archive, which
will be used for the AR-5 report [1] is projected to con-
tain over 10 PB of data. Large scale experimental facilities

produce equally impressive amounts of data. The LHC ex-
periment is capable of producing 1 TB of data in a second,
many gigabytes of which are recorded for future analyses.
The Large Synoptic Survey Telescope (LSST) will record
many terabytes of data per night. The torrents of data
are expected to overwhelm our capacity to make sense of
them [14].

While data sizes of scientific applications are large, in many
cases, the essential information is contained in a relatively
small number of data records. For example, in the IPCC
data of petabytes in size (1015 bytes) critical information
related to important events such as hurricanes might occupy
no more than a few gigabytes (109 bytes). Capabilities for
accessing only the necessary information-rich data records,
instead of going through all of them, can significantly accel-
erate scientific discoveries. The requirement for efficiently
locating interesting data records is indispensable to many
data analysis procedures.

The class of data structure for quickly locating selected data
records is known as indexes [22] and the well-known imple-
mentation of indexing techniques are inside the commer-
cial database systems. Instead of asking the scientists to
load into commercial database systems, we advocate an ap-
proach of using an indexing library with common scientific
data format libraries. This strategy directly works with user
data files and allows the scientists to stay with their existing
data management and analysis software. They can gradu-
ally adapt the indexing techniques without disrupting their
on-going work.

In this work, we make use the FastQuery system we built
on top of the FastBit indexing package to accelerate data
selection based on arbitrary range conditions defined on the
available data values, e.g., “energy > 105 and temperature
> 106” [29, 30]. The FastQuery system provides two key
features that are lacking in FastBit. FastQuery defines a
common data access layer for working with many popular
scientific data formats; and FastQuery provides automatic
data partition so that FastBit can work with a very large
number of data records using parallel processing.

There are many different scientific data formats in use cur-
rently. For example, there is a large community using HDF5
[26]; the IPCC data are in NetCDF format [27] or pNetCDF



[18]. Recently, many large-scale simulations have adapted
ADIOS BP format [20]. One common feature of these dis-
parate file formats is that they are all based on the array data
model. Therefore, FastQuery uses an array model as the ab-
stract interface to work with these different formats. Cur-
rently, our implementation of the interface supports a wide
range of scientific data formats including HDF5, NetCDF,
pNetCDF, and ADIOS-BP. We have demonstrated this flex-
ibility in a series of published work [8, 9, 10, 17, 4].

In our previous implementation of FastQuery [10, 8], read-
ing and writing of data from file system used default system
settings. It is possible to obtain better performance by us-
ing parallel I/O bandwidth more efficiently. FastQuery per-
forms significant amount of I/O in reading data to compute
indexes and writing the indexes to disk. Obtaining peak
I/O performance in these two important file system activi-
ties is essential to improve FastQuery performance. Figure
1 shows a contemporary parallel I/O software stack with
HDF5 [26] as high-level I/O library, MPI-IO as middleware
layer, and Lustre as the parallel file system. Each layer offers
tunable parameters for improving performance, and hopes
to provide reasonable default settings for the parameters.
In this paper, we present a systematic approach of choosing
parameters that can achieve significant portion of the peak
I/O bandwidth.

The key contributions of this work are:

• redesigning the implementation of FastQuery to use
multicore processors efficiently;

• performing a systematic study of parallel I/O perfor-
mance at each level of the parallel I/O stack and iden-
tified local optimal parameters to achieve significant
performance improvement;

• providing a set of practical lessons optimizing the per-
formance of I/O operations.

HDF5
(Alignment, Chunking, etc.)

MPI I/O
(Enabling collective buffering, Sieving buffer size, 
collective buffer size, collective buffer nodes, etc.)

Application

Lustre File System
(Number of I/O nodes, stripe size, enabling prefetching buffer, 

etc.)

Storage HardwareStorage Hardware

Figure 1: Parallel I/O Stack and various tunable
parameters

In the reminder of this paper, we present a brief introduction
to scientific data, indexing, and bitmap indexing in Section
2. In this section, we also discuss an application use case

of FastQuery. We explain a large trillion particle simulation
dataset to motivate the need for indexing and querying with
FastQuery. In Section 3, we explain the design of FastQuery.
Sections 4 and 5 detail the experimental set up we used to
test performance of FastQuery and the analysis and selec-
tion of optimization parameters of the parallel I/O stack,
respectively. We conclude the paper in Section 6 with a
discussion of future work.

2. BACKGROUND AND MOTIVATION

2.1 Searching in Scientific Data
To bring indexing and searching capabilities to scientific
users, FastQuery uses FastBit bitmap indexing technology
and supports multiple scientific data formats. Since many
scientific applications use NetCDF, HDF5, and ADIOS data
formats, FastQuery is a vastly useful system. We will briefly
discuss indexing for scientific data formats and bitmap in-
dexing technology before listing a few parallel I/O tuning
related efforts.

Most research efforts on indexing and searching techniques
are designed for commercial database applications. However
with the recent explosion of scientific datasets, researchers
are extending indexing techniques for scientific applications
as well [24]. Traditional indexing techniques, such as B-tree,
are designed primarily to accelerate access to individual data
records, such as looking for a customer’s bank record [11].
In contrast, a query on scientific data typically returns a
fairly large number of records. For instance, a search for ac-
celerated particles in a Laser Wakefield particle accelerator
might result in thousands of data records corresponding to
thousands of particles. Furthermore, scientific datasets are
often produced or collected in bulk, and are never modified.
A class of indexing methods that can take full advantage of
these characteristics is called the bitmap index.

A bitmap index logically contains the same information as
a B-tree index. A B-tree consists of a set of pairs of key
value and row identifiers; however, a bitmap index replaces
the row identifiers associated with each key value with a
bitmap. Because the bitmaps can be operated efficiently,
this index can answer queries efficiently as demonstrated
first by O’Neil [23]. The basic bitmap index uses one bitmap
for each distinct key value. For scientific data where the
number of distinct values can be as large as the number
of rows (i.e., every value is distinct). The number of bits
required to represent an index may scale quadratically with
the number of rows. In such a case, an index for 109 rows
may require 1018 bits. Such an index is much larger than the
raw data size and is not acceptable except for the smallest
datasets.

A number of different strategies have been proposed to re-
duce the bitmap index sizes and improve their overall effec-
tiveness. Common methods include compressing individual
bitmaps, encode the bitmaps in different ways, and binning
the original data [24]. FastBit [29] is an open-source software
package that implements many of these methods. FastQuery
chooses to use FastBit as a representative of general index-
ing methods. FastBit has been shown to perform well in a
number of different scientific applications [29].



2.2 Tuning parallel I/O performance
By using FastBit, FastQuery system can compute bitmap
indexes on parallel computers and compress them very ef-
ficiently. However, the time spent in these computational
steps are typically a relatively small portion of the overall
execution time. The remaining time needed to perform read-
ing original data and writing the computed indexes typically
require more time. Therefore it is important to make effec-
tive use of the underlying parallel I/O subsystem. Various
optimization strategies have been proposed to tune perfor-
mance of I/O operations on a parallel system for a specific
application or an I/O kernel. We will not discuss the ex-
haustive list of these research efforts, but will discuss a few
efforts that tried tuning multiple layers of the parallel I/O
stack (shown in Figure 1).

Panda project [7, 6] studied automatic performance opti-
mization for collective I/O operations where all the processes
of an application synchronize I/O operations such as read-
ing and writing an array. The Panda project searched for
disk layout and disk buffer size parameters using a combina-
tion of a rule-based strategy and randomized search-based
algorithms. The rule-based strategy is used when the opti-
mal settings are understood and simulated annealing is used
otherwise. The simulated annealing problem is solved as a
general minimization problem, where the I/O cost is mini-
mized. The Panda project also used genetic algorithms to
search for tuning parameters [5]. The optimization approach
proposed for in this project were applicable to the Panda
I/O library, which existed before MPI-IO and HDF5. The
Panda I/O is not in use now and the optimization strategy
was not designed for parallel file systems that are in current
use.

Yu et al. [31] characterize, tune, and optimize parallel I/O
performance on Lustre file system of Jaguar, a Cray XT su-
percomputer, at Oak Ridge National Laboratory (ORNL).
This effort tuned data sieving buffer size, I/O aggregator
buffer size, and the number of I/O aggregator processes.
This study manually ran a selected set of codes several times
with different parameters. Howison et al. [15] also per-
form tuning of various benchmarks that select parameters
for HDF5 (chunk size), MPI-IO (collective buffer size and
the number of aggregator nodes) and Lustre parameters
(stripe size and stripe count) on Hopper supercomputer at
the National Energy Research Scientific Computing center
(NERSC). These two studies prove that tuning parallel I/O
parameters can achieve better performance. Behzad et al.
[2] recently explored detecting I/O tunable parameters us-
ing genetic algorithms at multiple layers of the stack. In
this study to tune I/O performance of FastQuery, we use
the knowledge of these research efforts and come up with
a local optimum based strategy for selecting optimization
parameters.

2.3 Application Use Case: VPIC
We now discuss an application use case where FastQuery was
successfully used [4] recently. We also use a subset of data
from this application in tuning FastQuery I/O performance
in Section 5. This application models a core mechanism of
space weather, the collisionless magnetic reconnection. Col-
lisionless magnetic reconnection is an important mechanism

that releases energy explosively as field lines break and re-
connect in plasmas. This phenomenon can release massive
energy to damage satellite communication equipments and
produce beautify aurora borealis. Such a reconnection also
plays an important role in a variety of astrophysical appli-
cations involving both hydrogen and electron-positron plas-
mas.
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Figure 2: Visualization of the 1 trillion electron
dataset showing all particles with energy value > 1.3
(gray). In addition, all particles with energy value
> 1.5 are shown in color, with color indicating en-
ergy. The queries result in 164, 856, 597 particles with
energy > 1.3 and 423, 998 particles with energy > 1.5.

We recently ran a particle simulation that simulates colli-
sionless magnetic reconnection with open boundaries in 3D.
The simulation code is the highly optimized particle code,
called VPIC [3]. The simulation tracks two trillion particles
on Hopper supercomputer at NERSC. Particle properties of
interest in this simulation include spatial location (x,y,z),
energy, and projection of velocity components on the direc-
tions parallel and perpendicular to the magnetic field U‖,
U⊥,1, and U⊥,2. The data size of each particle is 32bytes,
and the number of particles increases as the simulation pro-
gresses. Data written in each time step varied between 30TB
to 42TB data.

The analysis of VPIC dataset requires only part of the whole
dataset where interesting features for science lie. The inter-
esting feature scientists look for in the trillion particle data
is the set of particles that have energy values greater than
a specified threshold, such as 1.1, 1.3, 1.5, and generating
various types of histograms. Assuming these subsets of data
with different thresholds and histograms are computed sepa-
rately, the traditional technique needs to read all the trillion
particles multiple times. This technique is highly inefficient
because of reading 40TB dataset is very time consuming.
With FastQuery and FastBit, one can build indexes of the
data and search for the threshold and generate histograms
by reading only the data that satisfy the thresholds. In our
recent study, we have shown that indexing a trillion particles
takes 10 minutes and querying the indexed data takes about
3 seconds. This is a few orders of magnitude faster than the
traditional scanning approach. Figure 2 shows a visualiza-
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Figure 3: An illustration of the overall design of
FastQuery.

tion of the phase space of particles with energies greater
than 1.3 from the 1 trillion particle dataset. Generation of
this figure uses FastQuery plugin to the VisIt visualization
software [28, 25].

Even though FastQuery performed nicely in the previous
studies, we see an opportunity to systematically tune the
I/O operations to further improve performance of FastQuery.
In the next section, we will describe the options we plan to
examine.

3. TUNING OPTIONS
On today’s supercomputer systems with their complex hard-
ware and deep software stacks, it is often difficult to reach
optimal performance. As observed from our previous stud-
ies [9, 10, 4], indexing is a time consuming operation that
could easily take more than a few hours without careful tun-
ing or configuring the libraries along the I/O path. Hence,
in this section, we describe the parallel strategies involved
during indexing, and explain the parameters that could be
tuned to improve the overall system performance to be dis-
cussed later in Section 5.

3.1 FastQuery overview
The objective of FastQuery is to support data selection on
scientific data formats based on arbitrary range conditions
defined on the available data values, e.g., “energy > 105 and
temperature > 106”. It has two main functionalities: in-
dexing and querying. FastQuery provides a unified array
interface to various scientific data formats by using Fast-
Bit bitmap indexing and querying technology to accelerate
queries. An illustration of the overall design of FastQuery
is shown in Figure 3. Our current implementation supports
high-level data formats including HDF5 [26], NetCDF [27],
pNetCDF [18] and ADIOS-BP [20].

The indexing function builds bitmaps of data in a file and
stores them into the same file or a dedicated index. This
indexing operation contains three main steps: (1) read the
original data values from the file, (2) construct bitmap in-
dexes data structure in memory, and (3) write the bitmaps

to the file. The querying function evaluates different queries
by accessing the data and the indexes. If the necessary in-
dexes have not been built, FastQuery simply scans through
the data values for evaluation. But typically, when the nec-
essary indexes are available, the querying process involves
two main steps: (1) load the bitmaps from file, and (2) eval-
uate the indexes with the given query.

In order to process massive datasets such as the ones shown
in the above application use case, we designed FastQuery
to exploit parallelism at both computation and I/O levels.
To take advantage of distributed memory nodes and mul-
tiple CPU cores systems, FastQuery divides a full dataset
into multiple fixed size subarrays, and builds the indexes of
those subarrays iteratively by assigning each subarray to a
single thread from an MPI domain as shown in Figure 4.
It can be noted that an MPI domain is similar to an MPI
task, but each task contains multiple threads. Previously,
we have implemented parallel FastQuery using MPI alone [9,
10]. In a recent exercise, we use Pthreads to make each MPI
task spawn multiple threads [4]. In that work, we explained
reasons for choosing this hybrid parallel approach and opt-
ing Pthreads instead of software packages such as OpenMP,
TBB, and so on. The current work continues to use the
same MPI and Pthreads combination, but aims to system-
atically study the tuning parameters to improve the overall
performance.

The indexes of the subarrays are built, collected together,
and then stored into an index file by going through layers
of software stack and I/O libraries described. FastQuery
first initiates I/O operations using the scientific data format
library that manages the logical view of a file. Specifically,
in this paper, we choose HDF5 as the data format library for
our study. The HDF5 library issues I/O requests to the file
through a MPI-IO layer which enable multiple MPI tasks
operate on a single file in parallel. Finally, at the lowest
level, the I/O requests are handled by a parallel file system
that controls the physical layout of the file across multiple
disks, and performs the actual data read/write operations
in parallel. Except for the HDF5 specific tuning parameter
described in Section 3.3, the tuning process is same for all the
file formats FastQuery supports. Therefore, this study can
produce useful parameter choices for all FastQuery users.

3.2 FastQuery Parallel I/O Strategy
Parallelism of FastQuery can be controlled by three key pa-
rameters. First parameter is the subarray size, the length
of subarray for dividing the dataset. Since the size of in-
dexes is often proportional to the size of its data, choosing
a balanced subarray size is vital for obtaining high perfor-
mance. For example, smaller subarray size results in each
thread reading or writing small amounts of data. But, given
the same dataset and number of cores, smaller subarray size
also creates more subarrays, and thus requires more itera-
tions to finish. In other words, smaller subarray size reduces
the I/O size from each thread, but increases the number of
I/O requests. Therefore, as shown in our results in Sec-
tion 5, larger subarray could achieve better performance by
minimizing the number of I/O requests. However, the size
of subarray is limited by the number of cores in a multicore
CPU and the size of available memory for each core. During
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Figure 4: In the hybrid parallelism design of Fast-
Query, each subarray is assigned to one of the
threads from a single MPI task. Threads individu-
ally read data and write bitmaps to file. It is worth
noting that the size of bitmap from each thread is
not uniform and Pthreads provide more flexibility
in dealing with non-uniform data than OpenMP or
TBB.
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Figure 5: Placement of MPI tasks with the support
of threading. When thread count = 1, one MPI task
is launched on each core. With thread count = 3,
two MPI tasks are launched on each NUMA node,
and each MPI tasks creates three threads. When
thread count = 6, only a single MPI task runs each
NUMA node, but it is still able to utilize all the
cores by creating 6 threads.

index building all the associated data of a subarray includ-
ing its data values and indexes must fit into the memory
during the indexing operation. Since the newer generation
is expected to have less memory per core than the current
generation of supercomputers, it is useful to consider the
performance impact of working with smaller subarrays.

The second FastQuery tuning parameter is thread count,
which is defined as the number of threads spawned from
each MPI task in FastQuery. As shown in Figure 4, Fast-
Query allows each MPI task to create a fixed number of
threads. The MPI tasks are only responsible for holding
shared resources among threads, such as the MPI token for
inter-process communication and the memory buffer for col-
lective I/O, while the threads do the actual processing tasks
of creating indexes and evaluating queries. Figure 5 shows
three possible settings on a 24-core compute node consisted
of four 6-core NUMA nodes. As shown in the figure, with
the support of threading, the number of MPI tasks can be
reduced without sacrificing the degree of parallelism. Re-
ducing the number of MPI tasks also reduces the amount of
system resources needed to manage the MPI tasks.
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Figure 6: FastQuery I/O aggregation among threads
to utilize collective buffering provided by the MPI-
IO library.

Finally, we implemented an I/O aggregation technique to
collect from and distribute data to all the threads before
writing or reading, respectively. The aggregation of data
reduces the number of I/O requests from FastQuery. Fig-
ure 6 illustrates the aggregation technique. FastQuery as-
signs subarrays to threads in such a way that the threads
from an MPI task always read/write a continuous data re-
gion of a dataset. Therefore, if the aggregation is enabled,
the master thread of each MPI task simply allocates a mem-
ory space to collect the data that needs to be read or writ-
ten from other threads and makes a single I/O request to
handle the whole data region from an MPI task. In con-
trast, without the aggregation, each thread would make its
own I/O request call individually, which degrades I/O per-
formance significantly. While aggregation can reduce the
number I/O requests, it also involves an extra memory be-
tween the threads. However, this user-level aggregation may
also incur certain costs. For example, when writing indexes
for different subarrays, the aggregation procedure needs to
copy the bitmaps and associated metadata to a single large
buffer. This increases the memory requirement and produces
another copy of the in memory data. On reading, the raw
data comes into a single buffer which might be associated
with one of the processor core and increases the memory
access cost of other cores.

3.3 HDF5 and MPI-IO Collective I/O
HDF5 library is designed to support hierarchical object-
database representation of scientific data. It is also designed
to minimize performance contention on large HPC systems
by coordinating I/O to single, shared files. To improve per-
formance and hide the complexity, HDF5 encapsulates sev-
eral general purpose optimizations as discussed in [16]. Ac-
cording to that study, the most useful feature is the collective
buffering built upon the MPI-IO routines for collective and
independent I/O operations.

The collective buffering technique of HDF5 [19] attempts
to improve I/O workload distribution with respect to the
underneath parallel file system stripe boundaries as shown
in Figure 6. In the example, 4 nodes (i.e., CB1 ∼ CB4)
are chosen to be the collective I/O nodes. Each collective
buffering (CB) node is responsible for the I/O of a single
physical I/O block (i.e. Lustre stripe) in the parallel file
system by collecting its content from multiple MPI tasks.
Thus, each physical I/O block only interacts with a single



CB node resulting in reduced locking overhead at the file
system level. However, as indicated from the previous stud-
ies [12], the communication overhead associated with this
technique could still outweigh the saving in I/O time under
some circumstances. For example, it has been shown that
small writes that spread far apart relative to the stripe size
will result in poor I/O performance regardless using collec-
tive buffering or not.

In this work, the collective buffering algorithm evaluated in
our experiment is the version CB 2. It has been integrated
into the Message Passing Toolkit (Cray MPT 3.2) on the
Cray systems. The CB 2 algorithm implements a Lustre-
optimized scheme that uses static-cyclic and group cyclic
Lustre stripe aligned methods described by [19] Cray im-
plementation of these methods merged the Lustre “abstract
device-driver for I/O” (ADIO) code from Sun Microsystems
with its own code to provide additional tunable parameters
to optimize performance. We explain the details of Lustre
striping in the following subsection. The cb nodes MPI hint
decides the number of collective buffer nodes. By default,
cb nodes is set equal to the stripe count of a file, so that
each CB node maps to a disk (i.e. Object Storage Target or
OST in Lustre file system). The cb buffer size determines
the memory size of collective buffer on each collective buffer
node. Since each I/O request is to read/write a single Lustre
stripe, the default value is set equal to the size of a Lustre
stripe. Finally, the feature can be disabled by setting the
MPI-IO hint romio cb write = disable.

3.4 Lustre Striping
At the raw I/O level, the parallel file system used in our
study testbed is Lustre, which is commonly used by many
supercomputers. Lustre provides I/O parallelism by striping
data across multiple disks (i.e. OSTs). The striping of a file
is controlled by two parameters: stripe size and stripe count.

Stripe count is the number of OSTs to be used for storing
a file, and stripe size is the number of bytes written on one
OST before cycling to the next. In Cray MPT 3.2, those two
parameters are given as MPI-IO hints at file creation. The
parameter striping factor sets the Lustre stripe count and
striping unit sets the Lustre stripe size. In general, larger
stripe count provides better parallelism because the data can
be read/write from more disks simultaneously. However, if
the parallel file system is shared, using larger stripe count
also increases the possibility of I/O contention with other
users.

The stripe size setting often depends on the I/O size. If the
stripe size is larger than the I/O size, multiple I/O requests
is likely to access the same Lustre stripe and suffer from
locking overhead. On the other hand, if the stripe size is
smaller than the I/O size, multiple Lustre stripes must be
accessed to serve a single I/O request. As observed from
previous studies and our experimental results, the striping
parameters have significant impact on the parallel I/O per-
formance.

4. EXPERIMENTAL SETUP
4.1 Testbed
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Figure 7: The set up of Lustre file system in our
testbed. It consists of 13 LSI disk controller, 26 I/O
servers (OSSs) and 156 storage targets (OSTs).

We have conducted our experiments on the NERSC Cray
XE6 supercomputing system named Hopper 1. The system
has ≈6,500 compute nodes, with 24 CPU cores and 32GB
memory per node. In our experiments, we control the num-
ber of MPI tasks and threads to always use all 24 cores
on each compute node. In all the experiments discussed in
Section 5, we use the same dataset for indexing at a fixed
concurrency of 5136 cores.

The filesystem used by Hopper is Lustre as shown in Fig-
ure 7. It consists of 13 LSI 7900 disk controllers. Each disk
controller is served by two I/O servers, called OSSs (Object
Storage Servers), and each OSS hosts six OSTs (Object Stor-
age Target). Hence, there is a total of 156 OSTs which can
be considered as a software abstraction of a physical disk.
Striping data across multiple OSTs instead of the default
stripe count of 2 OSTs allows users to potentially increase
their read and write I/O bandwidth.

4.2 Datasets
Our performance study is based on the dataset collected
from a 1.2-trillion particle simulation run of the highly op-
timized particle code VPIC [3] as described in Section 2.3.
The dataset is stored in a HDF5 file with 8 variables, and
each variable is a one-dimensional floating point array of 1.2
trillion elements. The total file size of the dataset is 34TB.
The Lustre stripe size and count is set during file creation
with the stripe size = 64MB and stripe count = 144.

We use two subset datasets from the file for our tuning
study and performance evaluation in Section 5 to represent
datasets of different sizes. We refer the two subset datasets
as Large dataset and Small dataset through the rest of
the paper. Both Large and the Small datasets contain only
one variable from the original HDF5 file. The Large dataset
has about 1 trillion particles (i.e., 963 million to be exact),
but the Small dataset only has 7.7 million particles which is
1/128th of the Large dataset size. The odd size of the Large
dataset is to make sure the number of elements in the ar-
ray can be evenly divided by the number of processors so as
to minimize the load imbalance among the CPU cores and
reduce the variation in I/O performance.

Since input data is only read by FastQuery, their Lustre
stripe size and count settings cannot be changed by Fast-
Query, and remains with 64MB and 144, respectively.

1http://www.nersc.gov/nusers/systems/hopper2/



dataset file indexes subarray read size write size
name size size size per core per core
Large 3.76TB 2.98TB 16M 64MB 44MB
Small 30.1GB 23.7GB 128K 512K 378K

Table 1: Descriptions of the Large and the Small
datasets used in our evaluations.

4.3 Methodology
In our experiments, we report the execution time and I/O
bandwidth from indexing the Small and the Large datasets
using different subarray sizes. The subarray size used for
the Large dataset is 16 million particles, and the subarray
size for the Small dataset is 128 thousand particles. We
carefully choose those numbers so that the total number of
particles are evenly distributed among the subarrays and
the subarrays are then evenly divided among the cores (or
threads). Given the 5136 cores used in our test, bitmap
indexes in both datasets are built in exactly 12 iterations.

The indexing precision used in the experiments is 1-digit [29].
Since the subarray size is fixed, all cores read the same
amount of data in every iteration. That is 64 MB per core
for the Large dataset and 512 KB per core for the Small
dataset. The sizes of bitmaps computed from each subarray
are varied depending on the values, but they are roughly
the same as we observed. For the Large dataset the size of
bitmaps is about 44 MB per subarray, and for the Small
dataset it is about 378 KB. Overall, each experiment in-
volves reading a total of 3.76 TB data and writing bitmaps
of 2.98 TB for the Large dataset. For the Small dataset,
the data read is 30.1 GB and the bitmaps written are of
23.7 GB size. We summarize the description and character-
istics of the two subset datasets in Table 1.

We observed significant variability in the performance re-
sults collected from our experiments. This is a typical be-
havior because the file system used in our testbed is a shared
resource and therefore prone to contention from other users.
In addition, as observed in a previous study [21], many other
issues, such as the complexity of the I/O software stack and
the contention of non-IO MPI communication, could also
contribute to the variability. To obtain reasonable peak I/O
performance values, we repeat each experiment at least 5
times over the course of several weeks. As suggested by How-
ison et al. [16], we use the Lustre Monitoring Tool (LMT)
[13] to detect conspicuous cases of contention from other
user applications and eliminate those timing results from our
study. In all the plots for our experimental results, we re-
port the medium number from our repeating measurements
as our best approximation of the I/O bandwidths. We also
use the error bar on the figures to indicate the 25th and 75th

percentile numbers resulting from the experiments.

5. EXPERIMENTAL RESULTS
In this section, we first present the overall performance im-
provement from our tuning in Section 5.1. Figure 8 shows
the overall performance improvement that reports the total
time to index the selected datasets after we tune each of the
parameters. In the following subsections, we provide the
details of our tuning process by examining one parameter
at a time from the lowest level of the I/O stack, i.e. Lustre
parallel file system, to the highest level of the stack, i.e. Fast-
Query itself, and we discuss the performance impact from

each of the parameters. At the end, tuned FastQuery im-
plementation achieved ≈20 GB/s I/O bandwidth on Lustre
file system. Compared with our previous base implementa-
tion, the tuned FastQuery achieved an overall performance
speedup of 3.7X for the Large dataset, and that of 11.6X for
the Small dataset.

5.1 Overall Performance Evaluation
The default setting of Lustre stripe size on Hopper is 1 MB
and the default stripe count is 2. By using the default set-
tings, writing indexes for both datasets took longer than 1
hour limit we set. Hence, as shown in Table 2, we use a
baseline setting to start our tuning with the Lustre stripe
count of 10, the stripe size of 4 MB, and disabling all the op-
timization options including collective buffering, threading,
and thread aggregation. Performance with these settings are
much better than that with the default setting.

As described in Section 3, indexing involves three major
operations: (1) read data values; (2) compute indexes; and
(3) write indexes. More specifically, writing indexes includes
writing the bitmaps and the associated metadata of bitmaps.
Hence, in Figure 8 we show the time spent on each of these
four operations separately in different color.

For both the Large and the Small datasets, we clearly ob-
serve that the total indexing time is dominated by the I/O,
especially for the baseline case without tuning. Since we do
not change the number of cores used in our test, the index
computation time remains constant throughout our exper-
iments. The data read time was not affected by striping
optimizations because we are reading a data file that was
written to file system. For writing the index file, we varied
stripe count, stripe size, MPI-IO collective buffer parame-
ters, and the number of FastQuery threads per MPI process.
For reading the original data, we varied collective buffer and
FastQuery threads per MPI process. We observe that the
main contribution to performance improvement comes from
writing index file portion (write bitmaps).

Specifically, for the Large dataset shown in Figure 8 (a), we
first change the stripe count from 10 to 144 to exploit the
I/O parallelism at file system level, and successfully reduce
the time from 2158s to 826s. Then we increase the stripe
size from 4 MB to 64 MB, so that each Lustre stripe can
roughly match to the FastQuery I/O size (i.e. 44 MB). As a
result, the time further reduced from 826 seconds to 639 sec-
onds. Finally, we enable threading and aggregation options
in FastQuery to reach our optimal time of 580s. We did not
enable collective I/O and buffering because enabling them
actually increases the total index building time on the Large
dataset. Overall, the indexing time reduces by a factor of
3.7 from 2193s to 580s.

For the Small dataset shown in Figure 8 (b), the time is also
significantly reduced from 210s to 123s and then 72s, after
we increase the stripe count to 144 and reduce the stripe size
to 1 MB. Different from the Large dataset, because each I/O
size is small from FastQuery, enabling collective I/O reduces
locking overhead in Lustre and reduces the time from 72s
to 45s. Finally, again with threading, the indexing time
eventually reduces to 18s. The index writing time reduces
by 11.6X from 210s to 18s.



Lustre MPI-IO FastQuery total
setting striping striping collective thread thread running speedup

count size buffering aggregation count time
Large baseline 10 4 MB disable disable 1 2158 -

dataset optimal 144 128 MB disable enable 6 580 3.7
Small baseline 10 4 MB disable disable 1 210 -

dataset optimal 144 1 MB enable enable 6 18 11.6

Table 2: The setting and performance results of both the Large and the Small datasets before and after our
tuning.
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Figure 8: Overall performance (indexing time) improvement after tuning each of the parameters to the
optimal setting for the Large and the Small datasets.

5.2 Stripe Count
We first study the performance impact of Lustre stripe count
in writing bitmap index file. For the “baseline” testing, we
have set the stripe count of 10 and the stripe size of 64 MB
for the Large dataset. We have set these parameters to be 10
and 4 MB for the Small dataset, respectively. The rest of the
parameter settings are the same as the baseline described in
Table 2.

As shown in Figure 9, the I/O bandwidth (larger the better)
improves as stripe count increases for both the Large and
the the Small datasets. For the Large dataset, when stripe
count is 10, the I/O bandwidth is only 1.95 GB/s, but when
stripe count is 156, the I/O bandwidth improves to 19 GB/s,
which is ≈ 9.7X improvement. This result is expected be-
cause larger stripe count allows higher degree of I/O paral-
lelism among Object Storage Targets (OSTs) of Lustre file
system. However, we also found that the improvement be-
coming smaller for the stripe count values larger than 120.
This is likely due to the fact that there are only 26 I/O
servers (i.e. OSSs) available to serve the I/O requests. As
the load gets closer to the theoretical peak bandwidth (i.e.
≈ 35 GB/s in this testbed), more resource contentions and
locking overhead is expected.
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Figure 9: I/O bandwidth vs. stripe count. We select
144 for both the Large and the Small datasets for
future tests.
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Figure 10: I/O bandwidth vs. Lustre stripe size. We choose 128MB stripe size with independent I/O for
Large dataset, and 1MB stripe size with collective I/O for Small dataset.

For the Small dataset, the I/O bandwidth is much worse
than the Large dataset because of its small I/O size per
request. The performance improvement as we increase the
stripe count was marginal. The bandwidth slightly drops
when the stripe count is greater than 120. This poor I/O
performance and the drop is because the amount of data
accessed in the Small dataset is not large enough to uti-
lize the parallelism from the file system. Accessing smaller
amount of data is also affected by interference from other
applications accessing the I/O subsystem. As choosing all
156 OSTs may have a possibility for I/O contention, we de-
cide to choose 144 as the tuned stripe count for the rest of
tuning process.

5.3 Stripe Size & Collective Buffering
We then evaluated the performance impact from tuning the
Lustre stripe size. All the parameter settings are the same as
the default values shown in Table 2, except the stripe count
is set to 144 according to the decision from the previous
subsection. Because the stripe size of the input dataset file
is fixed, here we only report the I/O bandwidth of writing
indexes. The results of both with and without using MPI
collective buffering are presented in Figure 10.

We first examine the results of the Large datasets shown
in Figure 10 (a). With calling HDF5 independent I/O API
without using MPI-IO collective buffering, the I/O band-
width gradually improved as the stripe size increases. But
once the stripe size is larger than 64 MB, the performance
seems to be remaining the same. The likely explanation of
this trend is the size of bitmaps that needs to be written
from each core is roughly 44 MB under the given subarray
size of 16 million elements. Hence, a smaller Lustre stripe
size will force to divide a single I/O request from the Fast-
Query into multiple Lustre physical data block I/O requests.
As a result, more I/O contentions and queuing delay could
occur. On the other hand, if the stripe size is larger than
the I/O size from FastQuery, multiple I/O requests is likely

to access the same Lustre stripe, and may suffer from the
locking overhead. However, we do not observe such per-
formance degradation in this experiment. We believe it is
because each I/O size is relatively larger (i.e. 44 MB), thus
the data transfer time would dominate overall performance
comparing to the locking overhead.

In contrast, the dash line in Figure 10 (a) plots the results of
calling the HDF5 collective I/O API and using the MPI-IO
collective buffering the CB 2 algorithm [19]. We found the
performance is relatively un-correlated to the Lustre stripe
size. It is because the CB 2 collective buffering algorithm is
designed with an attempt to alter the I/O pattern and size
from users to match the stripe boundaries of Lustre. There-
fore, the collective buffering can accommodate the changes
of Lustre stripe size to optimize I/O performance. However,
comparing the two plots in Figure 10 (a), we observe the
collective I/O only performs better than the independent
I/O with smaller stripe size (i.e. less than 16 MB). That
means the communication cost of collective buffering could
be exceeding its I/O benefit with a larger I/O size and the
stripe size due to the limited locking overhead under this
circumstance.

Figure 10 (b) plots the results of the Small dataset. Because
the subarray size used for the Small dataset is only 128K
elements, the bitmaps built from each core and written to
file is also reduced from 44 MB to around 378 KB. With such
small I/O size from FastQuery, we found collective buffering
can substantially improve the I/O bandwidth in any of the
stripe sizes we tested. But the performance still decreases
with larger stripe size, and especially when the stripe size
is as large as 64 MB. Therefore, for the rest of study, we
decide to pick stripe size 128 MB with independent I/O for
the Large dataset, and pick stripe size 1 MB with collective
I/O for the Small dataset. Those setting also results in the
peak performance we observed from Figure 10.
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Figure 11: I/O bandwidth vs. the thread count per MPI task for the Large dataset. We choose stripe count=6
with enabling thread aggregation for the Large dataset.

5.4 Thread Count per MPI Task
Finally, we evaluate the performance benefit from the two
optimization techniques that implemented in FastQuery: hy-
brid parallelism and thread aggregation.

As mentioned in Section 3, FastQuery parallelizes its work-
load by combining both MPI and threads. The ratio between
MPI tasks and threads is tunable by a parameter called
thread count whose value determines the number of threads
created from each MPI task. While the thread count can be
given arbitrary, its setting is highly depending on the CPU
architecture. Take Hopper’s compute node as an example
where each compute node is consisted of 4 NUMA nodes,
and each NUMA node has 6 cores. To minimize memory
access latency, all threads from a MPI task must be assigned
to the same NUMA node. Furthermore, over commit a sin-
gle core to multiple threads should not be allowed to prevent
performance degradation. Therefore, in order to utilize all
the cores without conflicting to the above requirements, the
only feasible settings in our testbed are: 1, 2, 3, and 6 as
illustrated in Figure 5.

For the Large dataset, Figure 11 summarizes the read and
write I/O performance under various setting for thread count.
In the plots, we also include the results of with and without
using thread aggregation technique. With thread aggrega-
tion, it aggregates the I/O data from all the threads and
makes a single HDF5 MPI-I/O call for each MPI task. Over-
all, thread count=6 performs relatively well for both read
and write. Specifically, for write performance, we observed
the best result is at thread count=3 with thread aggregation.
The reason is likely because of the Lustre stripe size is 128
MB, and the output bitmap size from each thread is only
around 40 MB. So, by aggregating the output data from 3
threads, we can match the I/O size of each write request
to the Lustre stripe size. Once the thread count increases
to 6, the I/O size becomes larger than the stripe size, and
the bandwidth drops down immediately, from 20.72 GB/s
to 18.48 GB/s. We also observed thread aggregation seems
to benefit the read performance more than the write, but we
are still investigating the causess.
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Figure 12: We choose thread count=6 with enabling
thread aggregation for the Small dataset.

For Small dataset, we plot the results in Figure 12. Be-
cause we chose to use collective I/O at the MPI-IO level
from the previous tuning study, thread aggregation must
be enabled to guarantee one I/O request per MPI tasks in
our current FastQuery implementation. Hence we only show
the results with enabling thread aggregation for the Small
dataset. Unlike the result for the Large dataset, we observed
higher thread count clearly can improve I/O bandwidth for
both read and write. Specifically, when the thread count
increases from 1 to 6, the write bandwidth also grows from
7.36 to 16.58, a factor of 2.26. Similarly, the read perfor-
mance was significantly increased from 1.29 to 4.25, a factor
of 3.29 improvement. This result indicates that replacing
MPI tasks with threads can effectively reduce the overall
communication cost. But the communication overhead will
only be a factor if the I/O size is smaller. Therefore, we
weren’t able to observe the same benefit on the the Large
dataset in Figure 11. Finally, the read performance is very
poor in Figure 12 because the file stripe size (i.e. 64 MB)



is much larger than the data size of each subarray (i.e. 496
KB) in the experiment. As we have shown in the stripe
size study in Figure 10 (b), the performance will be worse
with larger stripe size for small I/O. Therefore, the same
conclusion is verified in the experiment as well.

6. CONCLUSIONS
Selecting informative records from the massive data gener-
ated from large scale scientific application simulations has
been a difficult challenge for scientific data analysis. To ad-
dress the problem, we have developed FastQuery, a parallel
indexing and query system, with the objective to accelerate
the data selection process by utilizing indexing and paral-
lel I/O techniques. In this paper, we describe the paral-
lel strategies and tunable parameters applied in each of the
I/O stack of FastQuery including at the level of application,
HDF5, MPI-IO and Lustre file system. Then we present a
systematic approach of choosing parameters that can achieve
significant portion of the peak I/O bandwidth based on the
observations and analysis of our study.

We found the optimal setting is highly dependent on the
data size of each I/O request from FastQuery, and that size
is controlled by the subarray size for dividing workload in
FastQuery. At the parallel file system level, we suggest to
maximize the Lustre stripe count without using all OSTs,
and pick Lustre stripe size that is larger but closer to the
subarray size. At the HDF5 and MPI-IO level, we found col-
lective I/O and buffering can indeed improve performance
for the small size I/O, but not for the large size I/O. Hence,
we should disable collective buffering and use HDF5 inde-
pendent I/O when using larger FastQuery subarray size. Fi-
nally, we developed two parallel strategies inside FastQuery
to support two parallel strategies: hybrid parallelism and
thread aggregation. We found both strategies can effectively
improve I/O performance in most settings, especially in the
case of smaller subarray size.

In the future, we would like to base on the finding in this
paper to provide auto-tuning of FastQuery, so that users
can receive good performance without requiring the detailed
understanding of the complex I/O stack used by FastQuery.
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