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ABSTRACT
In this paper, we propose a new strategy for optimizing the
placement of bin boundaries to minimize the cost of query
evaluation using bitmap indices with binning. For attributes
with a large number of distinct values, often the most effi-
cient index scheme is a bitmap index with binning. However,
this type of index may not be able to fully resolve some user
queries. To fully resolve these queries, one has to access
parts of the original data to check whether certain candi-
date records actually satisfy the specified conditions. We
call this procedure the candidate check, which usually dom-
inates the total query processing time. Given a set of user
queries, we seek to minimize the total time required to an-
swer the queries by optimally placing the bin boundaries.
We show that our dynamic programming based algorithm
can efficiently determine the bin boundaries. We verify our
analysis with some real user queries from the Sloan Digi-
tal Sky Survey. For queries that require significant amount
of time to perform candidate check, using our optimal bin
boundaries reduces the candidate check time by a factor of
2 and the total query processing time by 40%.

Categories and Subject Descriptors
E.2 [Data]: Data Storage Representations; H.3 [Information
Systems]: Information Storage and Retrieval—Indexing Meth-
ods

General Terms
Algorithms Theory Experimentation Performance

Keywords
Bitmap Index, Query Processing, Dynamic Programming

1. INTRODUCTION
Bitmap indexing is a common technique for indexing high-

dimensional data in data warehousing, OLAP and scientific
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applications. In these applications, it is common to have
complex, multi-dimensional ad-hoc queries against read-only
data. Bitmap indices are very efficient at supporting Boolean
logic operations at the bit level to perform predicate evalua-
tion at increased machine speeds. In addition, COUNT and
SUM queries, whose responses are derivable through index
scans without searching the database, can benefit consid-
erably from this technology. For these reasons bitmap in-
dices have been introduced into several commercial DBMS
products by database vendors including Red Brick Systems,
Sybase, IBM and Oracle. Although efficient for low car-
dinality attributes, query processing can be rather costly
for high-cardinality attributes due to the large storage re-
quirements for the bitmap indices. Typical approaches for
reducing the storage complexity of bitmap indices are com-
pression, bitmap encoding and binning. In this paper we
focus on binning strategies.

Simple bitmap indices represent each distinct attribute
value by one bitmap vector. Binning, on the other hand,
partitions the attribute values into a small number of ranges,
called bins, and uses bitmap vectors to represent bins (at-
tribute ranges) rather than distinct values. Although bin-
ning typically reduces storage costs for high-cardinality at-
tributes, it may increase the access costs of queries that do
not fall on exact bin boundaries (edge bins). For this kind
of queries the original data values associated with edge bins
must be accessed, in order to check them against the query
constraints.

Figure 1: Range query 37 ≤ A < 63 on a bitmap
index with binning.

A small example of the problem we are considering here
is given in Figure 1. In this example we assume that an



attribute A has values between 0 and 100. The values of
the attribute A are given in the second leftmost column.
The range of possible values of A is partitioned into five
sub-ranges [0,20),[20,40) etc. with a bin allocated to each
sub-range. A “1-bit” indicates the attribute value falls into
the range, and “0-bit” otherwise. Assume that we want
to evaluate the query “Count the number of rows where
37 ≤ A < 63”. The correct result should be 2 (rows 5
and 7). We know that rows qualifying for this query have
“1-bits” in the bitmaps corresponding to bins 1, 2, and 3.
However, performing an OR operation on the bitmaps of
bins 1, 2 and 3 will produce the bit vector “1010111” with
a count of 5 “1-bits”. The reason for this over-estimation is
of course due to the fact that bins 1 and 3, also called edge
bins, contain both qualifying and non-qualifying values. A
correct response to this query involves checking the original
attribute values corresponding to each of the four “1-bits”
(rows 1,3, 5 and 6) in these two bins. Such a check may
involve more additional accesses to disk pages depending on
how the attribute values are stored. As we can see from
this small example, the cost of performing a candidate check
on an edge bin is related to the number of “1-bits” in that
bin. In this example only one of the four records qualifies,
namely, the value 61.7 in row 5. We call this additional step
the candidate check.

The work presented in this paper is motivated by our
bitmap indexing technology which is used in production for
large-scale high-energy physics experiments [18]. We demon-
strated that our technique significantly speeds up real inter-
active analysis processes. The data sets of these experiments
are read-only and have similar characteristics to typical data
warehouses. Due to the increased performance gain of our
technology, we recently integrated the bitmap indices di-
rectly into the ROOT analysis framework [14] that has a
user community of some 10,000 scientists around the world.
Based on the experience we gained with the integration of
our software and the feedback from the user community, we
identified the candidate check costs as the main bottleneck
of query processing. As we will show in the next section, an
efficient way to tackle this issue is to optimally place the bin
boundaries of the bitmap indices based on data distribution
and query workloads (access patterns).

1.1 Factors Affecting Binning Strategies
Due to disk storage constraints, bitmap indexing systems

that use binning must limit the number of bins that are
allowed per attribute. Such constraints are still applicable
even when bitmap compression is effectively used. Effective
binning strategies attempt to compute bin boundaries that
minimize the I/O cost incurred by the candidate check step
subject to total index storage constraints.

It turns out that an optimal binning strategy must be sen-
sitive to both query distribution as well as data distribution.
Query distribution, in terms of location of query endpoints
and popularity of queries, may affect bin boundary locations
as the number of edge bins may be minimized by attempting
to align bin boundaries with query endpoints. In addition,
more bins can be allocated to data regions that are heavily
hit by queries. Data distribution affects the binning strategy
as one can allocate more bins to densely populated regions
of the data to avoid costly candidate check operations on
edge bins with many values.

Figures 2 and 3 illustrate, by a small example, the ef-

Figure 2: Uniformly distributed data with uniform
range queries.

Figure 3: Normally distributed data with heavy left
region queries.

fect of data and query distribution on the optimal binning
strategy. In both cases we show optimal binning into 12
bins (produced by our software) for an attribute using 100
simulated range queries. The horizontal segments represent
generated range queries and the dashed vertical lines repre-
sent optimal bin boundaries computed by our software.

In Figure 2 both data and queries are uniformly distributed
where the values of the data fall in the range [0, 1500]. As
expected, in this case we note that the bin widths are of
approximately equal size and spread evenly over the entire
range.

In Figure 3 the values of the attributes are normally dis-
tributed (truncated in the range [0, 1500]) with mean 750
and standard deviation 230. The generated query distribu-
tion is skewed in the following way. The region 0 to 1500 is
divided into three equal subregions of size 500. Queries are
generated over the three regions in the ratio of 6:1:2. We
see that the region 0 to 500, which is heavily hit by queries,
is allocated 5 of the 12 bins whereas the region 1000 to 1500
gets only 3 bins to account for this skewed query distribution
(fewer queries falling into this region).

Although query and data distributions are not always
known ahead of time, in many scientific applications, simula-
tion and experimental data follow some known distributions
and scientists are interested in specific regions of the data.
This observation is also supported by our analysis of real ap-
plication query logs that reveal very distinct patterns in the
way scientists submit queries to an astrophysics database.
As we will show in this paper, knowledge of data and query
distribution, even if only approximate, can be used to sig-



nificantly improve the performance of the bitmap indexing
system.

In this paper, we focus on optimizing the costs involved
in the candidate check. Our experience with real applica-
tion data shows that the I/O costs of this step dominate all
other costs involved in answering a query such as scanning
the bitmap index and performing the necessary Boolean op-
erations. In fact, as shown later in Figure 6, the I/O costs
for the candidate check can be significantly higher than the
costs of the index scan.

1.2 Outline and Contributions
The main contributions of this paper are as follows:

• We propose a novel dynamic programming algorithm
for optimal partitioning of attribute values into bins
that takes into consideration range query access pat-
terns as well as data distribution statistics. The algo-
rithm also accounts for realistic I/O costs in terms of
disk page accesses.

• We greatly reduce the complexity of the algorithm by
proofing that only query endpoints need to be consid-
ered as potential locations for bin boundaries rather
than all possible values of the attribute as in [8].

• We tested our algorithm on synthetic and real appli-
cation data sets, based on real query workloads from
a large astrophysics application. The tests are per-
formed on a bitmap indexing system used in produc-
tion for scientific experiments [18]. The results show
that the optimal partitioning achieved by our algo-
rithm leads to a significant improvement in the access
costs of bitmap indexing systems for high-cardinality
attributes.

The rest of the paper is organized as follows. Section 2 re-
vises the related work on bitmap indices. Section 3 provides
definitions and introduces a formal model for calculating op-
timal bin boundary locations for bitmap indices based on a
dynamic programming approach. In Section 4 we evaluate
our algorithm against synthetic and real queries with real
data from a large astrophysics application. Section 5 con-
cludes the paper and raises open issues for future work.

2. RELATED WORK
Bitmap indices are used for speeding up complex, multi-

dimensional queries for On-Line Analytical Processing and
data warehouses [5] as well as for scientific applications [15].
The first commercial implementation was Model 204 [10].
Improvements on this approach were discussed in [11]. In [4]
three bitmap encoding strategies are introduced: equality,
range and interval encoding.

The authors of [20] represented attribute values in binary
form that yields indices with only dlog2 |A|e bitmaps, where
|A| is the attribute cardinality. The advantage of this en-
coding scheme is that the storage overhead is even smaller
than for interval encoding. However, in most cases query
processing is more efficient with interval encoding since in
the worst case only two bitmaps need to be read whereas
with binary encoding always all bitmaps have to be read.

Various bitmap compression schemes were studied in [7,
1]. The authors demonstrated that the scheme named Byte-
aligned Bitmap Code (BBC) [2] shows the best overall per-
formance characteristics. More recently a new compression

scheme called Word-Aligned Hybrid (WAH) [17] was intro-
duced. This compression algorithm significantly reduces the
overall query processing time compared to BBC. The key
reason for the efficiency of WAH is that it uses a much sim-
pler compression algorithm.

The bitmap indices discussed so far encode each distinct
attribute value as one bitmap vector. This technique is
very efficient for data values with low attribute cardinal-
ities. However, scientific data is often based on floating
point values with high attribute cardinalities. The work pre-
sented in [15] demonstrated that bitmap indices with bin-
ning can significantly speed up multi-dimensional queries on
high-cardinality attributes.

A further bitmap index with binning, called range-based
bitmap indexing, was introduced in [19]. The idea is to
evenly distribute skewed attribute values onto various bins
in order to achieve uniform search times for different queries.
The authors demonstrated that the algorithm efficiently re-
distributes highly skewed data. However, performance re-
sults about query response times were not discussed.

The work in [8] focuses on point (equality) queries rather
than range queries discussed in this paper. We extend the
work of [8] by analyzing range queries. We reduce the prob-
lem complexity significantly by showing that only query end-
points need to be considered rather then all possible at-
tribute values. In addition, it turns out that the range query
problem cannot be translated directly into the point query
problem of [8] by considering all possible query endpoints as
point data. The reason for this is that the two endpoints of
a range query form a single unit and are dependent on each
other as far as candidate check costs are concerned. More
specifically, if two endpoints belonging to the same query fall
into a single edge bin, the candiate check procedure reads
this bin’s data values only once. If, on the other hand, the
two endpoints belong to two different range queries, the val-
ues of edge bin will be read twice.

To the best of our knowledge, previous dynamic program-
ming for optimal binning is based only on synthetic data and
synthetic queries. We, however, evaluate our optimal bin-
ning algorithm on real data and real query workloads taken
from the Sloan Digital Sky Survey [13, 16].

Bitmap indices could also be used to provide histogram
information. The optimal construction of histograms for
range queries also uses binning algorithms and is discussed
in [9, 6]. The main difference is that for bitmap indices
precise answers are required and therefore the objective is
to minimize disk access costs to edge bins. However, in the
histogram case, some statistical techniques can be used to
estimate errors without actual access to the original data on
disk.

3. OPTIMAL BINNING ALGORITHM

3.1 Preliminaries
In this section we will formulate the OptBin problem for

attributes where the set of queries is known. Most of the
common notation used through the paper is summarized
in Table 1. Assume attribute A has N values that oc-
cupy P disk pages. For simplicity we will assume that
each value is an integer in the domain range [1, n]. We
are also given a collection of range queries Q such that
each q ∈ Q defines a range q = [lq, uq) open on the right
(i.e., it includes the points lq, lq + 1, ..., uq − 1) and is as-



Notation Explanation
N Total number of attribute values
P Total number of pages on disk for

values of an attribute
q = [lq , uq) A range query q with endpoints lq and

uq , the range is open on the right
Q A set of range queries
xi A bin boundary point
bi = [xi−1, xi) A bin defines a sub-range open

on the right
ni Number of values in bin bi

k Constraint on number of bins
B =< b1, b2, ..., bk > A partitioning into k bins
E(b) The set of queries having bin b

as an edge bin
Cost(Q, B) Candidate check I/O cost associated

with binning B and query set Q

ej The jth smallest query endpoint
EP (Q) = 〈e1, ..., er〉 Ordered set of distinct query endpoints
r Number of distinct query endpoints
Π(k, n) All possible binnings of the range 1 to

n into k bins
[1, n] Range of possible attribute values
Bopt Optimal binning
R(Q, j) The set of queries in Q with a right

endpoint on the right of ej

Bopt(ej , l) Optimal binning of the sub-region from
ej to n using l bins

bi,j A bin defined over the range between
query endpoints ei and ej ,
i.e., bi,j = [ei, ej)

Table 1: Notation used throughout the paper.

sociated with a probability pq reflecting its relative popu-
larity. The points lq ∈ [1, n] and uq ∈ [2, n + 1] are called
endpoints of query q. A bitmap index on A is built by par-
titioning the range [1, n] into bins. Each bin is represented
by one bitmap (see Figure 1). In order to limit the size
of the bitmap index, we introduce an integer constraint k
that specifies the maximum number of bins allowed, i.e.,
it is required to partition the range [1, n] into k succes-
sive sub-ranges (bins) B =< b1, b2, ..., bk >. This is done
by choosing k − 1 integer bin boundary points xi where
1 < x1 < x2 < ... < xk−1 < n + 1.

Note that there are

(
n− 1
k − 1

)
possible ways of choos-

ing the bin boundary points which makes it impractical to
exhaustively check all possibilities.

The sub-ranges associated with bins bi are all open on the
right and defined as follows:

b1 = [1, x1)

bi = [xi−1, xi) for 2 ≤ i ≤ k

bk = [xk−1, n + 1)

A bin b ∈ B is an edge bin for query q if the range defined
by the query q overlaps some part of the range bin b but not
its whole range, i.e., q ∩ b 6= ∅ and q ∩ b 6= b. In general, a
query may have 0, 1, or 2 edge bins.

In Figure 4 a set of 10 range queries and a binning into
4 bins is shown. In this example query q3 has no edge bins
since both its endpoints fall on bin boundaries. Each of the
queries q4, q5, q6, q7, q10 has 1 edge bin and each of the
queries q1, q2, q8, q9 has 2 edge bins.

Figure 4: Query endpoints and bin boundaries.
Horizontal lines represent query ranges. Dotted ver-
tical lines mark query endpoints.

As explained earlier, a significant fraction of the query I/O
costs are related to the number of data pages needed to read
in order to perform the candidate check on each of its edge
bins. For a given bin b, let E(b) denote the set of queries
that have bin b as an edge bin. For example, in Figure 4
E(b1) = {q1, q2}; E(b2) = {q1, q2, q4, q5, q6, q7, q8}; E(b3) =
{q9}; E(b4) = {q8, q9, q10}. Let nb denote the number of
data values that fall into the range defined by b, this is also
the number of “1-bits” in the bitmap corresponding to b.

Our algorithm uses a formula to compute the number of
disk pages that must be retrieved to check all nb data values.
Based on the usual assumption that records are distributed
uniformly across pages and recalling that the total number
of pages occupied by attribute A is P , the expected number
of disk pages that contain data values that fall in the range
defined by bin b denoted by Pb, satisfies [11]:

Pb = P (1− (1− 1/P )nb) ≈ P (1− e−nb/P ) (1)

It is important to note that our algorithm’s correctness does
not depend on the above formula as it can take alternative
expressions for Pb in case the uniform assumption about
the distribution of records on pages does not hold. This
often happens when attribute values exhibit some type of
physical clustering across disk pages due to the way the data
is entered into the system (see Section 4.2.3). Assuming
that an attribute range is partitioned by the set of bins B,
the expected candidate check cost Cost(Q, B) of answering
the queries in Q is defined as

Cost(Q, B) =
∑
b∈B

Pb

∑
q∈E(b)

pq (2)

The inner sum computes the total probability of all the
queries that use a given bin b as an edge bin, this is then
multiplied by the I/O cost of the bin (expected number of
pages) and summed over all bins.

3.2 Bin Boundaries and Query Endpoints
The problem we wish to solve, namely OptBin, is defined

as follows:
Given a set of range queries Q on an attribute in the do-

main range [1,n], find the (k-1) bin boundary points that
partition the attribute values into k bins such that the I/O
cost for the candidate check is minimized.

More formally, let Π(k, n) denote the set of all possible
binnings of the range [1, n] into k bins. We wish to find a
binning Bopt such that Bopt ∈ Π(k, n) and



Cost(Q, Bopt) ≤ Cost(Q, B) for all B ∈ Π(k, n) (3)

Let EP (Q) = 〈e1, ..., er〉 denote the ordered set of distinct
query endpoints of queries in Q, i.e., ei ∈ EP (Q) implies
that for at least one query q ∈ Q, ei = lq or ei = uq. For
example, Figure 4 shows the distinct endpoints of 10 range
queries.

The following lemma shows that an optimal solution exists
such that each of its bin boundary points are in EP (Q). In
practice |EP (Q)| is much smaller than n as only a few of the
points in the range serve as query endpoints. We will use
this result to speed up the dynamic programming solution
presented in Section 3.3.

Lemma 1. If any binning B ∈ Π(k, n) uses a boundary
point xi that is not in EP (Q) then a binning of equal or
smaller cost can be found by replacing xi with some point in
EP (Q).

The proof of this lemma can be found in [12].

3.3 Dynamic Programming Formulation
The previous lemma showed that the boundary points of

an optimal binning are taken from the set of query endpoints
EP (Q). Assuming that the number of distinct query end-
points is much larger than the desired number of bins, i.e.,
|EP (Q)| = r � k, we present here a dynamic programming
algorithm that chooses k − 1 bin boundary points from the
r elements of the set EP (Q) in O(kr2) time and obtains a
minimum cost binning.

Let us recall that the elements of EP (Q) are sorted in
increasing order, where ej denotes the jth smallest member
of EP (Q). For the purpose of describing the “principle of
optimality” in our problem [3], we need to describe the cost
of an optimal solution on sub-ranges of [1, n]. This requires
looking at a subset of the queries in Q falling on the right of
some potential boundary point. To this end we need some
definitions. Let R(Q, j) denote the queries in Q that have
a right endpoint greater than ej , formally, R(Q, j) = {q ∈
Q : uq > ej}. For two query endpoints, ei, ej ∈ EP (Q), let
bi,j represent a potential bin defined over the range [ei, ej)
(see Figure 5). In case this bin is eventually used in any
binning B, its contribution to Cost(Q, B) is Cost(bi,j) =
Pbi,j

∑
q∈E(bi,j) pq, where as before, Pbi,j denotes the total

number of disk pages that hold values of the attribute falling
in the range [ei, ej) and E(bi,j) denotes the set of queries
having bi,j as a bin, i.e., overlapping the range defined by
the bin but not containing it.

To simplify our notation we assume a dummy endpoint
e0 = 1 and let Bopt(ei, l) represent an optimal binning of the
range [ei, n] using l bins defined over the queries in R(Q, i)
(see Figure 5). Using the above notation, our goal is to find
Bopt(e0, k).

Theorem 2. Given a set of queries Q with an ordered set
of distinct endpoints EP (Q) =< e0, e1, e2, .., er > consisting
of r distinct endpoints then

Cost(Bopt(ei, l)) = min
i<j≤r−(l−2)

(Cost(bi,j) +

Cost(Bopt(ej , l − 1))) (4)

Figure 5: Dynamic programming, queries in R(Q, j)
are emphasized using thick lines.

Proof Assume an optimal binning, Bopt(ei, l) is given
with all its boundary points in EP (Q). The right boundary
of the leftmost bin must be some ej ∈ EP (Q) such that
j > i and there are l − 1 additional bins on its right (see
Figure 5). Therefore ej is a candidate only if j satisfies
i < j ≤ r − (l − 2). The total cost of this binning can be
broken into the contribution of the first bin, Cost(bi,j), and
the contribution of the last l − 1 bins. For any choice of
ej , the partition into l− 1 bins on its right must be optimal
with respect to the set of queries R(Q, j) and therefore equal
to Cost(Bopt(ej , l − 1)), otherwise Cost(Bopt(ei, l)) can be
reduced contradicting the optimality of Bopt(ei, l). 2

Theorem 2 allows us to devise an efficient dynamic pro-
gramming algorithm as it expresses the optimal cost of bin-
ning into l bins starting from an arbitrary end point ei,
Bopt(ei, l).

Optimizing for k bins requires O(kr2) total time. The de-
tails are worked out in [12]. As mentioned earlier, in realis-
tic applications, r (the number of distinct query endpoints),
is much smaller than n (the total possible values of the at-
tribute). More precise lower and upper bounds on the values
of r are provided in the following lemma.

Lemma 3. Let r denote the number of distinct query end-
points in Q (elements in EP (Q)), i.e, r = |EP (Q)| then

⌊
1

2

(√
1 + 8 |Q| − 1

)⌋
≤ r ≤ min(2 |Q| , n) (5)

Proof The first inequality in Equation 5 follows by ob-
serving that r endpoints can define at most r(r + 1)/2 dis-
tinct queries, the result then follows by solving the inequality
|Q| ≥ (r2 + r)/2. The second inequality in Equation 5 fol-
lows since each point in EP(Q) is a distinct element of [1, n]
and each query in Q can contribute at most 2 members to
EP(Q). 2

4. EXPERIMENTAL RESULTS
We ran a set of experiments for evaluating our optimal

binning algorithm on synthetic and real data with real query
workloads. The goal of these experiments is to compare the
performance of bitmap indices using the optimal binning
strategy against bitmap indices using more conventional bin-
ning strategies such as equi-width and equi-depth binning.
The experiments were carried out on a 2.8 GHz Intel Pen-
tium IV with 2 GB RAM. The I/O subsystem is a hardware
RAID with 4 SCSI disks. For all our experiments we flushed
the disk cache before performing each query. This ensures



that the query response time includes the full costs of disk
I/O.

Equi-width binning partitions the bins into equally spaced
ranges by retrieving vmin and vmax, the minimum and max-
imum value of a specific attribute, and dividing the at-
tribute range by the number of bins. This binning strategy
is straightforward to implement and has shown to perform
well in some cases. However, in the worst case, the candidate
check is as expensive as sequential scan. Equi-depth binning,
on the other hand, chooses the bin boundaries in such a way,
that each bin contains approximately the same number of
entries. This makes each candidate check equally expensive
for all query ranges and thus reduces the worst-case response
time.

4.1 Synthetic Data
We generated synthetic data following a Zipf distribution1

with three different parameters z=0, z=0.5 and z=1. We
also used two different attribute cardinalities. The first three
data sets have an attribute cardinality of 106, the second
three data sets have an attribute cardinality of 108. Next
we generated 5,000 queries that follow a Zipf distribution
with parameter z=1. Finally, we built bitmap indices with
1,000 bins based on the three binning strategies discussed
above. The goal is to compare the performance of these
strategies for different data distributions and different at-
tribute cardinalities. Out of these 5,000 queries we have
randomly chosen 100 queries.

Figure 6 shows the average query processing time for 100
queries with different binning strategies. In total we ran 900
queries on data with different Zipf distributions (z=0, 0.5,
1). The cardinality of the data set is 108. The total query
processing time shown in Figure 6 consists of the time for
the index scan and the candidate check for attribute. The
index scan is the time spent on reading the corresponding
bitmap vectors and performing Boolean operations on them.
The time for the candidate check is the difference between
the total time and the time for the index scan. We see that
for uniformly distributed and moderately skewed data (z=0,
and z=0.5), the candidate check costs are a large portion of
the total query processing time. For highly skewed data
(z=1), the relative costs for the candidate check decreases.
For all 900 queries the ratio of index scan to candidate check
is 1:6. This suggests that by reducing the costs of the can-
didate check, the total query response time can also be sig-
nificantly reduced.

The average performance speedup of our novel strategy
opt-binning over the other two binning strategies is shown
in Figure 7. We see that for data that follows a Zipf dis-
tribution with parameter z=0 the performance speedup of
opt-binning is more than a factor of 5. For higher skewed
data the performance speedup is on the average a factor of
1.5.

4.2 Real Data

4.2.1 Query Workloads and Data Distribution
The next set of experiments is based on a large real data

set from the Sloan Digital Sky Survey (SDSS), Data Release

1Zipf’s law may be stated mathematically as: pi(z, n) =
1/iz∑n

j=1 1/jz where n is the number of elements, i is their rank,

and z is the exponent characterizing the distribution.

Figure 6: Average response time of queries on data
with different Zipf distributions. EW = equi-width
binning; ED = equi-depth binning; z = parameter
of Zipf distribution for synthetic data values.

Figure 7: Performance speedup of opt-binning over
traditional binning strategies. EW = equi-width
binning; ED = equi-depth binning; z = parameter
of Zipf distribution for synthetic data values.

1 [13]. SDSS is an astronomical survey project that maps
one quarter of the entire sky in order to determine the po-
sitions and absolute brightnesses of more than 100 million
celestial objects. The survey also measures the distances to
more than a million galaxies and quasars.

The data set of Data Release 1 consists of 168 million
records and some 500 attributes. We selected a representa-
tive subset of attributes for studying the query performance
of our optimized bitmap index. For this purpose we did an
extensive study of real query workloads from astronomers
of the SDSS collaboration over a few weeks. We extracted
100,000 queries and identified three attributes that were by
far the most commonly used ones in all observed queries.
For instance, each of the variables ra and dec appeared in
30.3% of all range conditions of the queries. petromag z was



used in 28.5% of the range conditions. The variables ra
and dec describe the position of celestial objects in the sky
in terms of right ascension and declination, and petromag z
defines the Petrosian flux [13].

4.2.2 Building Bitmap Indices
The next step of our study was to build the bitmap in-

dices. For each of the three attributes we built bitmap in-
dices based on the three binning strategies we discussed in
the beginning of this section, namely equi-width, equi-depth
and opt-binning. One of the key parameters for building
bitmap indices is to decide on the optimal number of bins
which is usually a trade-off between query speed and in-
dex size [4]. For our experiments we have chosen 1,000 bins
which has shown to be a good trade-off in previous experi-
ments.

We first built bitmap indices with 1,000 bins based on
equi-width and equi-depth binning strategies. For all our
experiments we used equality encoded bitmap indices and
WAH compression [17].

Figure 8: Size of the base data and of the com-
pressed bitmap indices with various binning strate-
gies.

Next we built bitmap indices based on our novel strategy
opt-binning that we introduced in Section 3. The optimal
bin boundaries were calculated from the real query work-
loads on the SDSS data set. We have chosen the 5,000 most
frequently used conditions for each attribute and ran the
dynamic programming algorithm for calculating the optimal
bin boundaries for each of the three attributes. The sizes of
the three selected attributes and the respective sizes of the
compressed bitmap indices based on three different binning
strategies are shown in Figure 8. Base data refers to the
original data values consisting of 168 million records. The
attributes ra and dec are of type double with a total size of
1.4 GB each. The attribute petromag z is of type float with
a total size of 0.7 GB. We observe that with equi-width and
equi-depth binning, the attributes ra and dec compress very
well and are only a small fraction of the original data size.
However, the index for the attribute petromag z is about
twice the size of the base data as expected for attributes
with random distribution [17]. With our novel binning strat-
egy opt-binning the attributes ra and dec compress slightly

worse but the total size of all three attributes combined is
significantly lower than with the other two binning strate-
gies.

4.2.3 Optimized Query Performance
After building the bitmap indices, we measured the query

performance for the three different binning strategies. Given
a set of 5,000 query workloads from real SDSS data analysis,
we randomly sampled 1,000 queries for each attribute to
test our strategies. Again, we flushed the disk cache before
performing each query. This ensures that the query response
time includes the full costs of disk I/O.

Figure 9: Winning binning strategies for 1,000 ran-
domly sampled queries on three different attributes.

Figure 9 shows the winning binning strategies for 1,000
randomly sampled queries on three different attributes. For
the attributes ra and petromag z the binning strategy opt-
binning performs better than the other two stragies in al-
most 90% of the queries. For the attribute dec the binning
strategy equi-depth performs best in 57% of the queries, opt-
binning wins in 28%. opt-binning does not perform best for
the attribute dec since the optimization algorithm is based
on the simplified assumption that the data is uniformly dis-
tributed across the disk pages (see Equation 1). All our
experiments, however, are performed on real data where the
physical clustering of data onto pages is often difficult to
approximate by simple functions. Both ra and dec are coor-
dinates of the dataset. They are clustered physically in the
sense that the entries that are close together have nearly the
same values. This is because the data collected in a data file
are from a small patch of the sky, i.e., with ra and dec values
that are very close together. Therefore, the values of ra and
dec are not randomly distributed across the pages. The data
values of petromag z, on the other hand, are not physically
clustered on disk. This fact can be derived from the size
of the compressed bitmap index of this attribute which is
about twice the size of base data [17].

Due to space limitation we only analyze the query re-
sponse time for the attribute petromag z. The average query
response times for equi-width, equi-depth and opt-binning
are 21.7, 21.7 and 13.1 seconds respectively. On average,
the strategy opt-binning outperforms the two other binning



Figure 10: Response time for 1,000 queries on at-
tribute “petromag z” for three different binning
strategies.

strategies by nearly a factor of 2 (see Figure 10). We also
see in this figure that for more than a quarter of the queries,
opt-binning is better by a factor of 4 than the other two
strategies, and is a winner for about 90% of the queries.

5. CONCLUSIONS
In this paper we have introduced a novel algorithm for im-

proving the query response time of bitmap indices by com-
puting optimal bin boundaries. We presented an analytical
model of our strategy and evaluated the performance of syn-
thetic and real query workloads for a large data set from the
Sloan Digital Sky Survey. We showed that our algorithm
outperforms traditional methods by a factor of 2 for nearly
90% of the analyzed user queries. The algorithm can be
used as a tool for initially placing bin boundaries for con-
structing a bitmap index. Subsequently our algorithm can
be used for periodically reorganizing the bitmap index based
on observed query workloads, data distribution and physi-
cal clustering of values on data pages. Due to its dynamic
programming approach, the algorithm tabulates optimal bin
placement and the corresponding candidate check costs for
each value of k (number of bins) up to a required maximum.
In a multi-attribute environment this can be used to evalu-
ate different combinations of bin allocations to the various
attributes subject to a global constraint for the total size of
the bitmap index.
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