
Best-effort Semantic Document Search on GPUs 
Surendra Byna 

NEC Laboratories America 
Princeton, NJ 

sbyna@nec-labs.com

Jiayuan Meng 
University of Virginia 
Charlottesville, VA 

jiayuan@gmail.com

Anand Raghunathan 
Purdue University 
West Lafayette, IN 

raghunathan@purdue.edu

Srimat Chakradhar 
NEC Laboratories America 

Princeton, NJ 

chak@nec-labs.com

Srihari Cadambi 
NEC Laboratories America 

Princeton, NJ 
cadambi@nec-labs.com

ABSTRACT 
Semantic indexing is a popular technique used to access and 
organize large amounts of unstructured text data. We describe an 
optimized implementation of semantic indexing and document 
search on manycore GPU platforms. We observed that a parallel 
implementation of semantic indexing on a 128-core Tesla C870 
GPU is only 2.4X faster than a sequential implementation on an  
Intel Xeon 2.4GHz processor. We ascribe the less than 
spectacular speedup to a mismatch in the workload characteristics 
of semantic indexing and the unique architectural features of 
GPUs. Compared to the regular numerical computations that have 
been ported to GPUs with great success, our semantic indexing 
algorithm (the recently proposed Supervised Semantic Indexing 
algorithm called SSI) has interesting characteristics – the amount 
of parallelism in each training instance is data-dependent, and 
each iteration involves the product of a dense matrix with a sparse 
vector, resulting in random memory access patterns. As a result, 
we observed that the baseline GPU implementation significantly 
under-utilizes the hardware resources (processing elements and 
memory bandwidth) of the GPU platform. However, the SSI 
algorithm also demonstrates unique characteristics, which we 
collectively refer to as the “forgiving nature” of the algorithm. 
These unique characteristics allow for novel optimizations that do 
not strive to preserve numerical equivalence of each training 
iteration with the sequential implementation. In particular, we 
consider best-effort computing techniques, such as dependency 
relaxation and computation dropping, to suitably alter the 
workload characteristics of SSI to leverage the unique 
architectural features of the GPU. We also show that the 
realization of dependency relaxation and computation dropping 
concepts on a GPU is quite different from how one would 
implement these concepts on a multicore CPU, largely due to the 
distinct architectural features supported by a GPU. Our new 
techniques dramatically enhance the amount of parallel workload, 
leading to much higher performance on the GPU. By optimizing 
data transfers between CPU and GPU, and by reducing GPU 

kernel invocation overheads, we achieve further performance 
gains. We evaluated our new GPU-accelerated implementation of 
semantic document search on a database of over 1.8 million 
documents from Wikipedia. By applying our novel performance-
enhancing strategies, our GPU implementation on a 128-core 
Tesla C870 achieved a 5.5X acceleration as compared to a 
baseline parallel implementation on the same GPU. Compared to 
a baseline parallel TBB implementation on a dual-socket quad-
core Intel Xeon multicore CPU (8-cores), the enhanced GPU 
implementation is 11X faster. Compared to a parallel 
implementation on the same multi-core CPU that also uses data 
dependency relaxation and dropping computation techniques, our 
enhanced GPU implementation is 5X faster.  

Categories and Subject Descriptors 
D.1.3 [Concurrent Programming]: Parallel Programming

Keywords 
GPGPU, Document Search, Supervised Semantic Indexing, 
CUDA, Dependency Relaxation, Best-effort Computing 

1. INTRODUCTION
The emergence of General Purpose Graphics Processing Units 
(GPGPUs) is fueling acceleration of a wide range of highly 
parallel and compute-intensive workloads. Programmability of 
GPUs was limited to APIs such as OpenGL that were designed for 
graphics workloads. In recent years, new programming 
frameworks for GPGPUs, such as Nvidia’s Compute Unified 
Device Architecture (CUDA) [9][10], AMD’s Brook++ [12], etc. 
have eased the difficulty of programming the highly parallel GPU 
platforms. However, the process of developing efficient GPU 
implementations is highly application dependent. While some 
applications are inherently data parallel, there are many that 
require significant re-structuring of the algorithms and programs 
to realize high performance on GPUs. In this paper, we focus on 
parallelizing Supervised Semantic Indexing (SSI) [1], a popular 
Recognition and Mining (RM) workload. 

SSI is used to rank documents in a corpus or database based on 
their semantic similarity to a given text query. The algorithm 
searches for a direct association between the words contained in a 
document and its similarity score, taking into account correlations 
between words due to synonymy and polysemy. SSI has been 
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demonstrated to have state-of-the-art performance in searching 
large datasets such as Wikipedia with very good accuracy [1][3]. 

A common feature of RM workloads, including the SSI 
algorithm, is that they perform the same computation operation on 
enormous amounts of data in an iterative fashion in order to 
develop a model. Many studies have demonstrated that RM 
workloads are highly data parallel, and can easily take advantage 
of data parallel hardware such as GPUs. Although this claim is 
true for many RM workloads, we show that straightforward 
parallel implementations of the SSI algorithm do not take full 
advantage of abundant parallelism offered by today’s GPU 
platforms. In our previous work [7][8], we proposed best-effort 
computing and data dependency relaxation to improve the 
performance of parallel implementations on multicore CPUs. In 
this paper, we expand the applicability of these strategies to 
throughput-oriented manycore architectures such as GPUs, and 
apply them to improve the parallel performance of SSI. We 
describe how best-effort computing strategies can be customized 
for GPU architectures, and believe that our approach can be 
extended to other RM applications that demonstrate less-than-
optimal degrees of parallelism. 

In section 2, we explain the SSI training algorithm. In section 3, 
we describe a baseline implementation of SSI on GPUs and 
motivate the problem of low utilization of the GPU’s hardware 
resources, which leads to poor performance. Section 4 presents 
the unique characteristics of SSI training and Sections 5, 6, and 7 
propose techniques to improve the scalability of SSI on GPUs. In 
section 8, we present the experimental results and evaluate 
performance of the GPU implementation. In section 9, we discuss 
related work and conclude in section 10.  

2. BACKGROUND
The SSI training algorithm develops a model from TFIDF values 
of each word in the dictionary. This model is used for searching a 
given text query. TFIDF is the product of Term Frequency (TF) 
and Inverse Document Frequency (IDF). TF is the number of 
times a word occurs in the document divided by the total word 
count of the document, and IDF is the reciprocal of the ratio of all 
documents in the corpus that contain the word (thus IDF reduces 
the importance of commonly occurring words).    

Suppose there are N words in the dictionary. A query or document 
in a corpus of documents contains a subset of words in the 
dictionary. Since documents only contain a small fraction of all 
possible words in the dictionary, if we represent a document with 
a vector, each vector is sparse and contains non-zero elements 
only for the words that appear in the document. The training 
phase of SSI learns an internal weight matrix U that translates the 
presentation of each document from a lengthy and sparse TFIDF 
vector to a short and dense semantic vector. The semantic vector 
represents the likelihood of a document in a number of machine-
learned conceptual categories (C). The dot products of the 
semantic vectors are then used to calculate the semantic similarity 
between their corresponding documents.  

When the developed model is used for document search, 
documents are ranked and retrieved based on their similarity with 
the query document. We now give more details on how the model 
is learned. 

SSI training model is learned in a similar way to an artificial 
neural network (ANN). The input nodes are the TFIDFs of all 
words, each connected directly to all output nodes that represent a 
predefined number of conceptual categories to be learned. The 
ANN can be represented as a bias vector b with a length of C and 
a weight matrix U sized N X C, where N is the number of words in 
the vocabulary and C is the number of conceptual categories. The 
ith column of U stores each word’s weight in contributing to the 
classification of the ith conceptual category.  

The model is refined iteratively, where each training iteration 
involves three TFIDF vectors representing a query document (q), 
a labeled relevant document (d), and an irrelevant document (r). 
Figure 1 provides pseudo-code for the algorithm involved in SSI 
training. There are three operations in each training iteration: 

 
1. Forward propagation calculates of three semantic vectors, 

each of which is calculated as a weighted sum of TFIDFs for 
each conceptual category using one of the three documents 
(q, d, and r).  

2. Comparing Relevancy: The similarity scores of d and r to q 
are calculated as sq.sd and sq.sr, respectively, where “.” 
denotes the dot product. The similarity score between the 
relevant document (d) and the query document (q) is 

Input:  A corpus of documents with their TFIDF values, 
learning rate (�), error threshold, margin criteria 
(m) 

Output:  A weighted matrix (U) sized NXC. 

Algorithm:
Test error = 1.0 
Initialize U with random float values 
While (Test error > error threshold) 

Randomly select a query (q), a relevant document (d), 
and an irrelevant document (r) from the corpus  

/* Forward propagation:*/ 
TT

q bUqs ��  
TT

d bUds ��  
TT

r bUrs ��  
If (sq.sd – sq.sr) < m    
/* If similarity score between q and d, is not greater 

than a specified margin criteria m, then calculate gradient 
vectors to modify the model /* 

gq = sd – sr,
 gd = sq
gr = –sq 

    End If 
    If gq > 0 or gd > 0 or gr > 0 
/* Backward propagation  */ 
 )( T

r
T
d

T
q grgdgqUU ������� �  

 )( rdq gggbb ���� �  

    End If
End While 

 
Figure 1: The pseudo-code of the SSI algorithm 
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supposed to be greater than that between the irrelevant 
document (r) and the query (q). If sq.sd is not greater than 
sq.sr by a specified threshold, then, the model has to be 
adjusted. To adjust the model, three feedback gradient 
vectors (gq, gd, and gr) are calculated. 

3. If the gradient vectors are non-zero, weight matrix (U) and 
bias vector (b) are modified using q, d, r, and the gradient 
vectors. Each document’s TFIDF vector is multiplied by the 
corresponding gradient vector to generate a gradient matrix, 
which is scaled according to a predefined learning rate � , 
and added to U.  

There are two types of dependencies among successive iterations 
if documents in successive iterations share the same indices of 
any non-zero TFIDFs. A Read-after-Write (RAW) dependency 
exists if data updated during the former iteration is read in the 
forward propagation of the latter iteration. A Write-after-Write 
(WAW) dependency exists between two successive update 
operations on same data.  

The SSI training converges when specified threshold accuracy is 
achieved. The training algorithm tests accuracy after a certain 
number of iterations, called an epoch (typically 10,000 iterations). 
In this study, we use the Wikipedia corpus [3] consisting of 1.8 
million documents to train the model. The number of words in the 
vocabulary (N) is 30,000 and the number of conceptual categories 
(C) is 200. This number of categories is sufficient for this model 
[1]. Related documents are automatically labeled according to the 
links provided by Wikipedia: a document is tagged as relevant to 
all documents to which it has links, and it is assumed to be 
irrelevant to the remaining documents. A pre-processing step 
calculates TFIDF values for each word.  

2.1 GPU Memory Hierarchy 
We briefly introduce the memory hierarchy of the Nvidia Tesla 
C870 GPU that we used in our study.  

 
Figure 2: Memory Hierarchy of Nvidia GPUs [21] 

Figure 2 shows the memory hierarchy in Tesla GPUs. The 
registers are local to each thread. The shared memory is shared by 
all the threads running on a single multiprocessor. A read-only 
constant memory is shared by all the threads in the texture 

processing cluster (TPC), which contains two multiprocessors in 
the Tesla C870 GPUs. A read-only texture cache is also shared by 
all the threads in the TPC. The C870 GPU has 1.5GB global 
memory with a theoretical peak memory bandwidth of 77 GB/s. 
More details of the GPU memory hierarchy and computation 
capabilities can be found in [21]. 

3. MOTIVATION
In this section, we illustrate the performance of SSI training on 
the GPU, where the forward and backward propagation operations 
in each training iteration are parallelized. We then analyze 
performance and show that this implementation does not utilize 
full potential of the GPUs. 

3.1 Baseline Implementation on the GPU 
In the baseline SSI implementation on the GPU, the weight matrix 
resides in the GPU memory and queries are sent to the GPU for 
performing forward and backward propagation. We first transfer 
the large U matrix (22.5 MB) that contains the initial values of the 
model to GPU global memory. Document vectors (q, d, and r) are 
transferred into the constant memory of the GPU for each training 
instance. Accesses to the constant memory have a small latency of 
1 cycle. Since the document vectors q, d, and r are sparse vectors, 
in the forward and backward operations, although the weight 
matrix (U) is as large as N X C, only a few rows that correspond 
to non-zero TFIDFs in the queries are accessed and/or modified. 
The remaining values are untouched since the result of 
multiplication with zero values in the documents is a zero and 
does not affect the weights in the U matrix.   
Following the original implementation of the SSI training 
algorithm (as shown in Figure 1), the forward and backward 
propagation operations are performed sequentially, but each 
contains computations that may be parallelized sequentially. We 
parallelize the three multiplications between sparse vectors and 
the dense matrix (U) in the forward propagation. These 
multiplications are different from the sparse matrix-vector 
multiplications [22][23], where the matrix is sparse. In SSI 
training, the vectors are sparse, and the weight matrix is dense. 
Each vector is split into multiple parts that are distributed to 
multiprocessors of the GPU. The partial vector-matrix 
multiplication results corresponding to each multiplication are 
reduced into one dot product. The intermediate results of the 
forward propagation, the semantic vectors, are brought to the host 
CPU for comparing relevance values, i.e., dot products of sq and 
sd, and sq and sr. If non-zero gradient vectors are generated on the 
CPU, they are transferred to the constant memory of GPU. and 
the backward propagation is then performed on GPU.  

Table 1: Experimental Setup 
 CPU GPU 
Model Intel Xeon E5420 Tesla C870 
Cores 8 (two sockets) 128 
Frequency 2.5 GHz 1.35 GHz 
Memory size 12 GB 1.5 GB 
Threading 
API

Pthreads, TBB CUDA 2.3 

Compiler gcc  -O3 nvcc 2.3 –O3 
OS 64-bit Linux 2.6.18-164.el5 
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We tested various ways to split the document vectors and we 
achieved the best performance when the vectors are split into 8 
parts. Since we have three “matrix – sparse vector” 
multiplications in both forward and backward propagations, when 
we split each vector into 8 parts, we start 24 blocks on the 16 
multiprocessors of C870 GPU. Each block contains 64 threads. 
We tested the training implementation on a heterogeneous 
workstation consisting of an Intel Xeon quad-core CPU and a 
Tesla C870 GPU. Table 1 shows the details of the architecture.  

3.2 Performance of Baseline Implementation 
Figure 3 compares the performance of a sequential 
implementation of the training algorithm on the CPU and the 
baseline implementation on the GPU for executing 100 epochs 
(an epoch is 10,000 iterations of training). In the legend, C 
denotes CPU, and G denotes GPU. C�G represents the data 
transfer from the CPU to the GPU and G�C represents the data 
transfer from the GPU to the CPU. We use the same notations 
throughout the paper to show the CPU to GPU data transfers and 
vice versa. The CPU version of SSI is implemented in C and the 
GPU version with CUDA 2.3. We saw that the GPU 
implementation was only 2.4X faster than the CPU 
implementation. The results after each epoch for both 
implementations are numerically equivalent. Upon further 
investigation of the relatively modest performance improvement 
on the GPU, we noticed that the GPU was only utilizing 20% of 
its peak memory bandwidth. Moreover, the parallelism available 
within a forward propagation of a training iteration is often very 
low, which depends on the number of non-zero elements of the 
documents fed to the iteration. The computation to data transfer 
ratio is often close to 1, which is very low for offloading tasks to 
GPUs. In other words, all the processor cores of the GPU were 
kept busy, but for a very short time, which is often less than the 
data transfer time. For documents with less than 50 words, the 
GPU kernel invocation overhead is also higher than the 
computation time on the GPU.  
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Figure 3: Performance of Conventional Implementation on 
CPU and GPU.  
From these results, it is clear that there is scope for further 
performance optimization. Parallelization within an iteration is 
limited by the number of non-zero values in the sparse vectors. 
For iterations that have very few non-zero values, the GPU is not 
utilized and the overhead in kernel invocations and data transfer 
calls dominates, causing significant performance degradation. To 

improve the performance of GPU implementation, we apply 
various techniques that are described in the following subsections. 

4. UNIQUE WORKLOAD 
CHARACTERISTICS OF SSI 
Many RM applications follow a pattern of computation in which a 
model is iteratively refined based on a sequence of input training 
instances. Conventional parallel implementations usually exploit 
parallelism only within each iteration due to data dependencies 
across iterations, which results in poor parallel scalability when 
each training instance consists of few data elements. This is 
because the performance gains benefited from parallel execution 
cannot sufficiently offset the overheads in setting up the parallel 
computation. In other words, the problem size for parallel 
execution is not large enough for scalable performance. Ideally, 
the problem size for data parallelism should scale according to the 
number of training instances in RM algorithms. However, 
iterative RM algorithms such as SSI limit the problem size of data 
parallelism within each training instance due to potential 
dependencies between iterations. For instance, in the case of SSI 
algorithm, there are RAW and WAW dependencies. To study this 
issue, we discuss three features that we observe in SSI. 
Write Sparsity: One of the characteristics of SSI that can be 
leveraged to improve the available parallelism is the sparsity of 
writes in individual iterations. After the first few iterations, only 
28% of the iterations perform any updates at all in the backward 
propagation operation, i.e., there are only 28% of iterations that 
need to run serially. This feature is important since it offers the 
potential for concurrent execution of multiple iterations.  
Low spatial locality of writes among iterations: Iterations that 
perform back-propagation rarely update the same part of the 
model and therefore data races would be rare if they are 
parallelized. This is because the q, d, and r vectors are sparse and 
their non-zero TFIDFs spread across the vocabulary of 30,000 
words. Our trace-based characterization shows that on average, 
only 3.6% of U is visited in one iteration, and every four 
iterations overlap only 23% of their updates. 
Error Tolerance: As mentioned earlier, RM applications exhibit a 
forgiving nature in their execution. For example, after 10,000 
iterations, the learned models of two implementations may be 
numerically different. However, they are both acceptable if their 
resulting accuracies similar. From another perspective, we can 
always continue to train the model until a desired accuracy is 
achieved. Therefore, we can measure the time it takes for 
different implementations to reach the desired accuracy and select 
the implementation that takes the least time to reach the desired 
accuracy. As long as the algorithm is converging faster, the 
occasional inaccuracies introduced in a portion of the model are 
acceptable.  
We now discuss the techniques that we used to exploit these 
inherent features of SSI and utilize the parallelism offered by the 
GPUs. 

5. DEPENDENCY RELAXATION 
As discussed earlier, there are dependencies between successive 
iterations of the SSI algorithm. In our baseline GPU 
implementation, we exploited parallelism only within each 
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iteration. If we assume that there are no dependencies, we can run 
multiple training iterations concurrently. This increases the 
number of threads running on the GPUs, which will keep the 
processor cores busy performing computation operations. 
However, we cannot blindly drop dependencies. We use the 
unique characteristics of SSI we described earlier, such as Write 
Sparsity and Low locality of updates, to judiciously drop 
dependencies. We call this strategy dependency relaxation.  

The goal of dependency relaxation is to run as many iterations as 
possible concurrently with an insignificant accuracy loss. Figure 4 
illustrates the idea of dependency relaxation. On the left, we show 
the conventional method of running SSI, where iterations are 
executed serially and the model is being modified by each 
iteration. By relaxing dependencies, multiple (k) iterations run 
concurrently and modify the model. Because of the Low spatial 
locality feature of multiple iterations, the chance of modifying the 
same location of data by concurrent iterations is low. This 
strategy utilizes the computing power of parallel hardware more 
efficiently and achieves significant performance gains. Although 
the reordered updates resulted from parallelizing the iterations 
lead to a model that is not numerically equivalent to that obtained 
from the conventional method, there is hardly accuracy loss due 
to the error-tolerate nature of SSI. 
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Figure 4: Relaxing dependency to run multiple iterations 
concurrently 
The number of training iterations that we can run concurrently is 
limited by various architectural features of the GPUs. When we 
implemented the data dependency on multicore CPUs [8], the 
limitation was the number of cores, memory bandwidth, and 
cache coherence traffic. In the case of GPUs, which have are 
many data parallel (SIMD) cores and have very small read-only 
cache memories, the limitations vary. We observe that the error 
tolerance, memory bandwidth due to more data accesses when 
multiple iterations are executed concurrently, and the requirement 
for constant memory with more concurrent iterations are GPU 
specific limitations. As we increase the number of concurrent 
training iterations, the possibility of overlapping modifications to 
the model increases. The write operations on GPUs are much 
more costly than on CPUs because there are no cache memories 
and have to be written back to the memory. The amount of 
constant memory, where we place the document vectors for faster 
access is also another limiting factor. More concurrent iterations 
require more document vectors and if they do not fit in the 
constant memory, they have to be placed in the GPU memory and 

the cost of accessing the memory is 100 times slower than 
accessing data from the constant cache.  

6. DROPPING COMPUTATION 
As mentioned earlier, RM applications do not require different 
implementations to be numerically equivalent after each iteration. 
Even if an implementation requires more iterations than others to 
reach the same accuracy, as long as a certain threshold accuracy is 
achieved in less time than others, the approach is still preferable. 
We exploit this feature by dropping some non-critical 
computation that have less impact on the model constructed by 
the SSI training algorithm.  

The words in vectors that have low TFIDF weight are non-
critical. Many document vectors contain most commonly used 
words in vocabulary, such as “the”, “of”, “and”, “a”, “in”, etc., 
which have no discriminative value and hence do not skew the 
model if dropped from the training computations. To ensure that 
these words have some representation in the model, we start 
dropping these words after a few initial iterations.  

Our tests show that dropping these computations has negligible 
impact and the additional number of iterations required to reach 
the same accuracy as the original algorithm is minimal. On the 
other hand, the performance improvement achieved due to this 
computation dropping is significant. While this strategy is 
application dependent, its impact on the performance of SSI is 
non-trivial. 

Dropping some of the words in document vectors facilitate storing 
more documents in the constant memory. As we mentioned in the 
previous section, the constant memory is very limited on the 
GPUs, and limits the number of concurrent iterations that can be 
executed. With fewer words, we can run more iterations 
concurrently.  

7. OPTIMIZING DATA TRANSFERS 
In GPU based heterogeneous computing, the GPU is typically 
connected to the host CPU using the PCI Express bus. They work 
in different physical memories and address spaces. Therefore, to 
offload any computing to the GPU, the host CPU has to first 
allocate and transfer data used by the GPU to the GPU memory 
and then invoke GPU computation kernels. The GPU results have 
to be transferred back to the CPU, if the CPU needs the results. 
The cost of these data transfers is not negligible, and sometimes 
dominates the computation time on the GPU.  Hence, it is often 
advisable to have a larger computation to communication cost 
ratio to utilize the power of GPUs.  

SSI training involves significant data transfer overhead. In the 
training algorithm, we can transfer the initial weight matrix on to 
the GPU once in the beginning and transfer it back to the CPU 
after the threshold accuracy criteria is met. While these two 
transfers are not costly, in each iteration, we also need to transfer 
documents q, d, and r to the GPU and retrieve semantic vectors 
after each iteration. We also observed that the cudaMemcpy call 
itself has a constant overhead, which is often the dominant portion 
of communication, especially when the document vectors are 
sparse and of small size. In our experiments with the SSI 
algorithm, we observe that the data transfer cost for 8 concurrent 
forward propagation iterations (with data dependency relaxation) 
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in an epoch of 10,000 iterations is 84% of the total execution 
time. 

To counter this performance problem, we used a pack-and-
transfer strategy. During the pack phase, we reorganize the 
vectors into a temporary buffer and attach the metadata 
information at the beginning of the package. We send the packed 
data to the GPU with one data transfer call. The GPU uses the 
metadata to identify the boundaries of the documents in its 
computations. Figure 5 illustrates an example for sending data for 
running two forward propagation iterations concurrently. These 
iterations require six documents in total. If they were transferred 
from the CPU to the GPU individually, six cudaMemcpy calls are 
required. Instead, if we pack them into one buffer, with metadata 
as a header, then all the data can be sent to the GPU with one 
cudaMemcpy call.  

In our packing strategy, we consider data coalescing restrictions 
of GPUs. Threads in these GPUs are executed in groups of 32, 
called warps. The global memory bandwidth is used most 
efficiently when the simultaneous memory accesses by threads in 
a half-warp (first or second half of the threads in a warp) can be 
coalesced into a single memory instruction of 32, 64, or 128 
bytes. If data is coalesced, multiple threads can utilize data 
fetched by one thread. Although the latest NVIDIA GPUs have 
less stringent restrictions on data coalescing, the Tesla C870 GPU 
we used has the restriction that the size of a vector has to be a 
multiple of 64 or 128 bytes and the kth thread in the half-warp 
must access the kth word in the fetched data block. To 
accommodate this, during our packing phase, we pad the 
temporary buffer and the metadata specifies the boundaries of 
useful data.  
 
q1

d1

r1

q2

d2

r2

q1 d1 r1 q2 d2 r2

Padded data

Metadata   
Figure 5: Packing data to reduce the number of data transfer 
calls

8. EXPERIMENTAL EVALUATION 
We now analyze performance with various optimizations that we 
proposed in the previous section. We first present the results for 
SSI training with dropping non-critical computation and data 
dependencies, and data access optimizations. In our SSI training 
experiments, we use the same Wikipedia corpus as mentioned 
earlier consisting of 1.8 million documents to train the model. The 
number of words in the vocabulary (N) is 30,000 and the number 
of conceptual categories (C) is 200. We set the desired output 
error for the training process to be less than 1%. Since the error 
rate fluctuates with training instances, we stop its execution when 

the error rate remains less than 1% for at least 10 consecutive 
epochs.  

8.1 Dropping Noncritical Computation 
We can drop the words in query (q), relevant (d), and irrelevant 
(r) documents with TFIDF value less than a certain threshold. 
This reduces the computation overheads on data that does not 
significantly impact the quality of the model.  
Figure 6 shows the performance of SSI training on GPU by 
dropping words that have TFIDFs less than 0.05 (labeled GPU
(TFIDF < 0.05) in the figure) and those less than 0.09 (labeled 
GPU (TFIDF < 0.09) in the figure). In our experiments, we 
varied the threshold for dropping words from 0.01 to 0.10, in 
increments of 0.01. In the figure we only present results for the 
case where it has peaked (i.e., 0.05) and where the performance 
degradation is significant (i.e., 0.09). 4.8% of the words were 
dropped in each document query on average for the case where 
TFIDFs are less than 0.05, and 8.3% of words were dropped for 
the latter case (i.e. when TFIDF < 0.09). The performance 
improvement over the GPU base case with TFIDF < 0.05 is 2X 
and that with TFIDF < 0.09 case is 1.7X. The performance gain is 
lower with the latter case because the number of training 
iterations that is required is 6.2% (roughly 500 epochs) higher. In 
other words, the performance gain per training instance with the 
latter case is not substantial enough to offset the increased number 
of iterations. 
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Figure 6: Performance Results with dropping non-critical 
computation 

8.2 Data Dependency Relaxation and Data 
Access Optimization 
While dropping computations and the associated data accesses 
improves performance, it is also critical to ensure that sufficient 
parallel threads are present to utilize the large number of cores in 
GPUs and hide memory access latency. Because the pruned 
training instances become smaller, more training instances can be 
executed in parallel to saturate the GPU bandwidth. On top of 
dropping non-critical computation, we create additional 
parallelism in our implementation of SSI training by “relaxing” 
data dependencies and running multiple training instances 
concurrently.  
Figure 7 shows the performance with running 2, 8, and 10 training 
iterations concurrently (in addition to dropping computation), and 
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compares the results with the performance when computation is 
dropped but no data dependency relaxation is performed. All the 
bars in the graph represent experiments, where words with 
TFIDFs less than 0.05 are skipped. We optimized data transfer by 
packing multiple vectors related to the three documents and send 
the data in one transfer. For instance, 6 documents need to be sent 
to the GPU when two iterations are batched, 24 documents with a 
batch size of 8, and 30 documents with a batch size of 10. We 
pack these multiple documents into one data transfer with meta-
data at the header that tells the boundaries between documents. 
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Figure 7: Performance Results with dependency relaxation. 
These results take into account the effect of dropping 
computation, where words with TFIDFs less than 0.05 are 
skipped. The improvement, compared with the baseline 
implementation, is 3.1X with DR-2, 5.5X with DR-8, and 4.7X 
with DR-10.
From the figure, we can see that performance peaks when the 
number of concurrent training instances is 8. When we try more 
than that, (e.g., 10 concurrent instances), not only the time for 
forward and backward operations within each training instance, 
but the number of instances required to reach the threshold error 
also increases. We observed that the memory bandwidth reaches 
its peak with the 8 concurrent instances case. When we batch 
more instances to run concurrently, the GPU’s memory 
bandwidth is overwhelmed and this causes some slowdown. 
Moreover, with a batch size of 10 or more, the concurrent training 
instances disrupt each other’s results so frequently that the error 
tolerant nature of the algorithm is no longer able to self-correct 
the error sufficiently fast. As a result, it requires far more 
iterations to reach the threshold accuracy. With more than 10 
concurrent iterations, all the documents do not fit in the constant 
memory of the GPU. This results in storing documents in the 
global memory. In our tests, we observe that running 12 iterations 
concurrently performs worse than when no data dependency 
relaxation was applied, (i.e. the case where only non-critical 
computation was skipped). 
Overall, for SSI training, we obtain 5.5X performance 
improvement over the conventional parallel implementation on 
GPUs and 14.2X over the sequential implementation on the CPU. 
We applied the data dependency relaxation and dropping 
computation strategies in implementing a parallel version on a 
two-socket x86 based quad-core CPU (with 8 cores in total) [8]. 
We implemented the CPU version using Intel TBB. This achieved 

3.1X compared to the sequential implementation on the CPU. 
Overall the best manycore GPU implementation performs 4.6X 
faster than the best multicore CPU version.   

9. RELATED WORK 
Supervised Semantic Indexing [1] is relatively novel semantic 
analysis algorithm and our implementation is the first on GPUs. 
Supervised document search has been used in Supervised Latent 
Semantic Indexing [19], but implementations have only been 
reported on CPUs. A few studies exist that implement other 
semantic document search algorithms such as Latent Semantic 
Analysis (LSA) [14][15]. These implementations optimize 
Singular Value Decomposition, the compute intensive part of the 
LSA algorithm, by using CUBLAS [11] for matrix-vector and 
vector-vector multiplication operations. As explained in the paper, 
the characteristics of the SSI algorithm are quite different and 
require different optimization strategies for GPU implementation. 
In our work, we target SSI training, where we explore many novel 
strategies based on the concept of best-effort computing to 
improve available parallelism and reduce data transfer overheads.  

GPUs have been used for other Machine Learning applications 
[20]. However, our study exploits the unique characteristics of 
SSI application to improve its performance. Many 
implementations of sparse matrix-vector multiplication with 
optimized use of GPUs and auto-tuning have been proposed 
[22][23][24]. In SSI training, the document vectors are sparse and 
the weight matrix is dense. Our optimizations are designed to 
span across multiple iterations instead of optimizing just one 
sparse vector-matrix multiplication.   

Chaotic relaxation [17] and asynchronous iterations [18] study 
relaxing data dependencies in iterative stencil loops. These 
techniques skip data exchanges across iterations that are used to 
synchronize the iterations in order to reduce the synchronization 
costs. The chaotic relaxation strategy has also been used on the 
GPUs [16] to improve performance of stencil loops. In our data 
dependency relaxation strategy, we address a different problem, 
where we increase parallelism through letting any occasional data 
races to modify the model. In addition to dependency relaxation, 
we use dropping non-critical computing to exploit error tolerance 
of the SSI algorithm and optimize data transfers.  

Our prior work [7] proposed a best-effort, parallel computing 
framework, and iterative-convergence programming model with 
built-in mechanisms to specify best-effort computing strategies. In 
[8], we proposed data dependency relaxation, computation 
dropping, and error mitigation techniques for RM algorithms. 
While all our prior work was proposed for improving utilization 
of multicore CPUs, in this paper, we extended the best-effort 
strategies for GPUs. We tuned these strategies specifically for 
GPUs, where we considered the lack deep cache memory 
hierarchies in the GPUs and optimized data transfers between the 
CPU and the GPU. 

10. CONCLUSIONS AND FUTURE WORK 
In this paper we presented techniques for improving performance 
of the SSI algorithm on GPUs. After finding that straightforward 
CUDA implementation of SSI does not utilize the GPUs 
efficiently, we studied the unique characteristics of the algorithm 
and devised strategies for improving its performance. The unique 
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characteristics include – the amount of parallelism in each 
training instance is data- dependent, each iteration involves the 
product of a dense matrix with a sparse vector, and the algorithm 
has a large degree of inherent error resilience. Exploiting these 
application characteristics, we propose strategies for data 
dependency relaxation, dropping computation, and for optimizing 
data transfers between CPUs and GPUs. The application of these 
strategies enhanced the performance of SSI on GPUs by a factor 
of 5.5X compared to its straight-forward implementation. The 
GPU optimized SSI, which utilizes optimizations tuned 
specifically for the GPUs, also performs 5X faster compared to an 
implementation on multicore CPUs using the best-effort 
techniques. We are exploring the atomic operation support 
provided by CUDA in the latest GPUs to increase the number of 
concurrent training iterations while avoiding race conditions. 
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