
Segmented Analysis for Reducing Data Movement

Jialin Liu
Department of Computer Science

Texas Tech University
Lubbock, Texas, USA
Email: jaln.liu@ttu.edu

Surendra Byna
Computational Research Division

Lawrence Berkeley Laboratory
Berkeley, California, USA

Email: SByna@lbl.gov

Yong Chen
Department of Computer Science

Texas Tech University
Lubbock, Texas, USA

Email: yong.chen@ttu.edu

Abstract—Many scientific applications nowadays generate a
few terabytes (TB) of data in a single run and the data sizes are
expected to reach petabytes (PB) in the near future. Enabling fast
extraction of knowledge through analyzing these large datasets
holds the key to faster scientific discoveries. However, reading
data from traditional storage subsystem is a slow process as
the I/O performance lags far behind computational performance.
Reducing data movement from the storage subsystem is widely
considered a viable option for improving performance of data
analysis. In this paper, we propose Segmented Analysis, a data
movement reduction strategy through reusing results, where
multiple similar analysis tasks process the same segments of data.
The basic idea is to segment the data accessed in an analysis task,
to process the data segments with a given analysis task, and to
store the results of segments in a cache for future use. In future,
when an analysis task needs to perform the same process on the
data segments for which the results are available in the cache, the
task can avoid moving data and performing computation for the
available results. The Segmented Analysis framework contains
modules for computation and I/O access overlap detection, in
situ segmentation, and segment result caching. We evaluate the
Segmented Analysis strategy by varying factors like the overlap
rate among analysis tasks, the request size and the granularity
of segmentation. We observed 2X to 13X I/O and to 2X to 8X
computation speedups when the overlap is above 50%.
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I. INTRODUCTION

The volume of data collected from instruments and sim-
ulations for scientific discovery and innovations keeps in-
creasing rapidly. For example, the Global Cloud Resolving
Model (GCRM) project [3], part of DOE’s Scientific Discovery
through Advanced Computing (SciDAC) program, is built on a
geodesic grid that consists of more than 100 million hexagonal
columns with 128 levels per column. These 128 levels cover
a layer of 50 kilometers of atmosphere up from the surface
of the earth. For each of these grid cells, scientists need to
store, analyze, and predict parameters such as the wind speed,
temperature, pressure, etc. Most of these global atmospheric
models process data at a 100-kilometer scale (the distance on
the ground); however, scientists desire higher resolution and
finer granularity, which can lead to significantly larger datasets.

With the increasing data volume in this Big Data era, poor
I/O performance becomes a critical bottleneck. The main cause
of I/O bottlenecks is slow disk-read speeds compared to both
the CPU speed and memory bandwidths. As the volume of
data collected from instruments and scientific simulations keep
increasing rapidly, the I/O cost can dominate an application’s

execution time. Recent studies show that reducing data move-
ment is a straightforward, yet powerful method to address the
I/O problem. Some of the techniques reduce data movement
include in situ processing of data concurrently with data
production by simulations and experiments [6, 12, 21], and
compression of data before writing data to storage [9, 11, 13].
Reducing data is also considered a strategy for reducing energy
consumption of large scale systems [7, 19].

Although there are efforts to reduce data movement during
output phase of I/O, many analysis applications cannot take
advantage of that strategy. Simulations and experiments with-
out a priori knowledge of all possible analysis tasks cannot
exploit in situ processing and need to store most of the data for
exploratory analysis. This is true in many climate simulations,
where scientists perform their analysis based on multiple
iterations of diverse analysis tasks. They typically prefer to
store most of the data from simulation output. Analyzing
data from these applications typically reads the data from
storage into memory to process. Active storage [15, 17, 20]
attempts reducing data movement during analysis phase by
moving computation near storage devices, which assumes stor-
age devices are powerful to perform the processing required.
However, many analysis tasks require more computational
power than storage devices offer, especially when working on
Big Data. Accessing compressed data reduces data movement,
yet requires an extra decompression step before processing.
Reducing data movement during analysis phase requires more
attention.

In this paper, we propose a new method for reducing the
data movement, called Segmented Analysis. The idea behind
our strategy is to detect the computation and I/O overlap
among multiple analysis tasks and maintain the intermediate
results of the tasks for future reuse and reduce repeated I/O and
computation. Compared to traditional caching, which stores
frequently or recently used “data”, we cache frequently or
recently computed analysis result segments for future reuse.
In our strategy, when a future analysis task needs to access
the same segments of data for which we have cached results
for, our proposed framework detects the overlapping segments
and accesses only the data for which analysis results are not
available. The framework then processes the results of existing
segments and new segments. There is a possibility of partial
overlap of existing segments, where the new analysis segments
can only use part of results from individual segments. We
design an efficient fine-grained segmentation strategy to tackle
the issue.

The rest of this paper is organized as follows. Section II



presents a motivating example for overlapping analysis tasks
and performance benefits. Section III presents the design of the
segmented analysis framework. We present our system setup
and performance evaluation results in Section IV. Section V
discusses related work and compares them with our proposed
strategy. Section VI concludes the discussion and briefly
discusses future work.

II. MOTIVATION

Big Data computing is clearly critical, as the data volume
of many applications keeps increasing. Previously, numerous
research efforts have focused on optimizing the I/O cost.
Among these studies, reducing data movement has been gen-
erally agreed as an effective approach. In the real-time systems
(e.g., Hive and Pig), users can issue different tasks constantly.
As a result, the possibility of overlaps among consecutive
tasks, either computation overlap, or I/O overlap, or both,
is increased. In climate sciences, a typical case is the CDO
(Climate Data Operator) [2]. The CDO has provided more
than 200 operators to manipulate the NetCDF dataset Each
time the users can choose one operator to access the data and
conduct computations, but as the data volume keeps increasing,
the overlap of consecutive operations results in redundant data
movement.

To compute ensemble mean :
Task1 : cdo ensmean i n 1 i n 2 i n 3 o f i l e 1
Task2 : cdo ensmean i n 3 i n 4 i n 5 o f i l e 2
Task3 : cdo ensmean i n 1 i n 2 i n 5 o f i l e 3

As shown in the above commands, there are three tasks
to calculate the ensemble mean of specific subsets. Without
any optimization, each task will access all data independently.
However, we can find that there is I/O overlap (e.g., both Task1
and Task2 access ‘in3’) among different tasks. Caching each
tasks’ analysis results reduces the data movement.
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Fig. 1: Task Overlapping

In Figure 1, we describe a more general case and show
how our segmented analysis can reduce the data movement.
We demonstrate two tasks in this figure. The two tasks execute
consecutively and perform the same type of computation. The
taski computes the ‘mean’ of the whole data. The taski+1

accesses and computes ‘mean’ for the data shown in ‘orange’
in Figure 1. It can be found that between the two tasks there
is an overlapping part. By a fixed-size grid segmentation, the

overlapping data reveals 24 segments. These segments are
essentially not needed to be accessed and processed repeatedly.
If there is a way to detect (the computation is supposed to
be conducted on the whole data previously) and reuse the
results of the overlapping part before new tasks come, the data
movement could be significantly reduced.

We propose the segmented analysis idea with roughly three
steps. First, during the analysis of taski, partition the data
into segments (e.g., 42 segments in taski). Second, along
with the taski’s computation, perform the same computa-
tion within each segment and store the results as sub-results
(the computation is supposed to be conducted on the whole
data previously). Third, reuse the sub-result in the taski+1

if possible. Compared to accessing all the 49 segments for
taski+1 in traditional way, the performance speedup is about
49/(49− 25) = 1.96X.

This performance benefit comes from trading off the
computation for I/O. The fundamental idea is to apply the
same computation into finer segments, such that the future
analysis can be reconstructed using the sub-results when there
is overlapping. It should be noted that there are two conditions,
i.e., the computation has overlap and the I/O has overlap,
which are necessary for a successful segmented analysis. The
challenges include how to detect the overlap and how to design
a flexible segmentation strategy, etc. We discuss and address
them in next section.

III. DESIGN OF SEGMENTED ANALYSIS

The segmented analysis framework has two major func-
tions, i.e., overlap detection and in situ segmentation. The
overlap detection detects the I/O and computation overlap
among existing tasks and new task. The in situ segmentation
provides a fine-grained segmentation strategy.
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Fig. 2: Segmented Analysis Framework

Figure 2 shows an overview of the framwork. When a
new tasks comes in, the computation and I/O overlap will
be detected by looking up the previous analysis results from
the cache. After detecting the overlap and using the previous
analysis results, the I/O and computation are optimized. The
data is returned to the ‘Segmented Analysis’ to complete
the current task and at the same time, the data will also be
processed by the in situ segmentation. After segmenting, the



sub-results of finer-grained segments are stored in the cache.
We discuss the functions in detail in the following subsections.

A. Overlap Detection

The ‘task’ in this paper refers to a combination of compu-
tation and I/O. For a 3D scientific dataset, the I/O in netCDF
layer is represented as a start/length n-D array. The ‘start’ array
stores the beginning positions on every dimension, and the
‘length’ array stores the offsets from the beginning position
on every dimension. In HDF5, this I/O representation is called
a ‘hyperslab’. The ‘task’ therefore can be formalized as:

Taski =< Computation, I/O >

I/O = DataRange[start, length]
(1)

We store all the existing tasks in a tree, where each
‘computation’ node has multiple start/length pairs, as shown
in Figure 3.
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Fig. 3: Task Trees in Segmented Analysis System

To detect the overlap of the current task with previous
tasks, we perform a lookup operation on the task tree. First,
the computation type (e.g., mean) is searched and matched.
If the same computation type is found in the task tree, then
the system will start searching the data range. Matching returns
‘YES’ whenever there is intersection between two data ranges.
After matching, there may be multiple overlapping data ranges
that can be further reused. The current tasks will use those sub-
results to reduce the data movement.

B. In situ Segmentation

We record every task with its analysis result in the task
tree. The new task’s data movement can just focus on the non-
overlapping part. For the overlapping part.

As shown in Figure 4, when the data are loaded from
the storage nodes, the data will be segmented using a High-
level Segmenting function, which is to perform in-memory
segmenting for the data. The ‘High-level Segmenting’ in our
system is different with the chunking algorithm in existing I/O
libraries. The existing library’s chunking is called Low-level
Chunking in our system. For example, in HDF5, users can
specify the chunking granularity, e.g., 10 on each dimension.
The process can read/write by a 10× 10× 10 chunk unit (for
a 3-D dataset). This strategy has been proven to improve the
I/O performance comparing to accessing byte by byte.

In our system, the High-level Segmenting does not have
to align with the existing library’s chunking. When the data
are ready on the compute nodes, the existing chunking, which
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Fig. 4: In situ Segmentation Process

is the fixed-size chunking, could not well serve the segmented
analysis. The reason is that the detected overlapping data could
be of any size. If the detected overlap has dimensionality less
than the fixed-size chunk, then the segmented analysis can not
reuse the sub-results. For example, if the fixed-size chunking
specified priorly is a 3-D cube, but the overlapping is only
detected on some 2-D planes, then such mismatching will
make the intermediate results hard to use.

Fig. 5: Dimension-driven Segmentation for 3-D Data

We design the dimension-driven segmentation to provide
a flexible segmentation strategy. As shown in Figure 5, the
left-most subfigure shows a 1-D segmenting along differnet
dimension. The reason we distinguish the x-y-z dimension is
to consider the different access patterns. In real applications,
the access pattern usually varies from x-y to y-z and x-z
dimension (for 3D dataset). The middle subfigure in Figure 5
is an example of how to segment on 2-D planes. Comparing
to 1-D segmenting, where only the length is variance, the
size of the 2-D planes is determined by length and width.
For 3-D segmenting, the segment grows on all the three
dimensions. This segmentation strategy also applys to higher
dimensional data. When the segmentation type and segment
size are specified, the sub-results on each segment will be
calculated and maintained.

IV. EVALUATION

A. Dataset and Experimental Setup

We have conducted all our experiments on a 640-node
cluster. The dataset we used is a synthetic 4-D NetCDF dataset,
which has size of 105GB. The file system on this cluster is
Lustre. We striped the data across 40 Object Storage Targets
(OSTs), with the stripe size of 1 MB. The segmented analysis
system is currently implemented on Parallel netCDF(v1.3.1).

B. Performance Results and Analysis

We plot an initial evaluation result to demonstrate the
performance improvement in Figures 6 and 7. In this test,
we initialize our system with 100 processes on 9 compute



nodes (each node has 12 processes). The system accepts one
task each time. The ‘task’ for this test is to calculate the
sum of a subset. We have set a fixed request size, of 76
MB data, for each process. 100 tasks are issued to how the
performance varies when overlapping is detected. Tradition-
ally, each task will get its own result independently. Using the
segmented analysis strategy, each task’s result will be utilized
and reused for future task. We labeled the traditional non-
optimized method as ‘SegOff’ in the figure, and our system as
‘SegOn’. As the overlapping percentage increases from 10%
to 90%, we observe a clear I/O reduction in Figure 6. The
I/O performance speedup increased from 1.2X at 10% overlap
to 13.5X at 90% overlap. With 100% overlap, the speedup
is 11000X. In real application, 100% overlap may not occur
often, yest we can expect an average 3X speedup for all other
cases. Such performance gain mainly comes from the reduction
of data movement, which confirms that our system is promising
in the big data processing.

Figure 7 shows performance improvement due to computa-
tion overlap. The computation cost of the non-optimized anal-
ysis (labeled as ‘SegOff’), remains consistent with the request
size. But as shown in Figure 7, we can see the computation cost
can also be largely reduced using the segmented analysis. The
average computation speedup is from 2X to 8X at overlapping
rate from 10% to 90%.

10 20 30 40 50 60 70 80 90 100

0

1

2

3

4

5

6

7

8

9

Overlap Percentage (%)

I/
O

 C
o
s
t 
(s

)

SegOn
SegOff

Fig. 6: I/O Cost Reduction with Segmented Analysis

In terms of total execution time (computation time and
I/O time) for one task, 99% of the performance gain of the
segmented analysis comes from the I/O reduction and 1% from
the computation reduction, at the overlapping rate of 50%. This
performance gain rate varies as the data size and computation
task changes.

With a promising potential in reducing I/O cost, we are
also interested in evaluating the system’s overhead. As shown
in Figure 2, the system has two major components, i.e., overlap
detection and in situ segmentation. These components consume
additional computing resource in the runtime.

We conducted experiments to analyze our system’s over-
head, and found that the majority of overhead is caused by
cache file read, i.e., 72.1% of total overhead on average. The
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Fig. 7: Computation Cost Reduction with Segmented Analysis

total cost of the system does not impede the performance, with
peak overhead only 5% of total execution time.
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Fig. 8: Cache Data vs Cache Results

The main idea of the segmented analysis framework is
to cache the analysis results. We compare its performance
with the traditional data caching, in which the overlapping
data are cached on the local client side. In Figure 8, we
vary the request size per process and manually set a overlap
rate at 10% for all three cases. The totally accessed data in
each group of test is 152 × 100 = 14GB, 22GB, 29GB and
37GB separately. The first test case is ‘CacheOn’, in which
the local cache is turned on to maintain the overlapping data.
The ‘CacheOff’ is a traditional case that with no cache for
overlapping data. The third case ‘SegOn’ is our segmented
analysis, where only analysis results are cached on the local.
We can see the ‘SegOn’ outperforms both of the other two
cases. Besides, ‘CacheOn’ achieves a comparable performance
with our framework. But, it should be noted that as the request
size increases, the size of cached data on the client side also
increases. This increasing storage overhead on the client side
can not be accepted. The segmented analysis shows promising



potential in the big data era.
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Fig. 9: Bandwidth Analysis

We also plot the aggregated bandwidth of the three cases
in Figure 9. The ‘CacheOn’ has the best performance in terms
of I/O bandwidth, with 8% more comparing to ‘SegOn’, and
14.7% larger than ‘CacheOff’. The reason that ‘CacheOn’ has
higher bandwidth is that part of its data are accessed from
local, and another part of the data are from remote storage
nodes. The local data takes less time than remote storage
nodes via network. ‘CacheOff’ only accesses data from remote
storage nodes, which takes more time and results in poor I/O
bandwidth. The ‘SegOn’ accesses data from storage nodes,
but only for the non-overlap data, which has smaller size that
the initial request size. This test shows that our segmented
analysis system can achieve a better Bandwidth than the no-
cache analysis, and a closer performance with the all-cache
analysis. Since all-cache (cache all the overlapping data) is
not practical as the data volume keeps increasing, we are more
confident in the potential of this segmented analysis.
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Fig. 10: Fine-grained Segmentation Evaluation

In the segmented analysis framework, we have designed

a fine-grained segmenting function. Here we change the
access pattern and observe the performance with different
segmentation granularity. In Figure 10, ‘SegA’ is the default
configuration in our system (i.e., SegA), which turns on all the
segmentation strategy. ‘SegD1’, ‘SegD2’ and ‘SegD3’ are three
different segmentations that have granularity of 1D, 2D, and
3D separately. The access pattern are ranges from 1D access,
2D plane access and, 3D subcube access. We can see from
Figure 10, without the default segmentation strategy, none of
the segmentation can achieve the best performance all the time.
For example, ‘SegD2’ performs badly when the access pattern
is on 3D subcube. ‘SegD1’ is supposed to achieve a good
performance when the access pattern is 1D or 2D. However,
‘SegD1’ does not performs good in 2D case. The reason is that
there is additional cost for constructing a 2D plane from the 1D
results. This test shows us that a flexible and finer segmentation
strategy is necessary to achieve good performance. We will
explore further to develop an intelligent segmentation strategy
in the future, in which the most frequent access pattern can be
better served using flexible segmentation.

V. RELATED WORK

Reusing analysis results is novel in scientific data analysis.
In MapReduce, a recent idea, ’results reusing’ has been proved
to be a powerful technique that can improve the data processing
performance [10, 22]. The fundamental idea is to keep the
intermediate results from MapReduce jobs and reuse them for
future workflows. Using MapReduce to process large datasets
is a totally different story comparing to parallel scientific I/O
libraries like PnetCDF [5], ADIOS [1] and HDF5 [4]. Our
system focuses on scientific datasets. We figured out reusing
the analysis results by detecting the computation and I/O
overlapping, and we also designed a fine-grained segmenta-
tion strategy utilizing various access pattern and the specific
formats of scientific datasets.

By chunking the data, instead of reading/writing byte by
byte, an application can get much better I/O performance
accessing chunk by chunk [8, 16]. In most scientific I/O
libraries, the chunking optimization has been deployed. The
term segment in our system is similar to the chunk concept.
A major difference is that the segmentation is performed on
a higher level, above the I/O layer and the file system layer.
Regarding the data organization, there exist studies applying
space filling curves in the scientific dataset. The Elastic Data
Organization (EDO) was proposed to address the issue of
accessing slow dimensions of datasets via providing various
data organization schemes [18]. Research efforts have also
started investigations on designing an even better file system
that considers scientific dataset organization and applications’
access characteristics [14]. Our work has a same goal with
these works, i.e., improving I/O performance, but focuses on
reducing data movement by utilizing existing results. Besides,
we designed the fine-grained segments with consideration of
the access pattern and data organization. Our effort provides
a framework for scientific data analysis for reducing data
movement significantly.

VI. CONCLUSION AND FUTURE WORK

Big Data computing brings exciting new opportunities for
many scientific discoveries and innovations that can benefit



considerably from both instrument data and simulation data.
Big Data computing also challenges the research community
to enable fast extraction of knowledge through analyzing these
large datasets.

In this research, we present an innovative segmented anal-
ysis approach for efficient data movement reduction to enable
fast analysis of large datasets. The segmented analysis system
consists of computation and I/O access overlap detection, in
situ segmentation, and segment result caching functions. The
fundamental idea is to segment the data accessed in an analysis
task, store the analysis results of segments in a cache, and
reuse the prior segmented analysis results as much as possible.
With such segmented analysis and reuses enabled, the analysis
task can avoid moving data and performing computation for
the results that are available, which significantly reduces data
movement and thus enables fast analysis. We have carried
out extensive experimental evaluations and the results have
confirmed that the segmented analysis approach reduces data
movement and leads to up to 13X I/O performance improve-
ment.

The newly proposed segmented analysis is a generic
methodology and can be used in many big data analysis and
applications. This study has shown a significant potential of the
segmented analysis approach, and we intend to further study
the segmented analysis approach for its broad applicability. We
intend to study a prefetching-like advanced analysis enabled
by segmented analysis as well.
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