
High Performance Multivariate Visual Data
Exploration for Extremely Large Data
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Abstract—One of the central challenges in modern science
is the need to quickly derive knowledge and understanding
from large, complex collections of data. We present a new
approach that deals with this challenge by combining and
extending techniques from high performance visual data analysis
and scientific data management. This approach is demonstrated
within the context of gaining insight from complex, time-varying
datasets produced by a laser wakefield accelerator simulation.
Our approach leverages histogram-based parallel coordinates
for both visual information display as well as a vehicle for
guiding a data mining operation. Data extraction and subsetting
are implemented with state-of-the-art index/query technology.
This approach, while applied here to accelerator science, is
generally applicable to a broad set of science applications, and
is implemented in a production-quality visual data analysis
infrastructure. We conduct a detailed performance analysis and
demonstrate good scalability on a distributed memory Cray XT4
system.

I. INTRODUCTION

This work focuses on combining and extending two differ-
ent but complementary technologies aimed at enabling rapid,
interactive visual data exploration and analysis of contempo-
rary scientific data. To support highly effective visual data
exploration, knowledge discovery and hypothesis testing, we
have adapted and extended the concept of parallel coordinates,
in particular binned or histogram-based parallel coordinates,
for use with high performance query-driven visualization of
very large data. In the context of visual data exploration
and hypothesis testing, the parallel coordinates display and
interaction mechanism serves multiple purposes. First, it acts
as a vehicle for visual information display. Second, it serves as
the basis for the interactive construction of compound Boolean
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data range queries. These queries form the basis for subsequent
“drill down” or data mining actions. To accelerate data mining,
we leverage state-of-the-art index/query technology to quickly
mine for data of interest as well as to quickly generate
multiresolution histograms used as the basis for the visual
display of information. This combination provides the ability
for rapid, multiresolution visual data exploration.

We apply this new technique to large, complex scientific
data created by a numerical simulation of a laser wakefield
particle accelerator. In laser wakefield accelerators, particles
are accelerated to relativistic speeds upon being “trapped”
by the electric fields of plasma density waves generated by
the radiation pressure of an intense laser pulse fired into the
plasma. These devices are of interest because they are able
to achieve very high particle energies within a relatively short
amount of distance when compared to traditional electromag-
netic accelerators. The VORPAL [1] simulation code is used
to model experiments, such as those performed at the LOASIS
facility at LBNL [2], and is useful in helping to gain deeper
understanding of phenomena observed in experiments, as well
as to help formulate and optimize the methodology for future
experiments.

Laser wakefield simulations model the behavior of individ-
ual particles as well as the behavior of the plasma electric and
magnetic fields. Output from these simulations can become
quite large: today’s datasets, such as the ones we study
here, can grow to be on the order of 200GB per timestep,
with the simulation producing ≈ 100 timesteps. The scientific
challenge we help address in this study is first to quickly find
particles that have undergone wakefield acceleration, then trace
them through time to understand acceleration dynamics, and
perform both visual and quantitative analysis on the set of
accelerated particles.

One scientific impact of our work is that we have vastly
reduced the duty cycle in visual data exploration and mining.
In the past, accelerator scientists would perform the “trace
backwards” step using scripts that performed a search at each
timestep for a set of particles. Runtimes for this operation
were on the order of hours. Using our implementation, those
runtimes are reduced from hours to seconds.

The specific new contributions of this work are as follows:
• We present a novel approach for quickly creating

histogram-based parallel coordinates displays. These dis-
plays serve to convey information as well as the interface
for the interactive construction of compound, multivariate



Boolean range queries. The new approach leverages state-
of-the-art index/query technology to achieve very favor-
able performance rates.

• We apply this new approach to solve a challenging scien-
tific data understanding problem in accelerator modeling.
This new approach performs particle tracking in a few
seconds as compared to hours when using a naive script.

• We examine and report the performance of our approach
using a modern HPC platform on a very large (≈1.5TB)
and complex scientific dataset. We demonstrate that our
approach has excellent scalability characteristics on a
distributed memory Cray XT4 system.

The rest of this paper is organized as follows. First, we
review relevant background work in Section II, which cov-
ers a diverse set of topics in visual information display,
index/query technology, and high performance visual data
analysis software architectures. Next in Section III, we present
the architecture and implementation of our approach. This
approach is then applied to solve a challenging scientific data
understanding problem in the field of laser wakefield acceler-
ator modeling in Section IV. We evaluate the performance
of our system and present performance results in Section
V. Finally, we conclude in Section VI with a summary and
suggestions for future work.

II. RELATED WORK

A. Information Display – Parallel Coordinates

Parallel coordinates, proposed by Inselberg [3] and Weg-
man [4], are a common information visualization technique
for high-dimensional data sets. In parallel coordinates, each
data variable of a multivariate dataset is represented by one
axis. The parallel coordinates plot is constructed by drawing a
polyline connecting the points where a data record’s variable
values intersect each axis. This type of plot is expensive
in the sense that many pixels are required to represent a
single data record. In this form of display, there is substantial
data occlusion by the many polylines required to display all
records from a large dataset. An overview of modern parallel
coordinates is provided in [5], [6].

Fua et al. [7] proposed using hierarchical parallel coordi-
nates, based on hierarchical clustering, to create a multireso-
lution view of the data that enables data exploration at varying
levels of detail. Johannson et al. [8] used clustering to deter-
mine the inherent structure of data, and displayed that structure
with high-precision textures using different texture transfer
functions. Novotný then used a binning algorithm based on a
k-means clustering approach for creating an aggregate parallel
coordinates visualization [9]. All these approaches are well-
suited for presenting static data, but are not well suited for
time-varying data since defining temporally consistent clusters
is non-trivial and computationally expensive.

Our histogram-based parallel coordinates approach extends
the work of Novotný and Hauser [10], who proposed using
binned parallel coordinates as an output-oriented (rendering)
approach. The main limitation of this approach is that in

order to achieve interactive rendering speed, their method
precomputes all possible 2D histograms with a fixed resolution
of 256× 256 and uniform, equal-sized histogram bins. To
implement different level-of-detail views, bins in the pre-
computed histograms are merged, reducing the number of bins
by half in each drill down step. While this strategy is efficient,
it has several limitations. First, it does not allow for smoothly
drilling into finer-resolution views of the data. Second, it
supports presentation of binned views of the entire dataset,
but does not support user-defined data subsetting. Finally,
the fixed 256× 256 histogram resolution exhibits significant
aliasing when zooming in on narrow variable ranges in the
parallel coordinates plot. Their approach uses binned parallel
coordinates for “context views” and traditional, polyline-based
parallel coordinates for “focus views.” These focus views may
still contain a substantial number of data records and will
suffer from extensive occlusion as a result.

B. High Performance Index/Query for Data Mining

The data access patterns for data mining and analysis
applications tend to be markedly different from those for
transaction-based applications. Transaction-based applications
tend to read and then update records in a database. In contrast,
data mining and analysis applications tend to be read-only in
their access pattern. The database indexing technology that is
best suited for this type of data access is known as the bitmap
index [11], [12]. The core idea of a bitmap index is to use
a sequence of bits to mark the positions of records satisfying
certain conditions. Searching bitmap indices for data records
that match a set of range conditions is performed efficiently
using Boolean operations on bit vectors.

In uncompressed form, such bitmap indices may require
too much space for variables with many distinct values, such
as particle position or momentum. Several techniques have
been proposed to improve the efficiency of the bitmap indexes
on such variables [13], [14]. We make use of a bitmap
index software called FastBit [15]. It implements the fastest
known bitmap compression technique [16], [17], and has been
demonstrated to be effective in a number of data analysis
applications [18], [19]. In particular, it has a number of
efficient functions for computing conditional histograms [20],
which are crucial for this work. Furthermore, FastBit indices
are relatively small compared to popular indices such as B-
trees [16, Fig. 7] and can be constructed much faster than
others [21, Fig. 12]. Bitmap indices are well-known for their
effectiveness on data with relatively small number of distinct
values, such as gender. FastBit indices have been demonstrated
to be very efficient also for data with a large number of distinct
values through its unique compression [14] and binning [22].

When a variable has a large number of distinct values the
corresponding FastBit index is typically on a binned version
of the data, where a bit is 1 if the value of a record falls
in a particular bin. In this case, the number of 1s in a
bitmap corresponding to a bin is the number of records in
the bin. This provides an efficient method for computing a
histogram [20]. FastBit offers a number of different options



for creating bitmap bins. When composing range queries,
users typically specify conditions with relatively low-precision
values, such as pressure less than 1 ∗ 10−5 or momentum
greater than 2.5 ∗ 108. The constant 1 ∗ 10−5 is said to have
1-digit precision, and the constant 2.5 ∗ 108 to have 2-digit
precision. FastBit can build indices with bin boundaries with
any user-specified precision so that all queries involving low-
precision boundaries are answered accurately with index only.
These features make FastBit uniquely suitable for this work.

C. High Performance Query-Driven Visualization

The combination of high performance index/query with
visual data exploration tools was described by Stockinger et
al. [23] using the term “Query-driven visualization.” That work
focuses on comparing the performance of such a combination
with state-of-the-art, tree-based searching structures that form
the basis for a widely-used isocontouring implementation.
Their work shows that this approach outperforms tree-based
search structures for scalar variables, and also points out that
all tree-based index/search structures are not practical for
large, multivariate datasets since they suffer from the “Curse of
Dimensionality” [24]. The basic idea there is that storage com-
plexity grows exponentially as one adds more and more search
dimensions (e.g., more variables to be indexed/searched).

These concepts were later extended to the analysis of
massive collections of network traffic data in two related
works. First, the notion of performing network traffic analysis
using statistics (e.g., histograms) rather than raw data led
to a methodology that enabled exploration and data mining
at unprecedented speed [18]. That study showed using these
concepts to rapidly detect a distributed scan attack on a dataset
of unprecedented size – 2.5 billion records. There, users
are presented with an interface consisting of histograms of
individual variables, and then they formulate a complex query
via a process that is essentially a histogram “cross product.”
The process of data mining was subsequently accelerated
through a family of algorithms for computing conditional
histograms on SMP parallel machines [25].

D. High Performance Visual Data Analysis

Childs et al. [26] demonstrated a data processing and
visualization architecture that is capable of scaling to extreme
dataset sizes. This software system, VisIt [27], has been shown
to scale to tens of billions of data points per timestep and runs
in parallel on nearly all modern HPC platforms. In reference to
our work, VisIt employs a contract-based communication sys-
tem that allows for pipelining and I/O optimization, reducing
unnecessary processing and disk access. It is this extensible
contract system that we utilize to generate histograms for
visual data exploration. A specific optimization that we employ
is VisIt’s concept of a set of Boolean range queries. This set is
communicated between data processing modules in an out-of-
band fashion, allowing downstream filters to limit the scope
of work of upstream filters.

VisIt’s remote visualization capability crosses several inde-
pendent axes. In addition to parallelization of data fetching,
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Fig. 1. An overview of the major components and data flow paths in
our implementation. Large-scale scientific data and indexing metadata are
input via a parallel I/O layer, which allows us to achieve high levels of
performance and parallel efficiency. We use an API at the I/O layer to
perform parallel computation of multidimensional histograms as well as
data subsetting. Results of those computations are used downstream in the
visualization application for presenting information to the user and in support
of interactive data mining actions.

VisIt also performs data extraction and calculation entirely in
parallel. Finally, rendering may be done in serial or parallel,
depending on the data load. If the resultant geometry is small
enough, it is collected at the HPC side and shipped across the
network to the user’s desktop for GPU-based rendering. How-
ever, if the geometry is too large for interactive display on a
single GPU, VisIt employs sort-last rendering and composting
on the HPC system, with the resultant pixels shipped across
the network to the user’s display. The model described here
has many parallels to remote visualization architectures such
as those in ParaView [28] and EnSight [29].

III. SYSTEM DESIGN

Figure 1 shows a high-level view of the components and
data flow in our implementation. Raw scientific data, which
is produced by simulation or experiment, is augmented by
the computation of indexing data. In our case, this step is
performed outside the visual data analysis application as a
one-time preprocessing, and our implementation uses FastBit
[15] for creating index structures. The data sizes are described
in more detail in Section IV and V.

After the one-time preprocessing step, our implementation
uses FastBit at the data-loading portion of the pipeline to
quickly compute histograms in parallel and to perform high-
performance data subsetting/selection based upon multivari-
ate thresholds or particle identifier (Section III-B). These
histograms serve as the basis for the visual presentation of
full-resolution and subset views of data vis-a-vis parallel
coordinates plots (Section III-A). In our implementation, the
computational complexity of rendering parallel coordinates
plots – both context and focus views – is a function of
histogram resolution, not the size of the underlying data.
Therefore, our approach is particularly well-suited for appli-
cation to extremely large data, which we present in Section
IV.

A. Histogram based Parallel Coordinates

Parallel coordinates provide a very effective interface for
defining multi-dimensional queries based on thresholding.
Using sliders attached to each axis of the parallel coordinates
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Fig. 2. Comparison of different parallel coordinate renderings of a subset of
a 3D laser wakefield particle acceleration dataset consisting of 256,463 data
records and 7 data dimensions. a) Traditional line based parallel coordinates.
b) High-resolution, histogram-based parallel coordinates with 700 bins per
data dimension. c) Same as in b, but using a lower gamma value g defining
the basic brightness of bins. d) Same rendering as in b but using only 80 bins
per data dimension. When comparing a and b, we see that the histogram-
based rendering reveals many more details when dealing with a large number
of data records. As illustrated in c, by lowering gamma we can then reduce
the brightness of the plot and even remove sparse bins, thereby producing
a plot that focuses on the main, dense features of the data. By varying the
number of bins we can then create renderings at different levels of detail.

plot, a user defines range thresholds in each displayed dimen-
sion. By rendering the user-selected data subset (the focus
view) in front of a parallel coordinates plot created from the
entire data set (or in many cases a subset of it) (the context
view), the user receives immediate feedback about general
properties of the selection. Data outliers stand out visually as
single or small groups of lines diverging from the main data
trends. Data trends appear as dense groups of lines (bright
colored bins in our case). A quick visual comparison of the
focus and context views helps to convey understanding about
similarities and differences between the two.

In practice, parallel coordinates have disadvantages when
applied to very large datasets. First, each data record is
represented with a single polyline that connects each of the
parallel coordinates axes. As data size increases, the plot
becomes more cluttered and difficult to interpret. Also, data
records drawn later will occlude information provided by data
records drawn earlier. Worst of all is that this approach has
computational and rendering complexity that is proportional
to the size of the dataset. As data sizes grow ever larger, these
problems become intractable.

To address these problems, we employ an efficient rendering
technique based on two-dimensional (2D) histograms. Rather
than viewing the parallel coordinates plot as a collection of
polylines, one per data record, we approach rendering by con-
sidering instead the relationships of all data records between
pairs of parallel coordinate axes. That relationship can be dis-
cretized as a 2D histogram and then later rendered. This idea
was introduced in earlier work [10]. As illustrated in Figure 3,
we create a parallel coordinates representation based on 2D

histograms by drawing one quadrilateral per non-empty bin,
where each quadrilateral connects two data ranges between
neighboring axes. As illustrated in Figure 2(a,b), histogram-
based rendering overcomes the limitations of polyline-based
rendering and reveals much more data detail when dealing
with a large number of data records.

In the following, we first describe how we quickly compute
2D histograms, and then explain in detail how we use them
to efficiently render parallel coordinates. Having introduced
the principle of histogram-based parallel coordinates, we then
compare use of uniformly (equal width) and adaptively (equal
weight) binned 2D histograms in the context of rendering
parallel coordinate views.

1) Computing Histograms: In this work, we implement
the computation of 2D histograms at the data I/O stage of
VisIt: 2D histograms are computed directly in the file reader,
which leverages FastBit for index/query operations as well
as histogram computation. This approach has several major
benefits within the context of very large, high performance
visual data analysis. First, instead of having to read the entire
data set and transfer it to the plot to create a rendered image,
we limit internal data transfer and processing to a set of
2D histograms, which are very small when compared to the
size of the source data. Second, data I/O is limited to those
portions needed for computing the current 2D histogram, i.e.,
information on the relevant particles in two data dimensions.
After computing a 2D histogram, we can then discard the
data the loader may have read to compute the histogram,
thus decreasing the memory footprint. An added advantage is
the fact that all the computationally and I/O intensive work
is done at the beginning of the parallel execution pipeline
rather than at the end in the plot. Third, having the histogram
computation be part of the file reader allows us to perform
such computation at the same stage of processing as parallel
I/O, which is one of the most expensive operations in visual
data analysis. This approach provides the ability to achieve
excellent parallel performance, as described in Section V.

2) Using Histograms to Render Parallel Coordinates Plots:
When using 2D histograms for rendering parallel coordinates
plots, we have access to additional information that is not
present when using traditional polyline-based methods. We
know, for example, the number of records contributing to
specific variable ranges between parallel axes. This extra
information allows us to optimize various aspects of data
visualization to convey more information to the user. We use
brightness, for example, to reflect the number of records per
bin, which leads to improved visual presentation. Assuming
that denser regions are more important than sparse regions,
we render bins in back-to-front order with respect to the
number of records per bin h(i, j). Figure 2(a,b) shows a direct
comparison of the same data once rendered using traditional
line based parallel coordinates and once using our histogram
based rendering approach.

In order to further improve the rendering, we allow the user
to define a gamma value g defining the overall brightness of
the plot. As illustrated in Figure 2c, a lower g value will reduce
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Fig. 3. Illustration showing rendering of parallel coordinates based on
uniformly (left) and adaptively binned histograms (right). By using higher
resolution in areas of extremely high density, an adaptive binning is able to
represent the general data trends much more accurately.

Fig. 4. Histogram-based parallel coordinates using 32×32 uniformly binned
histograms (left) and adaptive histograms (right). Compared to uniform
binning, the adaptive binning preserves more details in dense areas while
discarding some details in sparse areas of the data. An adaptively binned
plot may ease comparison of selections (red) with dense structures present
in the data in low level of detail views.

the brightness of the plot, or even remove sparse bins from
the rendering, thereby producing a much less cluttered visual-
ization that focuses attention on the main, dense data features.
Since our method is not constrained by a fixed histogram
bin resolution, we can easily recompute histograms at higher
resolution, or, using adaptive binning, produce visualizations at
varying levels of detail. This feature is important for providing
smooth drill-down into finer levels of detail in very large
datasets and represents one of the major improvements of our
approach over previous work. Figure 2d, shows as an example
the same rendering as in Figure 2b, but using just 80 bins per
data dimension. Another example is also provided in Figure 4.

Previous histogram-based parallel coordinates work used
histogram-based rendering for the context view and traditional
line-based rendering for the focus view. One limitation of
this approach is that the focus view may consist of a very
large number of data records. We overcome this limitation by
using a histogram-based approach for both the context and
focus views. This approach is feasible given the rapid rate at
which we can recompute new conditional 2D histograms as
explained in Section V. The focus view is rendered on top of
the context view using a different color to make the focus more
easily distinguishable. This approach has the further advantage
that we can render it at different levels of detail simply by
specifying the number of bins per variable. Here, we can use
low-resolution histograms for the context view and a high-
resolution histograms for the focus view, thereby supporting a
high quality and smooth visual drill-down into the focus view.

Similar to rendering the focus on top of the context, we can
also create a rendering of multiple timesteps in one parallel
coordinates plot. To do so, we assign a unique color to each
timestep and render the individual plots, each representing
one timestep, on top of one other. As we will show later in
Section IV, such a rendering can be helpful to identify the

general temporal changes in the data. In practice, temporal
parallel coordinates are most useful when analyzing some
characteristic subset of the data.

3) Adaptive and Uniform Histogram Binning: Regular his-
tograms, with uniform, equal-sized bins, are well-suited for
high-resolution renderings but have substantial disadvantages
when creating low-level-of-detail views where the number of
bins per variable is much smaller than the number of pixels
per parallel axis. In such a case each bin may cover regions of
varying data density, e.g., large areas of a bin may contain only
few data records while other areas contain many. Our approach
offers another improvement over previous work, namely the
possibility to compute and render with adaptive, rather than
uniform histogram bins. With adaptive binning, each bin of
the histogram contains approximately the same number of data
records, which may offer advantages in certain situations [30].

As an example, Figure 4 shows a comparison of data visual-
ized using 32×32 uniform versus adaptive histogram bins. In
comparison to a uniform binning, adaptive binning discards
some features in sparse areas of the data to preserve more
information in dense areas. Adaptively binned histograms
may ease comparison of selections with general data trends.
As illustrated in Figure 3, when using adaptively binned
histograms, a more generalized rendering is required to allow
rectangles to connect different-size ranges on neighboring
axes. Also, since the area a(i, j) covered by each bin is no
longer constant, we need to compute the brightness of each
bin, and assign rendering order based on the actual data density
per bin p(i, j) = h(i, j)

a(i, j) , rather than directly based on the number
of records per bin h(i, j). Uniform binning is well-suited for
high-resolution renderings of the data while adaptive binning
may be advantageous for low-resolution renderings.

In other applications, such as statistical analysis, one is
often interested in both the main data trends as well as
outlier behavior. In order to achieve an optimal low-level-
of-detail rendering for such applications, one could further
restrict the minimal density p of bins during computation of
the adaptive binning to ensure that details in sparse areas of the
data are represented accurately. As proposed by Novotný and
Hauser [10] one may also employ a separate outlier detection
scheme for this purpose in which data records located in bins
of extremely low density p are rendered as individual lines
resulting in a hybrid approach of line-based and histogram-
based parallel coordinates.

B. Data Selection

In our implementation, there is synergy between presenta-
tion of information to the user and specification of queries. The
parallel coordinates plot serves to present context and focus
data views to the user, and also serves as the mechanism for
specifying a multivariate Boolean range query. In our example
case study in Section IV, a multivariate range query might take
the form of px > 109 && py < 108 && y > 0, which selects
high momentum particles in the upper half of the beam. Sim-
ilar conditions can be formulated to define arbitrary particle-
subsets with interesting momentum and spatial characteristics.



Once the user specifies such a multivariate range condition,
those conditions are passed back upstream in the system to
the FastBit-enhanced HDF5 reader for processing, either to
compute new histograms or to extract data subsets that match
the query for downstream processing. In the case of data
subsetting, FastBit will locate those data records that satisfy
the query and then pass them along for downstream process-
ing. For conditional histograms, FastBit will compute new
histograms using the query conditions as well as a histogram
specification: the number of bins and the bin boundaries.

Once an interesting subset has been identified, yet another
form of query can be issued in order to identify the same data
subset (here particles) at different points in time. This type of
query is of the form ID IN (id1, id2, ..idn), where there are n
particles in the subset. Again, such queries can be processed
efficiently by FastBit and only the relevant set of particles
is extracted and then passed along to visual data analysis
machinery. This processing step offers a huge performance
advantage: a technique without access to the index information
must search the entire dataset for particle identifier matches.
By issuing an identifier query across the entire time sequence,
we construct particle tracks, which reveal valuable information
about how particles are accelerated over time.

IV. USE CASE

We now present a specific example where we apply our
system to perform visual data analysis of 2D and 3D data
produced by a laser wakefield particle accelerator simulation.
These simulations model the effects of a laser pulse propagat-
ing through a hydrogen plasma. Similar to the wake of a boat,
the radiation pressure of the laser pulse displaces the electrons
in the plasma, and with the space-charge restoring force of the
ions, this displacement drives a wave (wake) in the plasma.
Electrons can be trapped and accelerated by the longitudinal
field of the wake, forming electron bunches of high energy.
Due to the large amount of particles required in order achieve
accurate simulation results, it is not possible to simulate the
entire plasma at once. As a result, the simulation is restricted to
a window that covers only a subset of the plasma in x direction
in the vicinity of the beam. The simulation code moves the
window along the local x axis over the course of the run.

The simulation data in these examples contains information
about the position of particles in physical space –x, y, z –,
particle momentum – px, py, pz – and particle ID at multiple
timesteps. As a derived quantity, we also include the relative
particle position in x direction within the simulation window
xrel(t) = x(t)−max(x(t)). There are more than 400,000 and
90 million particles per timestep in the 2D and 3D datasets,
respectively. The 2D data consists of 38 timesteps and has an
overall size of about 1.3GB, including the index structures.
The 3D dataset consists of 30 timesteps and has an overall
size of about 210GB, including the index. Each 3D timestep
has a size of about 7GB, including the index, and about 5GB
without the index. We perform a detailed analysis of the 2D
dataset and then extend our analysis to the larger 3D dataset.
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Fig. 5. a) Parallel coordinates and b) pseudocolor plot of the beam at t = 27.
Corresponding plots c,d) at t = 37. The context plot, shown in red, shows both
beams selected by the user after applying a threshold of px > 8.872 ∗ 1010

at t = 37. The focus plot, shown in green, indicates the first beam that is
following the laser pulse. In the pseudocolor plots b) and d), we show all
particles in gray and the selected beams using spheres colored according to
the particle’s x-momentum, px. The focus beam is the rightmost bunch in
these images. At timestep t = 27, the particles of the first beam (green in
figure a) show much higher acceleration and a much lower energy spread
(indicated via px) than the particles of the second beam. At later times, the
lower momentum of the first beam indicates it has outrun the wave and moved
into decelerating phase, e.g at timestep t = 37.

In order to gain a deeper understanding of the acceleration
process, we need to address complex questions such as: i)
which particles become accelerated; ii) how are particles
accelerated, and iii) how was the beam of highly accelerated
particles formed and how did it evolve [31]. To identify those
particles that were accelerated, we first perform selection of
particles at a late timestep (t = 37) of the simulation by using
a threshold for the value for x-momentum, px (Section IV-A).
By tracing the selected particles over time we will then analyze
the behavior of the beam during late timesteps (Section IV-B).
Having defined the beam, we can analyze formation and
evolution of the beam by tracing particles further back to the
time where they entered the simulation and became injected
into the beam (Section IV-C to IV-E). In this context, we use
selection of particles, ID-based tracing of particles over time,
and refinement of particle selections based on information
from different timesteps as main analysis techniques.

As we will illustrate in this use case, the ability to perform
selection interactively and immediately validate selections
directly in parallel coordinates as well as other types of
plots, such as pseudocolor or scatter-plots, enables much more
accurate selection than previously possible. Tracing of parti-
cles over time then enables researchers to better understand
evolution of the beam. With our visualization system the
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Fig. 6. Particles of the beam at timestep 14 (top left) to 17 (bottom right).
The color of selected particles indicates x-momentum, px, using a rainbow
color map (red=high, blue=low). Non-selected particles are shown in gray.
We can readily identify two main sets of particles entering the simulation at
timestep t = 14 and additional sets of particles entering at t = 15.
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as shown in Figure 6. The positions of the selected particles at the different
times are also shown. The begin and end of the timesteps in x direction are
indicated below the bounding box. Here, we use color to indicate particle ID.

user can rapidly identify subsets of particles of interest and
analyze their temporal behavior. For “small” datasets one will
usually perform all analysis on a regular workstation. For
larger datasets VisIt can also be run in a distributed fashion so
that all heavy computation is performed on a remote machine
where the data is stored and only the viewer and the GUI run
on a local workstation.

A. Beam Selection

In order to identify the beam, i.e., find those particles that
became accelerated, we first concentrate on the last timestep of
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Fig. 8. a) By applying an additional threshold in x at timestep t = 14,
we separate the two different set of particles entering the simulation. b) The
refinement result, shown in physical space, includes all non-selected particles
(gray) to provide context. c) Particle traces of the complete beam and the
refined selection. In all plots we show the complete beam in red and the
refined selection in green. After entering the simulation, the selected particles
(green) define first the outer part of the first beam at timestep t = 15. Later
on at timesteps t = 16 and t = 17, these particles become highly focused and
define the center of the first beam.
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Fig. 9. The beam at timesteps t = 14 to t = 22 in a temporal parallel coordi-
nates plots. Here, color indicates each of the discrete timesteps. We can readily
identify the two different beams in x and xrel (xrel(t) = x(t)−max(x(t))).
While the second beam shows equal to higher values in px during early
timesteps (t = 14 to t = 17), the first beam shows much higher acceleration
at later times compared to the second beam.

the simulation (at t = 37). Using the parallel coordinates dis-
play, we select the particles of interest by applying a threshold
of px > 8.872∗1010. As is visible in the parallel coordinates
plot, those particles constitute two separate clusters (beams)
in x direction (Figure 5 c). Using a pseudocolor plot of the
data, we can then see the physical structure of the beam.

B. Beam Assessment

By tracing particles back in time, we observe that the first
bunch following the laser pulse (rightmost in these plots) has
lower momentum spread at its peak energy (at t = 27) than the
second bunch (see Figure 5a and 5b). In practice, the first beam
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Fig. 10. a) Parallel coordinates of timestep t = 12 of the 3D dataset. Context view (gray) shows particles selected with px > 2∗109. The focus view (red)
shows particles satisfying the condition (px > 4.856∗1010) && (x > 5.649∗10−4), which form a compact beam in the first wake period following the laser
pulse. b) Volume rendering of the plasma density and the selected focus particles (red). c) Traces of the beam. We selected particles at timestep t = 12, then
traced the particles back in time to timestep t = 9 when most of the selected particles entered the simulation window. We also traced the particles forward in
time to timestep t = 14. Color indicates px. In addition to the traces and the position of the particles, we also show the context particles at timestep t = 12
in gray to illustrate where the original selection was performed. We can see that the selected particles are constantly accelerated over time (increase in px).

following the laser pulse is therefore typically the one of most
interest to the accelerator scientists. The fact that the second
beam shows higher or equal acceleration at the last timestep of
the simulation is due to the fact that the first beam will outrun
the wave later in time and therefore switches into a phase of
deceleration while the second beam is still in an acceleration
phase. In practice, when researchers want to select only the
first beam, they usually perform selection of the particles using
thresholding in px at an earlier time (e.g. t = 27) when the
beam-particles of interest have maximum momentum, rather
than the last timestep, here t = 37. By performing selection
at an earlier time, one avoids selecting particles in the second
beam while being sure to select all particles in the first beam.
In this specific use case we are interested in analyzing and
comparing the evolution of these two beams, which is why
we performed selection at the last timestep.

C. Beam Formation

Having defined the beam in the 2D dataset, we can analyze
formation of the beam by tracing the selected particles back to
the time when particles entered the simulation and were then
injected into the beam. In Figure 6, the individual particles
of the beam are shown at timesteps t = 14 to t = 17. Here,
color indicates the particles’ momentum in the x direction
(px). Figure 7 shows the particle traces over time colored
according to particle ID’s (the first beam appearing in blue
and the second beam in yellow/red). Different sets of injection
are readily visible, and two sets of particles appear at t = 14.
The left bunch will be injected to form a beam in the second
wake period, which is visible at t > 14. A second group of
particles is just entering the right side of the box (recall that
the simulation box is sweeping from left to right with the laser,
so that plasma particles enter it from its right side). This bunch
continues to enter at t = 15, and the particles stream into the
first (rightmost) wake period. These particles are accelerated
and appear as a bunch in the first bucket for t > 15. At the
following timesteps t = 16 and t = 17, further acceleration of
the two particle beams can be seen while only a few additional

particles are injected into the beam, and these are less focused,
i.e., they show higher spread in the transverse direction (y).

D. Beam Refinement

Based on the information at timestep t = 14, we then refine
our initial selection of the beam. By applying an additional
threshold in x, we can select those particles of the beam that
are injected into the first wake period behind the laser pulse
(see Figure 8a and 8b). By comparing the temporal traces of
the selected particle subset (green) with the traces of the whole
beam (red), we can readily identify important characteristics
of the beam (see Figure 8c). After being injected, the selected
particle subset (green) first defines the outer part of the first
beam at timestep t = 15, while additional particles are injected
into the center of the beam. Later on at timesteps t = 16
and t = 17, the selected particles become strongly focused
and define the center of the first beam. By refining selections
based on information at an earlier time, we are able to identify
characteristic substructures of the beam.

E. Beam Evolution

Using temporal parallel coordinates, we can analyze the
general evolution of the beam in multiple dimensions (see
Figure 9). Along the x axis, two separate beams can be seen
at all timesteps (t = 14 to t = 22) with a quite stable relative
position in x (xrel). At early timesteps, both beams show
similar acceleration in px while later on, at timestep t = 18 to
t = 22 (magenta to lilac), the particles of the first beam show
significantly higher acceleration with a relatively low energy
spread. We find particles at relatively high relative positions
in x direction (xrel) only at timesteps t = 14 and t = 15 due
to the fact that the particles of the beams enter the simulation
window at these times.

F. 3D Analysis Example

We now describe a similar example analysis of the 3D
particle dataset. Figure 10(a and b) shows the beam selection
step for this dataset. At a much earlier timestep t = 12 (x ≈
5.7∗10−4 compared to x≈ 1.3∗10−3 in the 2D case) particles



are trapped and accelerated. In order to get an overview of
the main relevant data, the user removed the background from
the data first by applying a threshold of px > 2.0 ∗ 109. The
user then selected particles in the first bunch via thresholding
based on the momentum in x direction (px > 4.586 ∗ 1010)
and x position (x > 5.649 ∗ 10−4) to exclude particles in the
secondary periods from the selection. Figure 10b shows a
volume rendering of the plasma density along with the selected
particles revealing the physical location of the selected beam
within the wake.

Figure 10c shows the traces of the particles selected earlier
in Figure 10a. We selected the particles at timestep t = 12
then traced them back to timestep t = 9 where most of the
selected particles enter the simulation window and forward in
time to timestep t = 14. As one can see in the plot, the selected
particles are constantly accelerated over time.

V. PERFORMANCE EVALUATION

In this section, we present results of a study aimed at charac-
terizing the performance of our implementation under varying
conditions using standalone, benchmark applications. These
unit tests reflect the different stages of processing we presented
earlier in Section IV, the Use Case study. First, we examine the
serial performance of histogram computation in Section V-A:
histograms serve as the basis for visually presenting data to a
user via a parallel coordinates plot. Second, in Section V-B, we
examine the serial performance of particle selection based on
ID across all time steps of simulation data. Finally in Section
V-C, we examine the parallel scalability characteristics of our
histogram computation and particle tracking implementations
on a Cray XT4 system.

For the serial performance tests in Sections V-A and V-B,
we use the 3D dataset described earlier in Section IV: 30
timesteps worth of accelerator simulation data, each timestep
having about 90 million particles and being ≈ 7GB in size
(including ≈ 2GB for the index). The aggregate dataset size is
about 210GB, including the index data. We store and retrieve
simulation and index data using HDF5 and a veneer library
called HDF5-FastQuery [32]. HDF5-FastQuery presents an
implementation-neutral API for performing queries and ob-
taining histograms of data. We conduct the serial performance
tests on a workstation equipped with a 2.2GHz AMD Opteron
CPU, 4GB of RAM and running the SuSE Linux distribution.

The serial performance tests in Sections V-A and V-B
measure the execution time of two different implementations
that are standalone applications we created for the purpose
of this performance experiment. One application, labeled
“FastBit” in the charts, uses FastBit for index/query and
histogram computation. The other, labeled “Custom” in the
charts, does not use any indexing structure, and therefore
performs a sequential scan of the dataset when computing
histograms and particle selections. Note, in order to enable
a fair comparison we here use our own Custom code which
shows better performance than the IDL scripts currently used
by our science collaborators.

A. Computing 2D Histograms
We run a pair of test batteries aimed at differentiating

performance characteristics of computing both unconditional
and conditional histograms. The unconditional histogram is
simply a histogram of an entire dataset using a set of
application-defined bin boundaries. A conditional histogram
is one computed from a subset of data records that match an
external condition.

1) Unconditional Histograms: In our use model, the com-
putation of the unconditional histogram is a “one-time” oper-
ation. It provides the initial context view of a dataset.

For this test, we vary the number of bins in a 2D histogram
over the following bin resolutions: 32×32, 64×64, 128×128,
256×256, 512×512, 1024×1024, and 2048×2048 bins. All
histograms span the same range of data values: increasing the
bin count results in bins of finer resolution. The results of this
test are shown in Figure 11. Since both the FastBit and Custom
applications need to examine all the data records to compute an
unconditional histogram, we do not expect much performance
variation as we change the number of bins. FastBit is generally
faster than the custom code throughout primarily because of
the difference in organization of the histogram bin counts
array. FastBit uses a single array, which results in a more
favorable memory access pattern. FastBit computes adaptive
histograms by first computing a higher-resolution uniformly
binned histogram and then merging bins. Since merging bins
is a fairly inexpensive process and increasing the number of
bins has no significant effect on the performance of uniformly
binned histograms we observe only a minor, constant increase
in computation time for adaptive versus uniform binning.

2) Conditional Histograms: In contrast to the unconditional
histogram, which is a one-time computation, the process of
visual data exploration and mining relies on repeated computa-
tions of conditional histograms. Therefore, we are particularly
interested in achieving good performance of this operation
to support interactive visual data analysis. This set of tests
focuses on a use model, a change in the set of conditions
results in examining a greater or lesser number of data records
to compute a conditional histogram. This set of conditions
reflects the repeated refinement associated with interactive,
visual data analysis.

We parameterize our test based on the number of hits
resulting from a range of different queries. We use thresholds
of the form px > ... as the histogram conditions. As we
increase the threshold of particle momentum in the x direction
with this condition, fewer data records (particles) satisfy that
condition and contribute to the resulting histogram. In these
tests, we hold the number of bins constant at 1024×1024.

Figure 12 presents results for computing conditional his-
tograms using FastBit and the Custom application. We observe
that for small number of hits, the FastBit execution times are
dramatically faster than the Custom code that examines all
data records. Also, in this regime we observe that uniform
and adaptive binning show similar performance. While for
unconditional histograms the minimum and maximum values
are known for each variable, we here need to compute these
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ditional histograms.
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values from the selected data parts in order to compute the
adaptive binning. Due to this fact we observe a performance-
decrease of the adaptive binning compared to uniform binning
for very large selections. It is important to note that visual
analysis queries typically isolate a small number of particles
– from tens to thousands – and FastBit provides outstanding
performance in this regime. As the number of hits increases,
approaching 1M and 10M+ particles – which is a significant
fraction of the 90M total particles – a sequential scan through
all the data records produces better results. This performance
change is due to the fact that FastBit computes the histogram
in two separate steps. It first evaluates the user-specified
conditions to select the appropriate values, and then counts the
number of values in each histogram-bin. The selected values
are passed from the first to the second step as an intermediate
array with as many elements as the number of hits. It is
expensive to pass this intermediate array through memory
when it is large. Since the intended applications primarily have
a small number of hits, using FastBit is more efficient.

B. Particle Selections

Following our use model, once a user has determined
a set of interesting data conditions, like particles having a
momentum exceeding a given threshold, the next activity is
to extract those particles from the large dataset for subsequent
analysis. This set of tests aims to show performance of the
particle subsetting part of the processing pipeline.

The execution time for this task is clearly proportional to
the size of the selection – the time required to find a set of
particles in a large, time-varying dataset varies as a function
of the size of the particle search set as well as the size of the
simulation data itself. We parameterize the search set size for
this set of performance tests, varying the number of particles
to search for over values ranging from 10, 100, 1000, ... , up
to 20M particles.

Our custom code uses a sequential scan of the entire dataset
to search for particles in the search set. For each data record,
it compares the particle ID of the record to the search set
using an efficient algorithm: if the size of the search set is
S, then the search time is O(log(S)). If there are N data
records in the entire dataset, the computational complexity of
the entire algorithm is O(Nlog(S)). In contrast, the worst-case

time required to locate a set of identifiers using FastBit is
expected to be proportional to the number records found [17].

Figure 13 presents results for running ID queries using
FastBit and the Custom code for one timestep. For relatively
small numbers of identifiers, we observe that FastBit is about
four orders of magnitude (104×) faster than the Custom code.
As the number of identifiers involved increases, the relative
difference becomes smaller. When 20 million of identifies are
involved, FastBit is still three times faster.

C. Scalability Tests

Whereas the previous sections have focused on the serial
performance of computing histograms and performing parti-
cle subset selections, this section focuses on the scalability
characteristics of both algorithms.

The platform for these tests is franklin.nersc.gov,
a 9,660 node, 19K core Cray XT4 system. Each of the nodes
consists of a 2.6GHz, dual-core AMD Opteron processor and
has 4GB of memory and runs the Compute Node Linux
distribution. One optimization we use on this machine at all
levels of parallelism is to restrict operations to a single core
of each node. This optimization maximizes the amount of
memory and I/O bandwidth available to each process in our
parallel performance tests. On this platform, the Lustre Parallel
Filesystem serves data to each of the nodes. The nodes used in
the study are a small fraction of a larger shared facility with
a dynamic workload. Our scalability tests cover parallelism
levels over the following range: 1, 2, 5, 10, 20, 50, and 100
nodes of the Cray XT4.

As in previous sections, we report wall-clock times which
encapsulate CPU processing and I/O. We report the speedup
factor as the ratio of time taken by a single node to the time
taken by the node subset to complete a task. We do a strong
scaling test by keeping the problem size fixed at 100 timesteps
for all cases.

The dataset used in this study has 100 timesteps; each
timestep has 177 million particles and is about 10GB in size.
The aggregate dataset size is about 1.5T B, including the index
data. We employ a fairly simple form of data partitioning for
these scalability tests: namely we assign data subsets corre-
sponding to individual timesteps (corresponding to individual
HDF5 files) to individual nodes for processing. The subsets
are statically assigned to nodes in a strided fashion.
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Following the theme of use cases reported in previous
sections, we report times for realistic science usage scenarios.
For histogram computation, we generate five parallel his-
togram pairs for the position and momentum fields. We use
1024× 1024 bins, which is a reasonable upper limit given
typical screen resolutions. For conditional histograms, we use
a px > 7∗1010 query; for particle tracking, we report numbers
for a px > 1011 query, which results in 500 hits. All of
these choices are grounded in discussions with our science
collaborators and reflect reasonable ranges and thresholds.

Figure 14 presents results from parallelizing the computa-
tion of both conditional and unconditional histograms over
multiple nodes. As expected, we observe that the compu-
tation time decreases as we add more nodes. Similar to
the serial case, we do not observe much of a difference
between FastBit and the Custom application for computing the
unconditional histogram since both implementations examine
all data records. For computing the conditional histogram,
FastBit maintains its advantage over the Custom application.
Figure 15 presents the speedup factors corresponding to this
computation; we observe a very favorable speedup. This is to
be expected since the nodes can perform their computations
independently of others.

Figure 16 presents results from particle tracking over 100
timesteps. Similar to the serial case, FastBit is faster than
the Custom application, and maintains its advantage when
executed in parallel. Figure 17 demonstrates that we achieve
excellent scalability in parallelizing this computation. We
observe that when using 100 nodes, FastBit is able to track
500 particles over 1.5TB of data in 0.15 seconds. In contrast,
the IDL scripts currently used by our collaborators take
≈2.5 hours to track 250 particles on a small 5GB dataset.
Owing to IDL limitations, the scripts simply fail to run on
the larger datasets used in this study. Our research marks
a dramatic improvement for the scientists’ workflow: what
formerly required many hours can now be processed in less
than a second.

VI. CONCLUSIONS AND FUTURE WORK

Managing and gaining insight from vast amounts of data
is widely accepted as one of the primary bottlenecks in
modern science. The work we present takes aim at enabling
rapid knowledge discovery from large, complex, multivariate
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Fig. 17. Scalability of parallel particle tracking.

and time-varying scientific datasets and using modern HPC
platforms. To achieve this objective, we have presented a novel
approach for quickly creating histogram-based parallel coordi-
nates displays. Further, we leverage this form of visual infor-
mation display as the basis for forming complex multivariate
range queries. We combined this form of visual information
display with state-of-the-art index/query technology to quickly
compute conditional histograms as well as to quickly and
efficiently extract subsets of data that meet a set of conditions.
We presented a case study showing how these technologies
are used in concert to explore a large, time-varying dataset
produced by a laser wakefield accelerator simulation. That
exploration reveals interesting beam characteristics, such as
how particles are first accelerated by the wakefield, then later
“outrun” the wave and undergo a period of deceleration.

We also conducted a performance study of each of the
fundamental algorithms that form a complete implementation
in a production-quality, parallel capable visual data analysis
application. That study shows the efficacy of our algorithms
for computing histograms and for performing particle subset
selection. These algorithms were shown to have favorable
scalability characteristics over a set of processor pool sizes
ranging from 1 up to 100 on a modern HPC platform, a Cray
XT4. From the scientists’ point of view, they are now able to
perform a type of visual data analysis in a few seconds with
this new work as compared to the several hours required using
legacy tools. These results are significant because they show
the successful synergy that can result when combining visual
data analysis with scientific data management technologies to
solve challenging problems in scientific knowledge discovery.

As we move forward with this work, we are particularly



interested in exploring different avenues for parallelizing the
most expensive parts of the visual data analysis work. As vi-
sual data analysis is typically an interactive process, minimiz-
ing the response time is crucial to maximize its effectiveness.
We also plan to apply this system to larger datasets from this
and other scientific disciplines. As our implementation already
supports a mode of operation whereby a parallel back end runs
on the HPC platform to perform I/O, visualization and analysis
processing with results being transmitted over the network to
a client running on a workstation, we are in a good position to
tackle such future challenges. Finally, the work we show here
is primarily visual data analysis; we intend to extend this work
to couple it with more traditional data analysis techniques.
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[9] M. Novotný, “Visually effective information visualization of large data,”
in Proceedings of Central European Seminar on Computer Graphics
(CESCG), 2004.
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