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Abstract— This paper presents a new parallel indexing data
structure for answering queries. The index, called Bin-Hash,
offers extremely high levels of concurrency, and is therefore well-
suited for the emerging commodity of parallel processors, such
as multi-cores, cell processors, and general purpose graphics
processing units (GPU). The Bin-Hash approach first bins the
base data, and then partitions and separately stores the values
in each bin as a perfect spatial hash table. To answer a query,
we first determine whether or not a record satisfies the query
conditions based on the bin boundaries. For the bins with records
that can not be resolved, we examine the spatial hash tables.
The procedures for examining the bin numbers and the spatial
hash tables offer the maximum possible level of concurrency; all
records are able to be evaluated by our procedure independently
in parallel. Additionally, our Bin-Hash procedures access much
smaller amounts of data than similar parallel methods, such as
the projection index. This smaller data footprint is critical for
certain parallel processors, like GPUs, where memory resources
are limited.

To demonstrate the effectiveness of Bin-Hash, we implement it
on a GPU using the data-parallel programming language CUDA.
The concurrency offered by the Bin-Hash index allows us to
fully utilize the GPU’s massive parallelism in our work; over
12,000 records can be simultaneously evaluated at any one time.
We show that our new query processing method is an order
of magnitude faster than current state-of-the-art CPU-based
indexing technologies. Additionally, we compare our performance
to existing GPU-based projection index strategies.

I. I NTRODUCTION

Growth in dataset size significantly outpaces the growth of
CPU speed and disk throughput. As a result, the efficiency of
existing query processing techniques is greatly challenged [1]–
[3]. The need for accelerated performance forces many re-
searchers to seek alternative techniques for query evaluation.
One general trend is to develop highly parallel methods for the
emerging parallel processors, such as multi-core processors,
cell processor, and the general-purpose graphics processing
units (GPU) [4]. In this paper, we propose a new parallel
indexing data structure called Bin-Hash, and demonstrate
that its available concurrency can be fully exploited on a
commodity GPU.

The majority of existing parallel database systems work
focuses on making use of multiple loosely coupled clusters,

typified by shared-nothing systems [5]–[10]. Recently, a new
parallel computing trend has emerged. These type of parallel
machines consist of multiple tightly-coupled processing units,
such as multi-core CPUs, cell processors, and general purpose
GPUs. They support a large number of concurrent threads
working from a shared memory. For example, NVIDIA’s 8800
GTX Ultra GPU has 16 multiprocessors that can support 768
threads each. To take full advantage of such a system, the
application needs more than 12,000 concurrent threads. Fully
utilizing such a massively parallel shared memory system
requires a different set of query processing algorithms than
on shared-nothing systems.

A number of researchers have explored the option of using
GPUs for database operations [11]–[14]. Among the database
operations, one of the basic tasks is to select a number of
records based on a set of user specified conditions, e.g.,
“SELECT: records FROM: combustionsimulation WHERE:
pressure> 100.” Most GPU-based works that process such
queries, do so with a projection of the base data. Following
the terminology in literature, we use the termprojection index
to describe this method of scanning the projection to answera
query [15]. On CPUs, there are a number of indexing methods
that can answer queries faster than the projection index [16]–
[18], but most of these indexing methods do not offer high
enough levels of concurrency to take full advantage of a
GPU. The Bin-Hash index fully utilizes the GPU’s parallelism;
each thread on the GPU is used to independently access
and evaluate an individual record during the answering of a
query. This one-to-one mapping of threads-to-records affords
the maximum level of concurrency available on the GPU, and
allows the Bin-Hash index to evaluate over 12,000 records
simultaneously at any one time in parallel.

Though GPUs offer tremendous parallelism, their utility
for database tasks is limited by a small store of resident
memory. For example, the largest amount of memory available
on NVIDIA’s Quadro GPUs is currently 1.5 GB, which is
much too small to hold projections of all columns from a
dataset of interest [1]–[3]. Existing GPU-based works that
utilize the projection index to answer a query are thus sig-
nificantly limited by GPU memory resources. Our Bin-Hash



index presents one method for ameliorating the challenges
imposed by limited GPU memory. The Bin-Hash index uses a
form of compression, implemented through a multi-resolution
representation of the base data information. This compression
strategy allows us to query dataset sizes that would otherwise
not fit into the memory footprint of a GPU were we to use a
traditional projection index strategy.

In the Bin-Hash approach, we bin the base data for each
column and generate a spatial hash of column values in each
bin. To resolve a query condition on a column, we first access
the bin numbers. For range conditions such as “pressure>

100” we determine which bins satisfy the condition and which
ones don’t, based on the boundaries of the bins. There is only
one exception, the bin containing the value 100. We call such
a bin a boundary bin. We need to examine the column values
for the records in the boundary bin to determine whether they
actually satisfy the query condition. We call the records in
the boundary bin the candidates and the process of examining
the candidate values the candidate check [19]. Altogether,to
answer a query, we access the bin numbers and the base data
values of the records in boundary bins. The data contained
in the summed total of both these data structures is much
smaller than the column projections used by other strategies
that employ the GPU to answer a query. Additionally, the
procedure of examining the bin numbers and the process
of performing the candidate checks offers the same level of
concurrency as the projection index, and achieves excellent
performance as we demonstrate later.

The main contributions of our work are the following.

• We introduce the Bin-Hash data structure for accelerating
selection queries using GPUs; existing work on process-
ing such queries only uses the projection index which
requires the utilization of much more (GPU) memory than
the Bin-Hash [11].

• In our performance tests, our approach is shown to
outperform the fastest indexing strategy used for our key
application, Query Driven Visualization (discussed in the
next section); earlier works lack such a direct comparison.

• We demonstrate the utility of the perfect spatial hash as a
parallel data structure; in our tests, thousands of threads
concurrently and efficiently access partitioned base data
on a parallel processor. Additionally, we show how this
spatial hashing data structure is essential for our Bin-Hash
index to reduce the amount of data needed on the GPU,
and to utilize the GPU’s parallel processing capability.

II. QUERY-DRIVEN V ISUALIZATION

Our work on the Bin-Hash index is motivated by an
approach to visual data analysis called Query-Driven Visu-
alization (QDV). The goal of QDV is to provide scientists
with resource-efficient and visually interactive methods for
exploring large multidimensional data. The basic strategyis to
restrict computation and cognitive workloads, by either limit-
ing or prioritizing processing, visualization, and interpretation,
to records that have been defined to be scientifically relevant

Fig. 1: This QDV image, generated from a combustion analysis
dataset, depicts the regions that correspond to both low values of
temperature and high concentrations of methane: (methane> 0.3)
AND (temperature< 4) [20]. The image is generated by rendering
each record that meets the query’s constraints for temperature and
methane as a hexahedral cube; coloring of the cubes is based upon
connected component labeling.

by the user. The definition for scientifically relevant is pro-
vided through user defined Boolean range queries: “SELECT:
records FROM: flame WHERE: (temperature> 300) AND
(methaneconcentration> 1e-6)”, see Figure 1 for an example.

Most scientific datasets contain a high number of variables
and numerous time steps; each variable is represented as a
single column within a database table, and each time step is
a partition within that column. In a typical QDV exercise,
several variables are selected for exploratory analysis. In this
exploration process, queries are repeatedly and incrementally
adjusted by the end-user in order to better understand the
relationship between pairs or groups of the selected variables.

As an example, assume an end-user is analyzing a dataset
that simulates methane combustion. Further suppose that the
end-user is interested in determining how concentrations of
methane are distributed spatially throughout a fixed range of
pressure (5000< pressure< 10000) from this combustion
data. To assist in this analysis, QDV methods support the
query and visualization process with an interactive GUI that
lets the end-user specify constraints on columns (i.e. variables)
with pairs of slider widgets. Thus the end-user in our example
would steadily increment the range constraints for methane
concentration (while keeping the constraints for pressure
fixed), and observe the records rendered in the visualization.

The software responsible for providing interactive explo-
ration is not responsible for the generation of the data or
the indices. This software can treat base data as read-only.
Furthermore, it can take advantage of repeated queries on
identical variables to cache critical data needed for answering
queries. In our software implementation, we use the GPU
based Bin-Hash indices to identify records satisfying the query
conditions, but use the CPU to retrieve the selected values.

III. R ELATED WORK

Query-Driven Visualization (QDV) is an important and
effective way to combine database and visualization technolo-
gies. As far back as 1994, the VisDB system was proposed to



guide query-formulations with a relevance-based visualization
and presentation paradigm [21]. This system ranked data terms
according to their relevance to a query, and the top quartileof
the most relevant results were then input into a visualization
and rendering pipeline. This approach has a complexity of
O(n), wheren is the number of data items in the dataset. Later
systems improved this performance significantly by making
use of more efficient database indexing technologies. For
example, the work by Stockinger et al. [20] used a compressed
bitmap index from FastBit to enable the identification of
regions of interest in time complexity ofO(k), where k is
the number of records that match the search criteria.

The most efficient strategy for answering ad hoc queries
on high-dimensional read-only data is the bitmap index [22].
Givenn records withc bin boundaries, the basic binned bitmap
index generatesc bitmaps withn bits each [19], [23], [24].
Each bit in a given bitmap indicates if the attribute in the
record is within the specific range corresponding to the given
bin’s boundaries. Queries over bitmap indices are processed
with bitwise logical operations: AND, OR, NOT, etc.

Storage concerns for bitmap indexing strategies are ame-
liorated through specialized compression strategies thatboth
reduce the size of the data, and facilitate the efficient execution
of bitwise Boolean operations [25]. Antoshenkov et. al [26],
[27] present a compression strategy for bitmaps called the
Byte-aligned Bitmap Code (BBC) and show that it possess
excellent overall performance characteristics with respect to
compression and query performance. Wu et. al [28] introduce
a new compression method for bitmaps called Word-Aligned
Hybrid (WAH) and show that the time to answer a range
query using this bitmap compression strategy is optimal; the
worse case response time is proportional to the number of hits
returned by the query.

The basic attributes of the binned bitmap index (indexing,
query-processing, etc.) are able to be implemented in a highly
parallel environment. For this reason, our new Bin-Hash index
follows the general structure of a binned bitmap index. Unfor-
tunately the compression strategies for bitmaps do not offer
enough concurrency to take advantage of the GPU’s massive
parallelism. Thus one of the first objectives of our approach
is to develop compression strategies, based upon the binning
strategies of the binned bitmap index, that simultaneouslyoffer
high levels of concurrency, and reduce the amount of data
required to answer a query.

GPUs have been used to help support and accelerate a
number of database functions [11]–[14], [29], [30], as well
as numerous general purpose tasks [31], [32]. The Scout [30]
software system provides the ability to perform expression-
based queries using a simple data-parallel programming lan-
guage along with visualization, where both queries and visual-
ization are executed entirely on a GPU. Unfortunately, Scout
was limited by then-current hardware that imposed memory
constraints, as well as functional constraints: at the time, GPUs
only supported gather functionality, and GPU kernels were
constrained by restrictive APIs.

Sun et al. [33] presented a method for utilizing graphics

(a) Bin-Hash Preprocessing Stage

(b) Bin-Hash Preloading Stage

(c) Bin-Hash Query Stage

Fig. 2: In (a), we show the the Bin-Hash preprocessing stage that
is performed on the CPU. This preprocess step is only performed
once on each full-resolution column in a table. In (b), we show the
Bin-Hash preloading stage. Here user-selected data is loaded from
the CPU onto the GPU. This step is performed once per interactive
session. In (c), we show the actual Bin-Hash query process. Here
hash and offset table tuples are streamed to the GPU to assist in
resolving full-resolution queries.



(a) (b)
Fig. 3: Illustration of single (a) and multidimensional (b) predicate evaluation. Thesingle-dimensional predicate illustration shows a detailed
view of the low and full-resolution query process. For the low-resolution query, the predicate overi2 is bound byB1 andB117. Bins interior to
the boundary bins write “1” (pass) to the bit-vector solution, where as binsexterior to the boundary bins write “0” (fail). The multidimensional
predicate evaluation depicts the logical combining of single-dimensional predicate solutions (in this case logically AND-ing all solutions) to
form the final bit-vector solution—this is discussed in Section IV-C.2.

hardware to facilitate spatial selections and intersections. Their
approach relies on the GPU’s hardware-accelerated color
blending facilities to test for the intersection between two
polygons in screen space.

Working within the constraints of the graphics API for frag-
ment shaders, Govindaraju et al. [11] presented a collection
of powerful algorithms on commodity graphics processors for
performing the fast computation of several common database
operations: conjunctive selections, aggregations, and semi-
linear queries. This work also contains a demonstration of
utilizing the projection index to answer a selection query.

More recent work on utilizing GPUs for database operations
makes use of the data parallel programming language CUDA
[13], [14]. This type of approach is more likely to be applicable
to other parallel processors. These recent works also address
additional database operations, such as join [14] and index-
ing [13]. In particular, Fang et al. [13] implemented the CSS-
Tree in the software GPUQP, however, there is no performance
data published about the implementation. Because of the
inherent lack of concurrency in tree-based indexing structures,
a completely new approach is needed to take full advantage
of the massive parallelism in a commodity GPU. Additionally,
existing GPU works that evaluate queries with a projection
index don’t address the significant limitations imposed by
limited GPU memory.

IV. T HE BIN-HASH METHOD

A. Overview

An indexing data structure that effectively utilizes a GPU
must support a high level of concurrency when answering
a query and must fit in the relatively small memory of the
GPU. One can use the CPU’s main memory as the cache
for the GPU, however, due to the relatively low bandwidth
between the main memory and the GPU, it is crucial to
limit the amount of data transferred from main memory to

the GPU1. Our approach in solving this problem concentrates
on implementing an indexing method that reduces both the
amount of bandwidth and memory required to evaluate a query.
We achieve this goal by integrating two key strategies: data
binning to reduce the memory footprint on the GPU, and the
combined use of data partitioning with perfect spatial hashing
to ensure the candidate checks only access the base data of
the boundary bins.

The Bin-Hash approach utilizes a strategy similar to the
binned bitmap index [19], [23], [24]. It builds one index for
each column of a dataset and each index consists of an encoded
data table (which contains the bin numbers), and a set of
spatial hash tables, one for each bin. An illustration of this
data structure is shown in Figure 2(a). We represent the bin
numbers as binary integers. Because computers can operate
on 8-bit, 16-bit and 32-bit integers much faster than other
arbitrarily sized binary integers, the choices for the number of
bins are effectively limited to 28, 216 and 232. Because GPU
memory is limited, we limit ourselves to only consider using
28 (256) bins in this work. In later discussions, we also refer
to the bin numbers as the low-resolution data and the spatial
hash tables as full-resolution data.

To minimize data skew in our binning strategy, the bin
boundaries are selected such that each bin contains approx-
imately the same number of records. In cases where the
frequency of a single value exceeds the alloted record size
for a given bin, a single bin is used to contain all records
corresponding to this one value. This strategy minimizes
the worst case behavior during query processing: all queries
should take approximately the same amount of time to answer
regardless of the placement of the query’s boundary bins.
This kind of predictable behavior is also very important

1NVIDIA’s 8800 GTX Ultra possesses 104 GB/s of on chip bandwidth. In
comparison, the bandwidth over 16X PCI Express bus that connects the main
memory and the GPU is 4 GB/s one way (or 8 GB/s for bidirectional traffic).



in visualization and real-time applications where the system
needs predictable performance from all components in order
to respond interactively to the user’s requests.

At the start of an exploratory QDV session, we preload low-
resolution data into GPU memory as shown in Figure 2(b);
this preloading is only performed once per interactive QDV
session. From this low-resolution information, each data record
can be processed by an initial low-resolution query as illus-
trated in Figure 3(a)—we differentiate between queries that
access low-resolution versus full-resolution data by referring
to the former as low-resolution queries, and the latter as full-
resolution queries. To evaluate this low-resolution query, we
scan the bin numbers and characterize records as: passing
the query (i.e., in an interior bin), failing the query (i.e.,
in an exterior bin), or needing a candidate check (i.e., in a
boundary bin). Single range predicates, having at most two
constraints, have a maximum of two boundary bins. Thus,
only 2

256 of the records require candidate checks, whereas the
rest can be successfully processed with the low-resolutiondata
alone. Note that each record can be examined independently
to provide the maximum level of concurrency.

Performing candidate checks requires access to full-
resolution data. We retrieve the full-resolution information
from main memory (CPU) in the form of spatial hash tables
(if they are not resident in the GPUs memory). Only the
spatial hash tables corresponding to the boundary bins are
uploaded to the GPU; this strategy minimizes the amount of
data transferred from CPU main memory. In the Bin-Hash
method, the CPU serves only to supply the GPU with spatial
hash table data; the CPU performs no processing.

The records that fall into a given boundary bin can corre-
spond to arbitrary row numbers. The candidate check proce-
dure needs access to full-resolution base data. Perfect spatial
hashing is a way to associate the row numbers with their base
data in a compact data structure. To better match the GPU’s
typical notion of texture addressing (e.g., 2D (x, y) address of
pixels on a screen), we map database row numbers to a 2D
virtual array. We present an overview of the spatial hash [34]
in Section IV-B.

The processing of low-resolution data and full-resolution
data can proceed independently; a query’s final results are
written to a bit vector where ones indicate records that satisfy
the query condition and zeroes otherwise. If multiple query
conditions are involved, each can be answered with a different
index and the output bitmap can be joined together with
the same operators that connect the query conditions. This
approach, consistent with many indexing technologies (e.g.
FastBit), is illustrated logically in Figure 3(b), as well as
discussed in detail in Section IV-C.2.

B. Perfect Spatial Hashing

The concept of perfect spatial hashing for 2D and 3D
“spatially sparse” data was first proposed by Lefebvre and
Hoppe [34], who extended the general work of Sager et
al. [35], [36]. Lefebvre and Hoppe observed that in the
universe of possible function space, perfect hash functions (i.e.

Fig. 4: Illustration of the Lefebvre and Hoppe hash function definition
for texture compression. In this illustration the element p is a pixel—
in our work we extend this concept to efficiently index records
from partitioned database columns. In our method, the element “p”
corresponds to the row-id of a given record in a boundary bin from a
low-resolution column, and “s” is the full-resolution value associated
with the record at this row-id.

those hash functions that have no collisions) are exceedingly
rare. They further noted that the definition of aminimalperfect
hash (i.e. a perfect hash function whose hash table contains
no unused entries) must require the storage of additional data
in the form of an auxiliary look-up table. They proposed the
following multidimensional hash function:

h(p) = h0(p)+Φ(h1(p)) (1)

Here Equation 1 combines two imperfect hash functions,h0()
and h1(), with an offset tableΦ to form a minimally perfect
spatial hash function,h(). This perfect hash functionh()
retrieves the record value for an element,p, from a hash
table, H . The offset tableΦ contains collision resolution
information that guarantees minimal perfect hashing inH .
Remarkably,h0 and h1 are defined by Lefebvre and Hoppe
as simple modulo operations with respect to the dimensions
of the hash tableH and the offset tableΦ. This process is
illustrated graphically in Figure 4.

1) Utilizing Perfect Spatial Hashing:We utilize the perfect
spatial hashing technique in order to create a new indexing
method for each full and low-resolution column pair. Specifi-
cally, this indexing method provides access to the raw data
from the full-resolution column of all records in the low-
resolution column corresponding to a given bin value (e.g.
a boundary bin). We integrate this spatial hashing indexing
into our Bin-Hash strategy by constructing a hash and offset
table tuple for all bins in a low resolution column (256
tuples for each low-resolution column:< H0,Φ0 >, . . . ,<
H255,Φ255 >). This is shown graphically in Figure 2(a).

We leave the details of hash and offset table construction to
the work presented by Lefebvre and Hoppe [34] as they are
beyond the scope of our work to address. Instead we assume
the existence ofH andΦ in order to proceed with explaining
how the hashing function,h(p), is utilized in our new Bin-
Hash indexing strategy.

When evaluating a low-resolution query, records are charac-
terized as passing, failing or requiring candidate checks based
upon whether the low-resolution column’s values are interior,



exterior or equal to the boundary bins. For values that are equal
to the boundary bins, we utilize the hash and offset table tuples
associated with these boundary bins as follows.

The modulo hash functions described by Lefebvre and
Hoppe, h0(p) and h1(p), each modulate two degrees of
addressing freedom. Specifically, as their original work was
implemented for the spatial hashing of textures, each pixel
element “p” has itsx addressing component modulated, and its
y addressing component modulated byh0() andh1(). We map
the record-ID of a given record in a column to the constructs
used by the Lefebvre and Hoppe spatial hash function, by
calculating (in the CUDA kernel) a virtual 2D address for the
record-ID based upon theceil() of the square root of the
row count in the column. For illustrative purposes, assume a
row count of 20. Theceil() of the square root of this row
count is 5. Based upon<x,y> pixel positioning, the resulting
2D virtual addresses for select increasing record-IDs would be:
record 0 =<0,0>, record 5 =<1,0>, record 20 =<4,0>.

Using these 2D virtual address, the evaluation of the func-
tion h(p) in our new Bin-Hash indexing strategy then proceeds
as follows. Recall again thatp is a record-ID that corresponds,
in the low-resolution column, to a record whose value is equal
to one of the boundary bins of the query.

• We first usep’s virtual 2D components to locate offset
values in the offset tableΦ. The location of these values
in Φ is calculated by performing a simple modulo opera-
tion on each virtual component ofp with Φ’s respective
x and y dimensions. Note that this is effectively the inner
half of Equation 1:Φ(h1(p)).

• Next, p’s virtual 2D components are used to locate an
initial position inH . The location of this initial position
is calculated by performing a simple modulo operation on
each virtual component ofp with H ’s respective x and
y dimensions. Note that this position is not the actual
location of the raw full-resolution data associated with
this record-ID. To this modulated address is added the
offset values provided byΦ from the step above. This—
now offset—location inH is where the unique full-
resolution data value ofp resides. This step is the total
of the work expressed in Equation 1.

Figure 4 portrays both of these steps graphically.
Note that the spatial hash procedures used to access the

base data values in a boundary bin’s spatial hash table are
inherently parallel. Thus altogether, to answer a query, each
record is evaluated by a single thread that performs an initial
low-resolution query and, if necessary, a full-resolutionquery.

C. Bin-Hash Implementation Details

Sections IV-A and IV-B introduced the Bin-Hash method’s
binning strategy, and spatial hashing implementation. We
now illustrate these combined strategies with a pseudo code
example, and discuss the supportive role the CPU plays in
supporting the QDV application through the implementation
of a dual cache.

Algorithm 1 Kernel for logical OR with one constraint (e.g.
x ≥ 12)
Require: The variable boundaryBIN has been passed to the kernel

with a value between 0-255. Additionally, all elements inSol
have been initialized to “fail”.

1: int position⇐ thread ID
2: ubyte encode⇐ BinNum[position]

3: if (encode> boundaryBIN)then
4: Sol[position] ⇐ true
5: else if (encode == boundaryBIN)then
6: int posy ⇐ position>> 12
7: int posx ⇐ position & 0xfff

8: int offsetx ⇐ posx % sizeOffset
9: int offsety ⇐ posy % sizeOffset

10: int offsetVal[2] ⇐ Φ[offsety][offsetx]

11: int tempx ⇐ posx + offsetVal[0]
12: int tempy ⇐ posy + offsetVal[1]

13: hashx ⇐ tempx % sizeHash
14: hashy ⇐ tempy % sizeHash
15: float actualVal⇐ H [hashy][hashx]

16: if actualVal≥ lowestBoundarythen
17: Sol[position] ⇐ true
18: end if
19: end if

1) OR Kernel Example:The pseudo code in Algorithm 1
presents the kernel for a logical “OR” operation (the predicate
has 1 constraint). The algorithm demonstrates the application
of Sections IV-A and IV-B, explicitly depicting the processfor
evaluating both low-resolution (lines 2-4), and full-resolution
(lines 5-19) queries.

In this code,BinNum represents the bin numbers from one
low-resolution column; from a technical perspective, it isa
one-dimensional array of length equal to the number of rows
in the column. As a precondition, all bin data is assumed
to have been loaded onto the GPU. Line 6 calculates virtual
2D components (Section IV-B) based upon a given record’s
row position, and a (illustrative) two-dimensional texture of
dimensions 4096 X 4096.

H andΦ are the respective hash and offset table tuple for
the boundary bin determined by the user’s constraint. From
a technical view, these are two-dimensional arrays where the
array dimensions,x andy, are equal. In a perfect spatial hash,
the dimensions of the hash table (“sizeHash” in Algorithm 1)
are equivalent to the square of the number of rows divided by
256; that is, for the 2D hash tables,x multiplied by y should
equal the number of records in a single bin. The offset table
dimensions (“sizeOffset” in Algorithm 1) are smaller than
this due to the compacting benefits associated with collision
resolution information [34].

The solution of the query—a bit-vector—is written toSol
as a series of Boolean values indicating which records have
passed the query. ThusSol is a one-dimensional array of length
equal to the number of rows in the column.



Through CUDA, each thread in the GPU has a unique ID
that can be utilized to coordinate highly parallel tasks, such as
query evaluation. For clarity we refrain from utilizing CUDA’s
thread-based constructs and assume that the variable “position”
has been initialized with a thread ID. In our implementation,
this thread ID corresponds to the index of the record the thread
will be accessing inBinNum, and the index inSol where the
solution to the thread’s answered query will be written.

2) Multi-Dimensional Kernels:The code in Algorithm 1
is presented as a kernel for evaluating single-dimensional
predicates; this kernel can additionally evaluate multidimen-
sional predicates. This is done by having sequential kernels
write to the same bit-vector solution space in the GPU’s
memory. For example, to determine the multidimensional
predicate solution resulting from the logical OR-ing of two
single-dimensional predicates, two sequential kernels—both
utilizing Algorithm 1—are run. In the process, each kernel
will indicate the records that have passed their respective
predicate’s constraints by utilizing the same bit-vector solution
space (line 4 and 19 in Algorithm 1). As the original bit-
vector solution was initialized to have every record fail (see
“Require:” in Algorithm 1), only the records having passed
one or both of the queries will be indicated as passing in the
final bit-vector solution for the multidimensional predicate.

In the case of a logical AND-ing between two single-
dimensional predicates, the first single-dimensional predicate
is evaluated by the kernel shown in Algorithm 1. The second
single-dimensional predicate, however, uses a slightly modi-
fied kernel. This new kernel will differ in two ways from the
code shown in Algorithm 1: records failing the query will now
write out “0”, and any record that passes the query will write
out a “1” if and only if the previous kernel also wrote a “1” for
this position (i.e. line 4 and 19 in Algorithm 1 will be changed
to read “Sol[position] = Sol[position]” in the modified kernel).

From these two cases, it is possible to extend this logic
to more complicated multidimensional queries. In such cases
the CPU will break down the query to its basic operations
and queue the appropriate kernels and necessary hash and
offset tables on the GPU. The final result, as with the single-
dimensional predicates, will be a bit-vector solution.

3) CPU support for the Bin-Hash: Caching Candidate
Checks:The CPU serves only to supply the GPU with spatial
hash and offset tables, it performs no processing. As discussed
in Section II, QDV applications benefit from caching full-
resolution bin data. We optimize our Bin-Hash implementation
for QDV applications by supporting our candidate checks with
a simple two-level cache strategy, one for the CPU and one
for the GPU, with each cache level operating under a separate
LRU replacement policy. The GPU and CPU cache hold the
hash and offset tables of more frequently queried boundary
bins. The results of our new Bin-Hash strategy (Section V) are
presented to reflect the three possible cache-state conditions
that might be encountered when answering a candidate check:

1) System-cache: GPU and CPU caches fail oneveryquery;
the OS file-cache, however, has the necessary files. The
cost reflected here is the cost to transfer the hash and

offset tables from system space to user space, and then
from user space to the GPU.

2) CPU cache: The GPU’s cache fails, but the CPU’s cache
hits oneveryquery; the CPU supplies the necessary hash
and offset tables to the GPU from its main memory.

3) Full cache: The GPU’s cache hits witheveryquery; all
necessary hash and offset tables are found on the GPU.

V. PERFORMANCE ANDANALYSIS

A. Test Setup and Performance Metrics

We have implemented and tested our Bin-Hash index on
the machine configuration described below (Section V-A.2).
It is important to state at the outset of this section, that our
work concentrates on assessing the performance of block-
level operations—the internal structure used by such bitmap
indexing software as ORACLE and FastBit.

We select this performance metric based on the performance
needs of our target application, Query-Driven Visualization
(QDV). In QDV, the common case query is one that evaluates
memory-resident or cached data; the infrequent query is a
query that must access data from disk. Specifically, in QDV,
users spend the majority of their time querying a set group of
variables (i.e. columns) in order to establish relationships and
trends between these variables (see Section II). After the first
query, the data for these variables will be loaded into memory
and cached in the OS—the performance of all subsequent
queries over these columns will benefit from the cached state
of the data.

Favoring the frequent query over the infrequent query, we
determine the best indexing method for QDV by selecting the
indexing method that provides the best query performance over
data that has been loaded into memory (GPU or CPU depend-
ing on the indexing method) and cached by the OS. Though
this performance metric is somewhat unusual, it is consistent
with the needs of the motivational application. Additionally,
it is consistent with previous literature that has reportedon
the direct comparative performance of GPU and CPU based
indexing methods for answering selection queries [11].

As part of assessing this block-level performance, our
performance results donot reflect disk access times or the time
to preload data. In our test suites, we begin our timings for
the Bin-Hash queriesafter the initial loading of low-resolution
column data into GPU memory (see Section IV). The Bin-
Hash timingsdo however reflect the cost of candidate checks
(see Section IV-C.3). Additionally, FastBit and CPU-based
projection scan results reflect OS-File cache performance,not
disk access time. Finally, GPU-based projection scan timings
are takenafter the preloading of required data into GPU
memory.

1) Indexing Schemes:For our testing, we chose the fol-
lowing indexing methods as they are all established indexing
strategies that are efficient for QDV.

• CPU-based projection scan:Each full-resolution column
is read into CPU memory space. We evaluate the query
by simply performing comparisons on the array without
any additional data structure. For many visualization



applications, this approach is the basic strategy of query
processing. In our tests, this indexing method provides a
baseline for performance.

• FastBit: A high-performing, CPU-based approach for
query processing that utilizes compressed bitmap indices.
FastBit is currently the state-of-the-art indexing strategy
utilized for QDV purposes [20], [37].

• Bin-Hash Index:The indexing method described in this
paper.

• GPU-based projection scan:Equivalent to the CPU-based
projection scan, with the exception that the full-resolution
column is read intoGPU memory space (thus the problem
size is directly limited by GPU memory size). Addition-
ally, all indexed values in the column are simultaneously
evaluated in parallel by the query. This approach is
identical (in logic) to the work presented by Govindaraju
et al. [11]. Where their implementation utilized native
GPU hardware buffers (depth, stencil buffers etc.), we
utilized CUDA kernels on the GPU to perform the same
query processing operations.

Tree-based indexing strategies exhibit exponential growth
in storage requirements with increasing dimensionality [38],
[39]. Given that QDV applications typically analyze high-
dimensional scientific data, tree-based indexing strategies are
not typically used in QDV applications, and are thus not
represented in our test suites.

2) Machine Configuration:All tests were performed on a
desktop machine running the Windows XP operating system
with SP2. All GPU kernels were run utilizing NVIDIA’s
CUDA software: drivers version 1.6.2, SDK version 1.1 and
toolkit version 1.1.

• Motherboard: EVGA 680i - 1066MHz FSB; 16X PCI-
Express

• Processor: Intel QX6700 - 2.66GHz; 2 x 128KB L1; 2 x
4MB L2

• Memory: Corsair - 4GB 1066 DDR2
• Co-processor: NVIDIA 8800GTX - 768MB GDDR3
• HardDisk: WD CAVRE2 - SATA 3Gb/sec; 500GB; 7200

RPM; 16MB cache; 8.7 ms seek

B. Test 1: Query Selectivity vs. Row Count

Many indexing methods utilized for query processing (e.g.
FastBit) exhibit performance that is influenced by query selec-
tivity; in these methods queries that select fewer records are
answered faster than queries that select a comparatively larger
number of records. QDV indexing strategies must efficiently
support both highlyandbroadly selective queries. Specifically,
in the exploratory approach taken by QDV, user understanding
and insight typically begins at a coarse level where query
selectivities will be broad; only through iterative refinement
will the selectivity of the records increase.

This suite of tests explores the selectivity-performance re-
lationship on a series of single column tables, each of which
models a stage of hydrogen combustion. Each sequential table
in these tests, while having only one column, has an increasing

number of rows: 33, 67, 100, 134, 167 and 201 million rows. In
this suite of tests, we examine the effect that increasing query
selectivity has on performance. Specifically, we evaluate the
performance of queries that select 40%, 20%, 10%, 5%, and
1% of the records from each respective table.

In general, we expect for FastBit to display excellent
performance for queries that possess high selectivity (FastBit
accesses fewer bitmaps with highly selective queries [18]).
The rest of the implemented methods, all utilizingO(n)
strategies to evaluate a query (i.e. all values must be accessed
during query evaluation), should display constant performance
regardless of query selectivity.

There are two principal questions we seek to answer in this
suite of tests. First, how does the performance of our new Bin-
Hash indexing method compare to the state-of-the-art bitmap
indexing performance of FastBit? Second, compared to the
GPU-based projection scan, our new Bin-Hash index strategy
better utilizes GPU-memory resources and bandwidth—thus
enabling query evaluation over larger data—at the expense of
additional GPU computation during candidate checks. Given
this computation for memory trade-off, we expect for the
GPU-based projection scan to outperform our new Bin-Hash
indexing method. The question is, exactly how much perfor-
mance does our new Bin-Hash method sacrifice in this trade-
off, and how much better memory utilization are we gaining
in return?

Analysis: The performance results of our tests are shown
in Figure 5(a) and Figure 5(b). For presentational clarity,
we group the performance results based upon those indexing
methods that showed no performance change with respect to
query selectivity (Figure 5(a), which shows the performance
of both CPU and GPU projection scans, and the Bin-Hash
index), and those indexing methods that showed performance
improvements with increasing query selectivity (Figure 5(b),
which shows FastBit’s performance results). Additionally,
notable performance trends are labeled in Figure 5(a) and
Figure 5(b), and are discussed below.

The expected performance trends discussed in the begin-
ning of this section are confirmed: FastBit displays excellent
performance for queries that possess high selectivity, and
the performance of the other implemented index methods
display no dependency on query selectivity (the results shown
in Figure 5(a) represent the timings observed for all query
selectivities: 1% - 40%).

Throughout Figure 5(b) the Bin-Hash index performance
out-performs FastBit—even when FastBit evaluates highly se-
lective queries (with the exception being the range highlighted
in label 3). The key observation to make is that our new Bin-
Hash index provides this level of high performance forall
queries, regardless of selectivity. Thus from these performance
results, the Bin-Hash index appears well-suited for meeting the
needs of QDV applications.

Labels 1 (Figure 5(a)) and 3 (Figure 5(b)) highlight a sharp
loss in performance for the Bin-Hash indexing approach and
the GPU-based projection scan. This performance loss is due
to a GPU-based implementation detail associated with how the
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Fig. 5: These charts depict the complete results for the tests performed in Section V-B. For clarity the FastBit performance results
are depicted in (b), while all other results are shown in (a)

(a): This figure shows the timing results of 3 different querying strategies. The x-axis depicts the number of rows contained in each single-
column table queried. Each table is queried with 5 separate queries selecting1%, 5%, 10%, 20%, and 40% of the database records as hits.
The projection scan and the Bin-Hash methods displayed no difference intimings with respect to increasing query selectivity. This is due to
the fact that all of these strategies have a working complexity ofO(n). For comparison, the FastBit results for queries returning 5% of the
records as hits are shown in both this table, and in Figure 5(b). For clarity,the performance lines for the three cache levels of the Bin-Hash
index are intentionally colored the same to reflect therangeof performance of the Bin-Hash index.

(b): This figure shows the timing results of FastBit, shown here when utilizedby 5 separate queries, respectively selecting 1%, 5%, 10%,
20%, and 40% of the records as hits. We observe that FastBit shows significant timing differences with respect to the selectivity of the query.
For comparative purposes with Figure 5(a), the Full-Cache results forthe Bin-Hash method are shown. It can be seen that with queries
selecting 1% of the records as hits, FastBit performs remarkably well to the parallel approach—equaling or even besting the best case of the
Bin Hash strategy when querying some of the largest tables examined (thisloss of performance for the Bin-Hash index is due to a specific
GPU implementation issue, which is discussed in Section V-B).



bit-vector solution is written for tables containing in-excess of
66 (for the GPU-based projection scan) or 133 (for the Bin-
Hash index) million rows . Specifically, for tables whose row
numbers exceed these values, the projection scan (which uses
32-bit raw data) and the Bin-Hash index (which uses 8-bit data
corresponding to bin numbers) can no longer store the bit-
vector solution with a 32-bit variable type (the GPU memory
resources are exhausted); instead an 8-bit variable type is
utilized to conserve space. Writing data as an 8-bit “ubyte”
to the GPU’s global memory incurs significant performance
penalties as the large timing increase highlighted by labels 1
and 3 show.

The high performance of GPU-based query strategies is
inevitably limited by the constraints of GPU-memory (high-
lighted performance of labels 1 and 3). Our new Bin-Hash
method is designed to trade a portion of the GPU’s computa-
tional performance (due to the computational cost associated
with the Bin-Hash’s candidate checks) for a better utilization
of GPU memory and bandwidth. As a result of this strategic
“computation for memory and bandwidth” trade-off, the ad-
vantages provided by our new Bin-Hash method (compared to
the GPU-based projection scan) are that:

• significantly larger tables are able to be queried, and
• queries processed over these larger tables are answered

with consistently higher levels of performance (for tables
in excess of 85 million rows).

Specifically, label 2 in Figure 5(a) shows the point (tables
containing in-excess of 133 million rows) where the GPU-
based projection scan has exhausted GPU-memory resources;
the equivalent point for our new Bin-Hash indexing strategyis
approximately 360 million rows. Thus, in comparison to the
GPU-based projection scan, our new Bin-Hash method is able
to evaluate queries over tables containing 2.7 times as many
rows.

C. Test 2: Multi-Dimensional Queries

It is critical in QDV to efficiently evaluate multidimensional
queries over high-dimensional data (see Sections II and V-
A.1). In this suite of tests we aim to determine what impact, if
any, a query’s dimensionality has on performance. The dataset
used—a subset of the Hurricane Isabel Model—consists of a
single table containing 48 columns and 25 million rows. We
begin with a single-dimensional predicate querying just one
column from this table. In each subsequent test, an additional
column is added to the query (through a logical OR operation)
until a total of 8 columns are queried. The selectivity of these
queries is increased linearly throughout these tests such that
each new column added to the query selects—disjointly—an
additional 12% of the rows from the table.

This test suite’s motivations are twofold. First, we seek
to demonstrate the implementation of the multi-dimensional
kernel approach from Section IV-C.2 and assess its perfor-
mance. Second, we seek to complete the characterization of the
Bin-Hash index’s “computation for memory and bandwidth”
trade-off (see Section V-B). Specifically, Section V-B high-
lighted performance limitations for both GPU-based indexing

Records Indexed Bin-Hash Projection Scan Ratio
-in millions- -in milliseconds- -in milliseconds-

25 6.0 5.0 1.19
50 10.76 8.18 1.31
75 15.8 11.45 1.38
100 20.9 14.67 1.42
125 26.21 17.93 1.46
150 30.97 21.41 1.44

TABLE I: Raw performance values (in milliseconds) for the Bin-
Hash GPU-cache, and GPU-based projection scan indexing methods
(values taken from Figure 6). Additionally, this table shows the
calculated performance ratio between these two indexing strategies.
The average value for the performance ratios is 1.37, indicating that
the Bin-Hash method spends, on average, an additional 37% more
time in computation (than the projection scan) in exchange for being
able to store and query four times as many columns from this test
suite (see “Analysis” in Section V-C).

strategies (Bin-Hash and projection scan) when they processed
queries over tables containing a certain row count. We now
seek to characterize the performance of these two strategies
by querying tables of a smaller, fixed row count. This smaller
number of rows results in a smaller bit-vector solution; thus
this Section’s test suite consistently uses a 32-bit variable type
for the bit-vector solution andnot the 8-bit variable type which
resulted in performance loss for both methods in Section V-B.

Analysis: The performance results of our tests are shown in
Figure 6. With moderate query selectivity ( cumulatively 12%
per column queried), FastBit is outperformed by the GPU-
based indexing strategies. Label 2 in Figure 6 highlights the
region where the total number of indexed values processed
by the query span from 125 to 175 million—this range is
approximately identical to the span of indexed values high-
lighted by label 3 in Figure 5(b) (which is 135 to 167 million).
Though the number of values processed for querying in these
ranges is approximately the same, GPU-based performance
through these ranges is radically different. The accelerated
performance depicted in Figure 6 is a result of the constant and
smaller table size which allows the bit-vector solution in this
test suite to use a higher performing 32-bit variable type—the
bit-vector solution in Section V-B uses an 8-bit variable type
to conserve memory resources.

The GPU-based projection scan still exhausts (label 1 in
Figure 6) GPU memory resources, despite a smaller, constant
number of rows for this test suite’s table. The advantage
provided by our new Bin-Hash method is that four times as
many columns (Figure 6 only shows data for 8 columns but
24 are able to be loaded and utilized) are able to be stored
and queried on the GPU before exhausting GPU memory
resources.

Figure 6 and Table I show that our new Bin-Hash method
scales linearly with respect to increasing query workloads.
This demonstrates the efficiency of the multivariate kernel
strategy (Section IV-C.2). Additionally, from the data pre-
sented in Table I, observe that the span of the performance
ratio (constructed from the Bin-Hash GPU-cache and GPU-
based projection scan) is approximately 1.3 - 1.45. In com-
parison to the projection scan, this indicates that our new
Bin-Hash method spends an additional 30 to 45 percent more



Dataset Index Size (GB) Raw Data Ratio
Hurricane: Projection 0.8 1.0
Hurricane: FastBit 1.37 1.71
Hurricane: Bin-Hash 1.54 1.92
Hydrogen: Projection 0.805 1.0
Hydrogen: FastBit 0.49 0.62
Hydrogen: Bin-Hash 1.16 1.44

TABLE II: This table depicts the size of the index generated for
the various query processing strategies utilized in Section V-C and
Section V-B.

time in computation in exchange for being able to utilize GPU
memory with significantly more efficiency (i.e. four times as
many columns are able to be loaded and queried).

D. Index Size

Query response time (analyzed in Sections V-B and V-C) is
an important factor in analyzing these various strategies;also
important in assessing the performance of an indexing method
is the index size. In the previous two test suites, the distribution
of data in the respective datasets varies significantly. The
dataset used in Section V-C, the Hurricane dataset, contains
data that is notably skewed. Such behavior in data is difficult
to compress. Comparatively, the Hydrogen dataset used in
Section V-B contains data distributions that are considerably
less skewed, i.e. more smooth or uniform. Such data is often
much easier to compress.

Table II shows the results of the total overhead required
for each dataset given the three different storage approaches
used in Sections V-C and V-B: raw data (for projection
scan), compressed data (for FastBit), and encoded data (for
the Bin-Hash method). Here we observe, in the three top
rows in Table II, the penalty incurred by compressing and
encoding near-random data. Both the compression utilized by
FastBit, and the encoding performed by the Bin-Hash method,
approach double the size of the raw data. In comparison, the
Hydrogen dataset, displayed in the three bottom rows, show
the more “typical”, or expected storage gains achieved from
FastBit’s compression strategy.

FastBit uses a binning strategy that will answer any query
conditions involving query boundaries of five significant digits
or less. Due to the need to find precise query boundaries
to ensure that the specified fraction of records are retrieved,
the number of significant digits in the query boundaries are
relatively high in this case. This increases the number of bins
and therefore the overall index size (as reflected in Table II).

VI. CONCLUSIONS

Our work in this paper provides the ability to take advantage
of platforms that support extreme multithreading in order to
accelerate index/query operations. This type of capability is
a crucial underpinning of interactive visual data analysis. In
this paper, we have presented the Bin-Hash indexing strategy
for the answering of selection queries. The Bin-Hash indexing
strategy offers the same high levels of concurrency possessed
by other parallel methods (e.g. the projection scan), but also
affords the utilization of significantly less memory resources.

This smaller memory footprint is critical for certain parallel
processors, like the GPU, where memory resources are limited.

The underlying strategy of the Bin-Hash index is to reduce
memory and bandwidth requirements, at the expense of addi-
tional GPU computation. Through this strategic “computation
for memory and bandwidth” trade-off, we have effectively
utilized the GPU for query processing: our performance results
show that our new Bin-Hash index is able to outperform
FastBit by up to an order of magnitude, and (for large
databases) outperform the more computationally favored GPU-
based projection scan.

We have also demonstrated the utility of perfect spatial
hashing as a parallel data structure. The critical functionality
provided by this data structure allows the Bin-Hash index
to utilize a binning strategy to evaluate the vast majority of
records, and efficiently access the base data of records for a
given boundary bin when performing a candidate check.

We are currently developing anestedbinning strategy (i.e.,
binning the records contained in bins) that will enable the Bin-
Hash strategy to provide even further performance benefits.We
anticipate that this approach will make an out-of-core strategy
efficient for use on the GPU.
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