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Abstract—Many scientific applications spend a significant 
portion of their execution time in accessing data from files. 
Various optimization techniques exist to improve data access 
performance, such as data prefetching and data layout 
optimization. However, optimization process is usually a 
difficult task due to the complexity involved in understanding 
I/O behavior. Tools that can help simplify the optimization 
process have a significant importance. In this paper, we 
introduce a tool, called IOSIG, for providing a better 
understanding of parallel I/O accesses and information to be 
used for optimization techniques. The tool enables tracing 
parallel I/O calls of an application and analyzing the collected 
information to provide a clear understanding of I/O behavior 
of the application. We show that performance overheads of the 
tool in trace collection and analysis are negligible. The analysis 
step creates I/O signatures that various optimizations can use 
for improving I/O performance. I/O signatures are compact, 
easy-to-understand, and parameterized representations 
containing data access pattern information such as size, strides 
between consecutive accesses, repetition, timing, etc. The 
signatures include local I/O behavior for each process and 
global behavior for an overall application. We illustrate the 
usage of the IOSIG tool in data prefetching and data layout 
optimizations. 

Keywords-Parallel I/O, I/O characterization, data access 
pattern, I/O optimization 

I.  INTRODUCTION 
As high performance computing (HPC) is moving 

towards exa-scale, efficient usage of resources in the large-
scale machines is a critical requirement. Efficient usage 
typically translates to faster scientific discovery and to lower 
energy consumption. Improving data access performance 
plays a significant role in making parallel computers 
efficient. Since many scientific applications deal with large 
amounts of data, making parallel file I/O efficient has an 
enormous impact on making parallel applications execute 
faster. Typically, execution time of a parallel program 
includes the time spent on computation, communication 
among processes, and data I/O. In many data intensive 
applications, I/O performance is usually a significant 
bottleneck leading to wastage of CPU cycles and the 
corresponding wasted energy consumption. In HPC systems, 
the gap between computing capacity and I/O performance 
keeps increasing because of highly diverse growth rates of 
storage devices and processors. As the number of processing 
cores in large-scale clusters increase, the insatiable desire for 
accessing more data continues to grow. Hence, improving 
data access performance is the key for improving efficiency 
of HPC applications at exa-scale.  

The first step towards efficient data accesses is to 
understand their behavior. A few tools exist for profiling 
communication and computation overheads in parallel 
applications [1] [2] [3] [4]. However, there is a serious lack 
of tools for analyzing parallel I/O performance in a 
comprehensive manner and for converting the analyzed data 
into information that optimization techniques can use. The 
existing I/O analysis tools [5] [6] [7] [8] [9] have limited 
scope of I/O characterization. Few of these tools [5] [8] 
collect a lot of trace information about I/O calls and leave it 
for programmers to understand. These tools do not provide 
the much needed analysis step to gain a clear insight into I/O 
characteristics. Without the analysis step, although some I/O 
traces are available, they just sit idle in some server and are 
not useful for improving the efficiency. A few other tools [6] 
[7][9] provide partial understanding of I/O behavior but also 
require programmer involvement in performing 
optimizations. The latter category of tools aims towards 
reducing overhead and resource requirement in collecting 
information about I/O calls by retrieving few details and 
infrequently. While they achieve the low resource usage 
goal, they can only provide little insight into I/O behavior. 

We aim to develop an I/O characterization tool, which 
gives comprehensive understanding of the I/O behavior of 
parallel applications and paves a path towards automatic 
optimization of data access. MPI-IO and parallel file systems 
are widely adopted in HPC systems to reduce the negative 
impact of the I/O gap as well as for ease of use. While MPI-
IO and file systems bring I/O performance to an acceptable 
level, there is a significant scope for optimizing overall 
performance of parallel I/O. Many optimization strategies 
have been proposed for data read, such as data prefetching, 
two-phase collective I/O, data sieving and data requests 
scheduling and for data placement and organization, data 
replication, and data distribution. 

Most existing I/O optimizations can benefit from 
knowing I/O behavior of an application. In many occasions, 
making the optimal design of performance improvements or 
choosing optimal system configuration for performance 
tuning requires application-specific information. For 
example, in a data prefetching enabled system, untimely or 
useless prefetching happens from time to time, which harms 
I/O performance. Knowing the application’s data access 
pattern, the prefetcher can avoid untimely and useless 
prefetching. Section II describes more details on this 
example. 

Noticing the widespread demand for retrieving parallel 
I/O access patterns of applications, we developed IOSIG tool 
that helps users to understand the I/O characteristics of their 
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applications precisely. We motivate the use of I/O patterns 
for various optimizations and then describe the design and 
development of the IOSIG tool. The rest of this paper is 
organized as follows. We discuss the motivation for using 
I/O access pattern information in I/O read and write 
optimizations in Section II. Section III describes 
methodologies including classification of data access 
patterns, I/O signature notation, and design and 
implementation of IOSIG software. Section IV evaluates 
IOSIG toolkit. Section V exhibits several optimizations 
using IOSIG. We discuss related works in Section VI and 
conclude the paper in Section VII. 

II. MOTIVATION 
This section exhibits three I/O optimization techniques to 

show the usage of I/O access information and a 
characterization tool that gives comprehensive understanding 
of parallel program’s I/O behaviors. 

A. Accurate and timely data prefetching 
 Data prefetching is a proven effective way to improve 

data access performance and is widely used in many layers 
of computer storage system hierarchy. Typically, execution 
of many scientific applications includes multiple data access 
phases and computation phases. Data prefetching improves 
performance by overlapping application’s data access phases 
and computation phases. The prefetching thread needs to 
predict what data the application will request and fetches the 
data from storage devices to local buffer (or a collective 
cache in parallel I/O system [10]) before the application 
issuing the actual requests.  

Effectiveness of prefetching is measured by its coverage 
and accuracy. The coverage is the percentage of cache 
misses that were avoided by enabling prefetching. Accuracy 
refers to whether the prefetched data in cache is used by the 
application. If prefetching loads wrong data, or loads correct 
data too late, it does not mask the I/O latency but brings 
more useless data into the buffer, wasting I/O bandwidth and 
possibly replacing useful data in the local buffer. If 
prefetching loads the data too early, the cache may be 
polluted as useful data might be replaced. 

Clearly, prefetching accuracy is directly affected by the 
accuracy of prediction on what data to prefetch and when to 
prefetch, and so is I/O performance. If a prefetching thread is 
aware of I/O characteristics of an application and uses that 
information effectively, application performance improves. 
Since prefetching method at runtime has to be faster in 
decoding future I/O accesses, I/O behavior has to be 
represented in a straightforward yet comprehensive 
representation. In Section III.B, we define such 
representation, called I/O signatures. 

B. Determining the optimal data layout 
In modern parallel file systems [11], data are typically 

distributed over multiple storage nodes in a round robin 
fashion, to take advantage of parallel accesses. This round 
robin data layout is most widely used because it can provide 
acceptable I/O performance for many scenarios. In PVFS2, it 
is the default data layout method namely “simple striping”. 

However, in some cases, it yields poor performance because 
“the number of storage nodes” is not the only parameter 
affecting I/O performance. The number of processes, the 
request size, offsets of requests, etc., also affect I/O latency. 
Parallel file systems do provide more than one data layout 
methods to advanced users for choosing optimal layout 
configurations. We name three most popularly adopted data 
layout methods as 1-DH, 1-DV, and 2-D data layout. As 
showed in Fig. 1, 1-DH data layout is the simple striping 
method and distributes data across all storage nodes. 1-DV 
data layout refers to the policy that data to be accessed by 
each I/O client process is stored on one storage node. 2-D 
data layout refers to the policy in which data to be accessed 
by each process is stored on a subset (called storage group) 
of storage nodes. 

However, the problem is that, choosing the best data 
layout for an application is difficult or even impossible 
sometimes to make layout decision without knowing an 
application’s I/O characteristics. The “best” data layout 
method for some application means while adopting this data 
layout, the given application’s overall data access cost 
(measured in time) is minimum. Different data layouts result 
in different data access behaviors between clients and servers. 
Different interactive behaviors result in different data access 
cost measured in time. 

In the previous work [12], we developed a mathematical 
model to investigate the data access cost for the data requests 
under different data layouts and application’s different data 
access behaviors. To find an optimal data layout for some 
given application with lowest data access cost, the model 
analyzes the cost for each single request and calculates the 
overall cost by summing all single costs up. As a result, in 
this approach one part of the input to the model is data access 
pattern information, which also brings the demand to the 
proposed IOSIG tool. 

C. Application-specific adaptive data layout 
As mentioned in Section II.B, parallel file systems 

typically use simple striping. In addition, the stripe size is 
typically a fixed value. This may be acceptable for 
applications with some fixed data access patterns, however, 
cannot guarantee sustained performance improvements for 
various data access patterns. Assume we have an application 
with the data access pattern showed in Fig. 2, that is, the 
application access the first contiguous 4MB of each 
contiguous 16MB data segments in the whole file from the 
beginning. Fig. 2 also shows four different parallel file 
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Figure 1. Different data layouts cause different interactions. 
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systems configured with “simple striping” but with different 
stripe size: 1MB, 4MB, 8MB, and 16MB. In the 1MB case, 
with each accessed 4MB data block distributed over four 
storage nodes, maximum parallelism and balanced workload 
are obtained, but there is too much network overhead. In the 
4MB case, all the accessed data are on the first storage node 
and there is no inter-node parallel access at all. In the 8MB 
case, the first half of each stripe on storage node 0 and 2 will 
be accessed, which creates a more reasonable arrangement 
with respect to the 4MB case. While stripe size is 16MB, the 
first one fourth of all stripes will be accessed, which results 
in the best situation with the highest degree of parallelism 
and balanced workload obtained at the same time, without 
creating too much network overhead like the 1MB case. 

An easily observed fact is that, for one data access 
pattern, only some stripe size can ensure optimum 
performance in parallel I/O systems. This observation is also 
verified to be true with experimental results in [13]. More 
noteworthy, in order to find this optimal stripe size, it 
requires to know the application’s data access patterns. To 
cover the case where one single application may have 
various different data access patterns in different phases of 
its execution, in the previous work [13], we have proposed 
“application-specific adaptive data layout”, which also needs 
the knowledge of an application’s data access patterns. 

III. IOSIG TOOL DESIGN AND DEVELOPMENT 
IOSIG is a toolkit designed to reveal I/O behavior of 

parallel applications. We develop IOSIG with the goal of 
letting optimization strategies use knowledge of I/O 
characteristics at runtime with a low overhead. IOSIG 
software consists of two components 1) trace collector and 2) 
trace analyzer. These two independent tools also represent 
the two basic steps of the approach for I/O characterization, 
respectively. The first step is to trace the I/O operations of 
some application during its runtime and save all the traced 
operations histories into trace files. The second is to perform 
offline analysis on the trace files generated in the previous 
step, to produce data access pattern information. The trace 
analyzer produces I/O characteristics in the form represented 
in I/O signatures defined in our previous work [14]. The 
produced I/O signatures are easy to be read by humans or 
automatic optimization tools for capturing I/O behavior and 
for improving data access performance. The rest of this 
section describes the design and implementation of the trace 

collector, introduces I/O signatures, and provides details of 
the trace analyzer. 

A. Trace collection 
1) Traced file operations 

The Message Passing Interface (MPI) [15] is a widely 
used programming model for easy and effective 
communication among processes of HPC applications. The 
MPI2 standard also defines a set of routines for transferring 
data to and from external storage, called MPI-IO. The MPI-
IO library is also widely used in HPC applications as the 
basic file operation interface. IOSIG trace collector captures 
MPI-IO calls and records their information. 

For file open, close, and seek operations, the 
corresponding MPI-IO routines are MPI_File_open, 
MPI_File_close, and MPI_File_seek. For file read and write 
operations, MPI-IO provides multiple variations of routines, 
considering HPC applications’ needs, such as collective, 
non-collective, blocking, and non-blocking file operations. 
Table I shows all the MPI-IO read calls that IOSIG trace 
collector traces, and the write calls are identical in form 
using “write” to replace “read”. 

The trace collector captures the described MPI-IO 
routines by using the Profiling MPI interface (PMPI) to MPI. 
The Profiling MPI interface reroutes MPI calls to user 
defined instrumentation wrapped around the basic MPI calls. 
The new functionality is available as a static library, and a 
developer who wants to trace I/O behavior can link the 
library to any MPI-IO based application. Other than this 
simple linking step, there is no need for changing the code. 
Instrumentation is performed if an application is linked with 
the trace library. The instrumentation overhead is minimal 
with the use of PMPI. There is zero instrumentation 
overhead on the application if the library is not linked. This 
flexibility allows developers to use the library while 
debugging for performance and discard the linking step 
during the production runs. 

2) Operation-level traced information 
The trace collector gathers information of the file 

operations performed by each parallel process, i.e. the 
collector generates one file for each process, where each file 
operation trace contains the following information. 

a) MPI rank and process ID of the process that performs 
the operation. We record this information to 
distinguish the source of the event because different 
processes may have different data access behavior. 

b) File ID that identifies the file that the operation 
manipulates. One process may access more than one 
file with different ID or it may access the same file 

1 2 … 1 2 3 5 6 7 9 1
0

1
1

4MB 12MB

16MB 4 storage nodes

Stripe size: 16MBStripe size: 8MBStripe size: 4MBStripe size: 1MB

Data
Logic view

Figure 2. Only some specific stripe size can ensure optimal 
performance for a given data access pattern. 

TABLE I. TRACED MPIIO FILE READ OPERATIONS. 

Non-collective  Collective  

Blocking  
MPI_File_read_at, 
MPI_File_read, 
MPI_File_read_shared 

MPI_File_read_at_all, 
MPI_File_read_all, 
MPI_File_read_ordered  

Non-
blocking  

MPI_File_iread_at, 
MPI_File_iread, 
MPI_File_iread_shared 

MPI_File_read_at_all_begin/end, 
MPI_File_read_all_begin/end, 
MPI_File_read_ordered_begin/end 
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more than one time, recording file ID can ensure a 
clear description of all the possible cases. The ID 
need to be unique for different files. Simple 
combination of process ID, MPI rank, file handler ID, 
and the time value can generate a unique ID. 

c) Absolute file offset and request size of the data access, 
both in bytes. The size and the offset are the two most 
critical parameters for a data access operation. 

d) Name of the invoked I/O routine, such as 
MPI_File_read. From a routine’s name, we can get 
more information such as its style on synchronization 
and collaboration and this information is useful for 
the post analysis and also for pinpointing 
performance bottlenecks. 

e) The I/O routine’s invoking time, which is, the elapsed 
time from the starting of the whole application to the 
point when the routine is invoked. We gather this 
information for the optimizations where time 
information is necessary such as prefetching needs to 
make decisions on “when to prefetch data”. 

f) The I/O routine’s end time - Using this end time 
together with the corresponding start time, we can 
find the time spent for performing an I/O operation. 
We can also calculate the percentage of the total I/O 
time in the total execution time, which gives users 
more hints on the level of application’s I/O intensity 
and help the user to determine the application’s 
performance bottlenecks. 

g) Mapping between unique File IDs and file paths. This 
information is useful when the analyzer needs to 
pinpoint the exact file, for example, to analyze the 
correlation of files and processes. 

B. Trace analysis 
I/O accesses in parallel computing typically follow some 

patterns due to iterative computations. We classify these 
patterns into local and global patterns. The local patterns 
explain how each process accesses data and the global 
patterns provide an overview of the I/O characteristics of an 
application. We have classified local file access patterns in 
[14]. In this section, we introduce local and global access 
patterns and I/O signatures and describe the implementation 
of the trace analyzer. 

1) Data access patterns 
Based on study of various parallel I/O benchmarks, we 

classified I/O accesses based on various parameters, 
including spatial locality, size of accesses, temporal locality, 
iterative behavior, and I/O operations. Fig. 3 shows the 
classification of local I/O access patterns. The spatial locality 
is divided into contiguous, non-contiguous, and 
combinations of contiguous and non-contiguous patterns. 
The non-contiguous patterns are further divided based on 
byte order distance between successive accesses. Some data 
accesses may just occur once, and some other accesses may 
repeat multiple times in the same pattern. The repetitive 
behavior occurs often in loop codes. Request size plays a 
significant role in striping factor, stripe size, and the number 
of requests going to an I/O server. In our classification, we 
regard data accesses as small accesses if request size is less 

than a page size, medium if it is equal to the page size, and 
large if it is more than the page size. Temporal behavior is 
difficult to define. We classify based on intervals between 
accesses, which can be fixed or random. I/O operations are 
divided based on read and write. 

2) Local I/O Signature 
In order to be used by optimization strategies at runtime 

and for easier understanding of I/O behavior, we developed 
I/O signature notations, which are compact and informative. 
Local I/O signatures include trace signatures and pattern 
signatures. A trace signature contains the detailed 
information of all I/O operations it covered. The pattern 
signature provides an abstract description of the trace 
signature. In form, a trace signature looks as follows. 

{I/O operation, file_id, initial position, dimension, 
([{offset pattern}, {request size pattern}, {pattern of number 
of repetitions}, {temporal pattern}], […]), # of repetitions}  

It stores information of an I/O operation, starting offset, 
depth of a spatial pattern, temporal pattern, request sizes, and 
repetitive behavior. In some instances, offsets, request sizes, 
timing, and number of repetitions also contain a pattern. 
Random temporal patterns are not captured in the trace 
signature. 

A pattern signature contains all the five factors of the 
classification and looks as follows. 

{I/O operation, <Spatial pattern, Dimension>, 
<Repetitive behavior>, <Request size>, <Temporal 
Intervals>} 

These signatures represent compressed I/O trace files in 
the presence of regular access patterns. However, when 
accesses are random, signatures are of limited use. It still can 
be beneficial to construct only a pattern signature for random 
accesses without constructing a trace signature. Automatic 
prefetching and data layout optimization methods can use 
pattern signatures for deciding whether to perform 
optimizations and use trace signatures for deciding the 
optimization parameters. 

3) Global I/O Signature 
Local I/O signature represents the information of a single 

process’s data access patterns. By analyzing all the local I/O 
Signatures of the same application, we are able to acquire 
global I/O signature that represents the data access pattern of 
the whole application. 

Global I/O signature is necessary because in some cases 
local I/O signatures cannot provide the whole picture of 
application’s data access, thus may not be able to help users 

Request sizeSpatial Patterns
� Contiguous
� Non-contiguous

� Fixed strided
� 2d-strided
� Negative strided
� kd-strided
� Markov

� Combination of contiguous 
and non-contiguous patterns

� Fixed
� Variable

� Small
� Medium
� Large

Temporal Intervals
� Fixed
� Random

I/O Operation
� Read only
� Write only
� Read/write

Repetition
� Single occurrence
� Repeating

Figure 3. I/O access pattern classification. 
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to make a correct decision while optimizing I/O performance 
for the whole application. For example, showed in Fig. 4, 
some parallel file systems have four storage nodes and an 
application has 4 processes that need to access a shared file 
distributed over all storage nodes. The request size is equal 
to the stripe size. The processes have the same data access 
pattern, fixed strided but with different offsets. So process i 
(0≤i≤3) accesses data stripe numbered 4(n-1)+i for its nth 
access. In other word, process 0 accesses data stripe 0, 4, 
8 …; process 1 accesses data stripe 1, 5, 9…; and so on. By 
examining the data accesses of a single process, we can find 
that the accessed data locate on one single storage node, 
which is not a balanced workload with four storage nodes 
available. Thus, it is necessary to find a better stripe size and 
rearrange the data. However, by considering the data 
accesses of all four processes, the whole application’s 
workload achieves balance and the data accesses become 
contiguous spatially. Hence, global I/O signature that 
includes the data access information for the whole 
application can help choosing the best data layout. A global 
I/O signature includes the following information. 

a) The total number of processes. 
b) Each global data access pattern along with the 

corresponding processes IDs and the starting and end 
time information. A global data access pattern may be 
different from those process-level patterns it covers. 
As shown in Fig. 4, the global data access pattern is 
of contiguous type. The time information is necessary 
because there might be multiple “global data access 
patterns” in the same execution phase. 

c) File sharing information: Summary of the Process ID 
information in local patterns provides what processes 
share files. This information helps users to identify 
the data used by multiple processes and to apply I/O 
optimization such as creating multiple replications of 
the data for reading it fast and in parallel. 

4) Implementation of the trace analyzer 
We develop the trace analyzer in Python to perform 

offline trace analysis. The trace analyzer utilizes a basic 
“template matching” approach to recognize data access 
patterns from trace files. Each trace file can be regarded as a 
sequence or a list of file operation records. The analyzer uses 
a cursor to mark its progress during the analysis. It starts 
from the first record and move forward to examine all 
records until reaching the end of the list. During scanning, 

the analyzer picks a predefined access pattern as the template, 
to check whether the pattern matches the records around the 
cursor. If the pattern matches, the cursor moves forward 
along with the same pattern and continues in the trace until 
the match does not hold. If there is no match for the first 
template, the analyzer switches to other templates and scans 
again. If the analyzer fails to find a match for all templates, it 
skips the current record, moves the cursor forward, and starts 
over the matching at the new position. 

Besides local and global I/O signatures, the analyzer also 
generates several other outputs. 1) A figure showing the 
offset patterns. 2) A figure showing the request size patterns. 
3) A histogram figure of data reads and writes on time axis, 
where for each file operation, the x-axis represents time 
spent on a file operation and the y-axis represents the actual 
bandwidth. 4) A “protobuf” [16] based output file containing 
the identified I/O Signatures. While I/O signature form 
explained above is human readable, we write the signatures 
using protocol buffers format for automatic optimization 
systems. The protocol buffers format developed by Google 
[16] encodes structured data in an efficient and extensible 
way. 

Both the trace collector and the trace analyzer work at 
application level and require no complex installation, which 
is a significant advantage for users without the super user 
permissions in large-scale machines. 

IV. SOFTWARE EVALUATION 
We evaluate the IOSIG toolkit on a 65-node SUN Fire 

Linux-based cluster, in which there are 64 computing nodes 
and one head node. All the nodes are equipped with HDDs, 
and are connected with Gigabit Ethernet and InfiniBand 
interconnections. The evaluations include the overhead and 
resource consumption by the IOSIG software. We analyzed 
performance of parallel I/O benchmarks, such as MPI-TILE-
IO, IOR benchmark, and PIO-BENCH. 

A. Runtime overhead 
The trace collection library needs to be linked with an 

application in order to take effect. The tracing library linked 
application generates the trace files during its execution. The 
goal of this evaluation is to show that the overhead of IOSIG 
tool is negligible. To measure the overhead of the trace 
collector, we find the difference of execution times of the 
application with and without linking the tracing library. Fig. 
5 and Fig. 6 show the trace collection overhead in running 
IOR and MPI-TILE-IO benchmarks, respectively. In the 
figures, we can observe that the trace collection overhead is 
very low. The bars in the graph compare the execution times 
of the original application and the application linked with 
IOSIG trace collection utility. We run the benchmarks with 
varying number of processes on 8 client nodes, accessing 
data from 16 storage nodes configured as one parallel file 
system with PVFS2. For IOR benchmark, the overhead is 
1%, and for MPI-TILE-IO benchmark it is around 2% in 
most cases and below 6% overall. These results show that 
the overhead introduced by the trace collector is remarkably 
low and acceptable. 
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Figure 4. An example that shows that global I/O signature is necessary 
to find optimal data layout. 
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B. Scalability 
The experimental results in Fig. 5 and Fig. 6 also show 

the scalability of IOSIG tracing library. As the number of 
processes increases, the trace collection overhead remains 
low. We tested both IOR and MPI-TILE-IO benchmarks 
while increasing the number of processes (1 to 128). We 
observe that the percentage of overhead remains negligible. 
This is because that the library adopts a totally distributed 
approach, where each MPI process only generates its own 
trace file, and there is no communication or synchronization 
among processes.  

C. Trace file size 
The size of each I/O event record is around 100 bytes. 

The size of each trace file is proportional to the number of 
I/O events it includes.  For a test using PIO-BENCH with 4 
processes accessing an 8GB file, the generated trace files 
contains 5296 file operation records and their combined sizes 
are 514490 bytes, thus 102 bytes per record.  

D. Analysis performance 
Execution time of the offline trace analysis is also 

proportional to the number of traced records. In other words, 
the time complexity is O(n). During our tests, the analyzer 
takes less than 2 seconds to finish analyzing the mentioned 
trace file with 5296 records on a single core of the client 
nodes of our system. When necessary, this process can be 
parallelized, such as, using shell scripts to start multiple trace 
analyzers working on multiple trace files simultaneously. 

E. Memory footprint 
The trace collector writes one record for each I/O routine 

to the trace files during the routine’s execution. Nowadays, 
local file systems usually adopt buffering mechanism that 

saves the written data in a buffer and flush the data back to 
the trace file occasionally in order to avoid too many small 
writes to storage devices. The underlying local file system 
client manages the writing buffer. Hence the trace collector 
itself does not consume much memory.  

The trace analyzer maintains a size-limited queue to store 
the I/O events that are under analysis. As mentioned in 
Section III.B, the analyzer uses “template matching” method 
to detect predefined patterns in the queue of I/O events 
retrieved from trace files. To avoid the program using too 
much memory, we limited the size of the queue to less than 
5000 file operations. Using python environment to run the 
analyzer on the trace files with 5296 records, during several 
executions, we observe that the memory consumption for the 
whole python environment is less than 40MB, which is 
acceptable as the memory resource is not scarce for an 
offline analysis. 

V. OPTIMIZATIONS USING I/O SIGNATURES 
This section presents two I/O optimizing techniques that 

benefit from IOSIG for their optimizations, to provide a 
better illustration for IOSIG’s effectiveness and practicality. 

A. I/O Signature based data prefetching 
We described in this subsection how knowledge of data 

access patterns helps improve the performance of data 
prefetching in parallel I/O system. 

PIO-BENCH provides the testing ability with several 
different I/O access patterns. We set the access pattern as 
“nested strided (read)”, work units as 100, and request size as 
4096 bytes. We compile PIO-BENCH to link it with IOSIG 
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Figure 5. Trace collection overhead with IOR benchmark. 
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Figure 6. Trace collection overhead with MPI-TILE-IO benchmark. 
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tracing library and then run it with four MPI processes. We 
conduct this test on two different file systems, NFS and 
PVFS2. From generated traces, IOSIG trace analyzer 
produces the following local trace signature.  

{MPI_READALL, file_id, initPos, 2, ([{initPos, 32768, 
1}, 4096, 1], [{initPos+8192, 32768, 1}, 4096, 1, 
fixed_interval], 100), 1} 

The signature indicates that each process starts its file 
operations from offset initPos, reads 4096 bytes, seek 
forward by 4096 bytes (so the second read’s offset is 
initPos+8192), read 4096 bytes again, seek 20480 bytes, and 
then repeat the above two sets of reads and seeks 100 times. 
In this circumstance with default read-ahead prefetcher, 
when prefetching size is 4096 bytes, the prefetching cache’s 
hit ratio is 0. In order to make the hit ratio as large as 100%, 
prefetching size needs to be larger than 20480+4096=24576 
bytes (assuming every prefetching occurs timely), but only 
25% of fetched data gets accessed, which is inefficient. With 
the help of data access pattern information included in I/O 
signatures, it is possible to make data prefetching highly 
accurate and timely, especially for those applications that 
have complicated data access patterns. Fig. 7 and Fig. 8 
show the I/O performance improvements by enabling the I/O 
signature based data prefetching in the parallel I/O system. 
The average performance gain on NFS is around 36%, and 
that on PVFS for larger strides is around 20% [14]. 

B. Access pattern-aware adaptive data layout 
In section II, we described how configuration of stripe 

sizes in parallel file systems affects the overall I/O 
performance (see Fig. 2). An application accessing a large 

data set may have different access patterns in different 
phases of its execution or on different data segments. In 
order to achieve optimal I/O performance, we need to choose 
data layouts adaptively, by changing stripe sizes for different 
parts of the application depending on access patterns.  

We use 4 IOR benchmarks with different configurations 
chained together, to simulate a large I/O intensive 
application doing both reads and writes with different access 
patterns. Each IOR runs on its own data, and the request 
sizes are 1KB, 4KB, 64KB, and 1MB, respectively specified 
by IOR command line options. Take the 64KB read test with 
IOR as an example, the local trace signature is: 
{MPI_READAT, file_id, 0, 1, ([{0, 65536, 1}, 65536, 1, 
fixed_interval], 65536), 1}, which means that IOR does a 
contiguous read operation, the size of each single read is 
64KB and the total number of reads is 65536. The other 
IOR’s access patterns are almost the same, only with 
different request sizes and numbers. 

With default configuration of PVFS2 and without 
knowing the I/O Signatures, all data used by this simulated 
application are distributed over all storage nodes with a 
uniform default strip size. With the knowledge of I/O 
Signatures, we determined that the optimal stripe sizes of 
different data sets were 4 KB, 16 KB, 64 KB, and 1 MB, 
respectively. We tested the overall I/O bandwidth for reads 
and writes, with different uniform strip sizes and the adaptive 
data layout that allows different optimal strip size for 
different data sets. Fig. 9 and Fig. 10 show the results with 
the adaptive data layout selection strategy. The performance 
improvement of write operations is between 25% and 101%, 
and that of read operations is between 9% and 71% 
compared with the default layout strategies where the stripe 
size is static and fixed for all the data sets. 

VI. RELATED WORK 
Reed et al. have studied and categorized common data 

access pattern of parallel applications [17] [18] [19], 
including the global data access pattern. 

Carns et al. of Argonne National Lab have designed and 
developed Darshan to explore I/O characteristics of HPC 
application that ran on IBM Blue Gene/P series of computers 
where Darshan gets deployed full time [6] [20]. To keep 
runtime overhead minimum, Darshan traces several 
accumulative or statistics information and access patterns of 
application or files, and does not provide details any single 
file operation. While Darshan is useful for understanding the 
I/O behavior, IOSIG goes further in providing signatures that 
optimization strategies can directly utilize. 

There are a few tools focusing on tracing data I/O events, 
like HPCT-IO [5], LANL-Trace [8], IOT [7], and 
ScalaIOTrace [9], but these tools do not provide enough 
comprehensive trace analysis or data access representation.  

HPC community also developed several general tracing 
and profiling tools with analysis and visualization 
functionalities, such as TAU [1], jumpshot [2], Periscope [3], 
Upshot [21], and EPILOG [4]. These tools mainly focus on 
profiling and analyzing an individual application’s parallel 
processing performance, MPI messaging between computing 
nodes and processes/threads, and I/O behaviors in main 
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memory layer instead of file storage layer. IOSIG is 
comprehensive in terms of providing tracing capability along 
with the analysis of patterns and signature representations. 

VII. CONCLUSIONS 
High performance computing is moving towards exa-

scale, and the HPC community has proposed and adopted 
many I/O optimization techniques to ease the widely 
recognized I/O bottleneck and to make large-scale machines 
more efficient. One requirement of efficient I/O 
optimizations is to understand applications I/O behavior. 
Many existing I/O optimizations can benefit from knowing 
I/O access patterns of an application. We exhibit three 
optimizations of this type to explain the need for an I/O 
characterization tool that gives comprehensive understanding 
of the I/O behavior of parallel applications and paves a path 
for optimization of data access. In this paper, we describe the 
work we have done on meeting this requirement. We present 
IOSIG tool that helps users to understand the I/O 
characteristics of their applications precisely. IOSIG works 
in two steps, 1) to trace file operations during one 
application's runtime and generate trace files and 2) to 
perform analysis on the generated trace files to get the 
application’s data access patterns presented in I/O Signatures. 
Comparing with existing I/O characterization tools, IOSIG 
has several advantages. 1) It is light-weight. 2) It produces 
traces that are more detailed. 3) It can detect local and global 
data access patterns from trace files. 4) It works in 
application level, which is a valuable advantage for users 
without the administrator’s permission in large-scale 
machines. The software evaluation proves that IOSIG keeps 
the overhead at a minimal level with common resource 
requirements. We explain the usage of IOSIG tool through 
two existing parallel I/O optimization strategies. 

In the future, we plan to extend IOSIG with the ability to 
identify the data I/O intensity of HPC applications 
quantitatively. 

ACKNOWLEDGMENT 
The authors are thankful to and Dr. Robert Ross and 

Samuel Lang of Argonne National Laboratory for their 
constructive and thoughtful suggestions toward this work. 
The authors are also grateful to anonymous reviewers for 
their valuable comments and suggestions. This research was 
supported in part by National Science Foundation under NSF 
grant CCF-0621435 and CCF-0937877, and in part by the 
Office of Advanced Scientific Computing Research, Office 
of Science, U.S. Department of Energy, under Contract DE-
AC02-06CH11357. 

REFERENCES 
 

[1]  Shende, S. and Malony, A. D., "The tau parallel performance system," 
International Journal of High Performance Computing Applications, 
vol. 2, pp. 287--311, 2006.  

[2]  Zaki, O., Lusk, E., Gropp, W., and Swider, D., "Toward scalable 
performance visualization with jumpshot," International Journal of 
High Performance Computing Applications, vol. 13, no. 3, pp. 277-
288, 1999.  

[3]  M. Gerndt and M. Ott, "Automatic performance analysis with 
periscope," Concurrency and Computation: Practice and Experience, 
vol. 22, no. 6, pp. 736-748, 2010.  

[4]  B. Mohr and F. Wolf, "KOJAK - a tool set for automatic performance 
analysis of parallel," in Proc. of the European Conference on Parallel 
Computing, 2003.  

[5]  S. Seelam, I.-H. Chung, D.-Y. Hong, H.-F. Wen, and H. Yu, "Early 
experiences in application level I/O tracing on Blue Gene systems," in 
Proceedings of the IEEE International Parallel and Distributed 
Processing Symposium, 2008.  

[6]  Carns, P., Latham, R., Ross, R., Iskra, K., Lang, S., and Riley, K., 
"24/7 Characterization of petascale I/O workloads," in IEEE 
International Conference on Cluster Computing, 2009.  

[7]  P. C. Roth, "Characterizing the I/O behavior of scientific 
applicationson the Cray XT," in Proceedings of the 2nd 
InternationalWorkshop on Petascale Data Storage, 2007.  

[8]  "HPC-5 open source software projects: LANL-Trace," [Online]. 
Available: http://institute.lanl.gov/data/software/#lanl-trace. 

[9]  Vijayakumar, K., Mueller, F., Ma, X., and Roth, P. C., "Scalable I/O 
tracing and analysis," in Proceedings of the 4th Workshop on 
Petascale Data Storage, 2009.  

[10] Liao, W.-keng, Ching, A., Coloma, K., and Choudhary, A., "An 
implementation and evaluation of client-side file caching for MPI-IO," 
in Proc. of the IEEE International Parallel and Distributed 
Processing Symposium, 2007.  

[11] Carns, P.H., Ligon, W.B. III, and Ross, R.B., "PVFS : a parallel file 
system for linux clusters," in Proceedings of the 4th Annual Linux 
Showcase and Conference, 2000.  

[12] H. Song, Y. Yin, Y. Chen, and X.-H. Sun, "A cost-intelligent 
application-specific data layout scheme for parallel file systems," in 
Proc. of the 20th International ACM Symposium on High 
Performance Distributed Computing, 2011.  

[13] H. Song, Y. Yin, X.-H. Sun, R. Thakur, and S. Lang, "A segment-
level adaptive data layout scheme for improved load balance in 
parallel file systems," in Proc. of the 11th IEEE/ACM International 
Symposium on Cluster, Cloud and Grid Computing, 2011.  

[14] S. Byna, Y. Chen, X.-H. Sun, R. Thakur, and W. Gropp, "Parallel I/O 
prefetching using MPI file caching and I/O signatures," in 
International Conference for High Performance Computing 
Networking Storage and Analysis (SuperComputing), 2008.  

[15] Gropp, W., Lusk, E., and Skjellum, A., Using MPI: portable parallel 
programming with the message passing interface, MIT Press, 1999.  

[16] Google Inc., "Protocol buffers - Google's data interchange format," 
Google Inc., 2008. 

[17] Madhyastha, T.M. and Reed, D.A., "Learning to classify parallel 
input/output access patterns," IEEE Transactions on Parallel and 
Distributed Systems, vol. 13, no. 8, 2002.  

[18] Madhyastha, T.M. and Reed, D.A., "Exploiting global input/output 
access pattern classification," in ACM Press., 1997.  

[19] Madhyastha, T.M. and Reed, D.A., "Input/output access pattern 
classification using hidden markov models," in Workshop on 
Input/Output in Parallel and Distributed Systems, 1997.  

[20] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham, and 
R. Ross., "Understanding and improving computational science 
storage access through continuous characterization," in 27th IEEE 
Conference on Mass Storage Systems and Technologies, 2011.  

[21] V. Herrarte and E. Lusk, "Study parallel program behavior with 
Upshot," MCS Division, Argonne National Laboratory, 1991. 

 

203


