
Analyzing Enron Data: Bitmap Indexing Outperforms MySQL Queries by
Several Orders of Magnitude

Kurt Stockinger, Doron Rotem, Arie Shoshani, Kesheng Wu
Computational Research Division

Lawrence Berkeley National Laboratory
University of California

1 Cyclotron Road, Berkeley, CA 94720, USA

Abstract

FastBit [1] is an efficient, compressed bitmap indexing
technology that was developed in our group. In this re-
port we evaluate the performance of MySQL and FastBit
for analyzing the email traffic of the Enron dataset. The first
finding shows that materializing the join results of several
tables significantly improves the query performance. The
second finding shows that FastBit outperforms MySQL by
several orders of magnitude.

1 Introduction

The Enron dataset was used by various researchers in
the area of social network analysis to discover patterns in
the data. These patterns are usually visualized by com-
plex graph algorithms. However, due to the large amount
of social network data, the pattern finding and visualiza-
tion algorithms often take a long time to terminate. In or-
der to reduce the time complexity of these algorithms, it
is often important to pre-filter the results based on multi-
dimensional criteria such as “Retrieve all emails that were
sent by person P at time T”. In this report we will show that
multi-dimensional bitmap indices significantly improve the
performance of these types of queries.

For our performance evaluation we used the Enron
dataset that was prepared by Shetty and Adibi [2]. All the
data is stored in MySQL containing the following four ta-
bles: employeeList, message, recipientInfo, referenceInfo.
In total, the dataset contains some 250,000 message from
151 Enron employees that were recorded over a few years.
For further details about the dataset we refer the reader to
[2].

In this report we compare the performance of MySQL
with FastBit [1], an efficient, compressed bitmap indexing
technology that was developed in our group.

2 Performance Results - Original Dataset

In our first set of experiments we measured the perfor-
mance of searching for specificsendersandreceiversof the
emails. We built an index for each of these two attributes.
Since both senders and receivers are in different database
tables, this kind of search requires an expensive join opera-
tion. The next step was to materialize the join and store the
results in an additional table that we callmaterialized table.
The newly created table contains some 2 million records.
Remember, the number of original messages was 250,000
which indicates that, on average, each message contains 8
recipients. We also built indices forsenderandreceiveron
the materialized table.

In order to build bitmap indices for the materialized ta-
ble, we needed to export the date into binary files. In partic-
ular, we stored each attribute in a separate file and then built
a bitmap index for the attributessenderandreceiver.

Next we measured the performance of queries of the
form “Retrieve the recipients of all emails that were sent
by personP ”. For these experiments we randomly selected
100 persons from the tableemployeeListand executed a
query for each person. In total, we ran 100 queries and
measured the retrieval time including the time to extract the
result after the search.

Figure 1 shows the performance of three different access
plans, namelyMySQL - Join, MySQL - Materializedand
FastBit. We can see that the query that is based on joining
two tables takes the most time. We can also see that the
response time is independent of the number of hits.FastBit
shows the best query response time and is a factor of 10 to
100 faster thanMySQL - Materialized.

Next we measured the performance of queries of the
form “Retrieve all senders of emails that were received by
personP ”. Similar to the previous experiments, we ran-
domly selected 100 persons. Figure 2 shows that this time
the difference betweenMySQL - JoinandMySQL - Mate-



Figure 1. Performance of query: “Retrieve the
recipients of all emails that were sent by per-
son P ”.

rialized is much smaller. The reason is that the number of
hits is much smaller than in the previous experiments and
thus the join operation is less expensive. However,FastBit
is again up to a factor of 100 faster thanMySQL - Material-
ized.

Figure 2. Performance of query: “Retrieve the
senders of all emails that were received by
person P ”.

Due to the better performance of the access planMySQL
- Materialized, for the remaining experiments we only use
this access plan and compare it withFastBit.

Our next experiments evaluated the performance of the
following queries: a) “Count the number of emails that were

sent every day before timeT . b) “Count the number of
emails that were sent before dateD”. For performance rea-
sons we split the attributedate of the original tablemes-
sageinto the basic components ofdateand time and built
indices.In order to emphasize on the index operations, the
following experiments only count the number of emails the
fulfill a certain search criterion.

The performance of these queries is shown in Figures 3
and 4. Again we see thatFastBitshows better performance
characterstics than MySQL. In particular, we observe that
the performance ofMySQL - Materializeddepends on the
number of hits whereas the performance ofFastBit is about
constant.

Figure 3. “Count the number of emails that
were sent every day before time T .

3 Performance Results - Duplicated Dataset

In the next experiments we measured the query perfor-
mance of a larger dataset. We thus duplicated the Enron
dataset 10 times. The resulting materialized table contains
some 20 million records.

Figures 5 through 7 show the performance of queries
with one specific search criterion. Similar to the previous
experiments, FastBit is up to a factor of 100 faster than
MySQL.

In our last set of experiments we measured the per-
formance of queries with multiple search criteria (multi-
dimensional queries). A typical query of this kind is “Count
the number emails that were sent by personP in the time
interval T before dateD”. The results of two and three
dimensional queries are shown in Figures 8 and 9. We no-
tice that as the number of query dimensions increases, the
relative performance improvement of FastBit over MySQL



Figure 4. “Count the number of emails that
were sent before date D”.

Figure 5. “Count the number of emails that
were sent by person P ”.

increases even more. For these types of queries, FastBit is
even up to a factor of 1000 faster than MySQL.

4 Conclusions

In this report we evaluated the performance of MySQL
and FastBit for queries on the Enron dataset. Our first
finding shows that queries on materialized tables provide a
significant performance improvement since expensive join
operations are avoided. We also demonstrated that Fast-
Bit outperforms MySQL up to a factor of 1000 for multi-
dimensional queries.

Figure 6. “Count the number of emails that
were received by person P ”.

Figure 7. “Count the number of emails that
were sent before date D”.

In the future we will work onneighborhood queries
that are of particular importance for analyzing message
flows/chains within groups. Typical queries are “Find all
the emails that personA sent to personB”. Next, find
all emails that personB received fromA and sent to per-
sonC”. By analyzing this kind of messages one can dis-
cover indirect relationships between personA and person
C. Moreover, the message frequency and the message date
might also reveal some important characteristics. In order
to quickly search through this information, the use of effi-
cient, multi-dimensional indexing as described in this report
is very important.



Figure 8. “Count the number of emails that
were sent by person P before data D”.

Figure 9. “Count the number of emails that
were sent by person P before data D and time
T ”.

Acknowledgment

The work was funded by the Department of Homeland
Security.

References

[1] FastBit, http://sdm.lbl.gov/fastbit . Jan.
2006.

[2] J. Shetty, J. Adibi, The Enron Email Dataset, Database
Schema and Brief Statistical Report, Retrieved from

http://www.isi.edu/˜adibi/Enron/Enron
Dataset Report.pdf , Jan. 2006


