Summary of SRM Collaboration Annual Meeting

Arie Shoshani

September 6, 2004

The meeting took place on September 1-2, 2004 at LBNL. The participants were:

Olof Barring, CERN

Jean-Philippe Baud, CERN

James Casey, CERN

Peter Kunszt, CERN

Don Petravick, Fermilab

Timur Perelmutov, Fermilab

Andy Kowalski, Jlab

Junmin Gu, LBNL

Doug Olson, LBNL

Arie Shoshani, LBNL

Alex Sim, LBNL

Matteo Melani, SLAC

The meeting discussed two major issues: 1) the state of the current SRM specification for versions v1.1 and 2.1.1, and 2) how to proceed with future versions and how they relate to the SRM-Basic and SRM-Advanced versions proposed in the Grid Storage Management (GSM) group at GGF. We also discussed the requirements of accounting from SRMs. We describe each item in more detail below. All presentations mentioned below are available from the web site http://sdm.lbl.gov/srm-wg/ under “meetings”.

1) The state of the current SRM specification for versions v1.1 and 2.1.1

Based on his experience with Castor-SRM v1.1, Olof gave a presentation on unclear semantics in v1.1 and pointed out items that are lacking. Alex provided additional items lacking in v1.1. Jean-Philippe gave a presentation on problems with SRM v2.1.1 specification, mostly to clarify the semantic behavior expected under certain conditions.

It was agreed that the problems with SRM v2.1.1 will be addressed, by people at LBNL collecting the items, suggesting a remedy or clarification, and circulating this to the SRM-WG mailing list for response within a short time. No response will be construed as agreement.

As for fixing version v1.1, we agreed that we need to make versions backward-compatible. Specifically, we should generate a v1.2 that is a subset of 2.1.1. Thus, there is no need to fix v1.1, but rather the corrections made in version 2.1.1 will apply to v1.2. This implies that future versions of v1.2 will map to the previous v1.1 functions as necessary. People who wish to continue and maintain v1.x will need to adhere to this v1.2 interface.

There are several implementations of v2.1.1 either completed or in-progress. Jlab has completed a v2.1.1 implementation and applied it to two subsystems: a large disk cache, and JasMINE mass storage system. Form the user’s point of view it looks like a single SRM, called J-SRM, where the system chooses the destination based in the SURL (site-URL). Fermilab implementation of v2.1.1 to dCache is in-progress, with a release date within a few months. Fermilab has taken an approach of defining an “abstract storage interface” that will allow code sharing based on that interface. LBNL’s implementation of a Disk Resource Manager (DRM) and a Hierarchical Resource Manager (HRM) to HPSS is on track, expecting a release date around December 2004. LCG is expecting their v2.1.1 implementation to a disk-pool to be released in December 2004. EGEE is expected to develop a subset of SRM v2.1.1 that should be the same as SRM-Basic (see next section). There are no plans to develop the full SRM v2.1.1 for Castor.

2) SRM-Basic and SRM-Advanced versions

We agreed on the following principles:

2.1) We should strive to have a uniform versioning method, where each successive version is backward-compatible with a previous version. This version will allow for some functions to be eliminated or enhanced. Backward-compatibility is defined as “the ability of a previous version client to access a successive version server”.

2.2) Future versions should consist of a “core” set of functions and “advanced” functions. The core version, which will be called SRM-Basic should be defined independently of the advanced version, called SRM-Advanced. The core functions should all be included in the advanced versions, but could be enhanced. The advanced functions will be grouped into “feature-sets”. The functions supported by of these feature-sets are enumerated below.

2.3) There will be multiple SRM-advanced versions, starting with the SRM v3.0. SRM v3.0 will include all the functions of v2.1, the correction of ill-defined functions, as well as the separation of the core and the advanced features. In addition, two new functions will be added, called srmCopyAndGet and srmPutAndCopy. These will be discussed in the next section of this document.

2.4) It should be possible to map the SRM-Basic version to SRM v1.1. When accessing an SRM-Advanced server, it should be possible to find out what features are supported by that SRM. To support this, there will be a function available with enumeration of the feature-sets, such as: remoteCopy, nameSpaceManagement, spaceManagement, etc. The function name is srmGetFeatures. Note, again, that each feature-set refers to one or more functions supported by the SRM that provides that feature-set.

3) Use cases for srmCopyAndGet and srmPutAndCopy and copy modes

The original intent of the functions srmPrepareToGet and srmPrepareToPut was to permit the specification of a remote SURL. For the srmPrepareToGet case this meant that files can be copied from a remote site to the SRM site, and presented to the client for use. This was motivated by a “data analysis” scenario, where the files requested can be anywhere on the Grid, and they are brought in to the SRM space to be used by the client. For the srmPrepareToPut this meant that files can be put into the SRM, and then copied (or moved) to a remote site. This is a useful functionality for a “data generation” scenario, where files generated by a program (or experiment) need to be “dumped” as quickly as possible to a disk cache and then moved to an archive in a streaming fashion. We found the overloading of these functions confusing, and decided to limit the use of srmPrepareToGet and srmPrepareToPut to files local to the SRM only. To accommodate these desirable use cases, we added an explicit srmCopyAndGet and srmPutAndCopy methods.

Another case that we found lacking is a way to specify that all the files in the request need to be copied into the SRM space before the client can use them. This contrasts with the “streaming” case where only some of the files can be copied initially, and the client processes them as they come. In a streaming mode, as the client releases files, additional files are copied into the released space to allow a file streaming option. This is especially useful when a client has a limited space that cannot accommodate the entire request at once. The “complete” mode specifies that there needs to be enough space for the entire multi-file request, and the SRM should refuse it if this is not the case.

4) Core features vs. advanced features

We only list below the features of the core and advanced versions of SRM. A detailed explanation of each feature is provided in the document lableled: “GSM-WG plans for SRM interface specification” (available from the http://sdm.lbl.gov/srm-wg/ site under “meetings” – Sept 1-2, 2004).

The core features include:

· Multi-file requests

· srmRequestToGet and srmRequestToPut from local SRM space only

· Negotiated lifetime per file (TURL)

· SRM service status

· Explicit file release

· Multi-file streaming

· Transfer protocol negotiation

· File metadata discovery

· File and space types: volatile and durable only (one or both)

Advanced feature sets:

· Space reservation, including:

· Negotiate space reservation

· Find out assigned space

· Negotiate lifetime per space

· Release space

· File and space types: volatile, durable, permanent

· Change file type

· Namespace (directory) support

· srmMkdir

· srmLs (one level only)

· Remote copy

· srmCopy

· srmCopyAndGet

· srmPutAndCopy

· modes: complete, streaming

· Administrative status

· srmGetFeatures

· srmAccounting

5) Accounting and SRMs

In the document on storage accounting (available from the http://sdm.lbl.gov/srm-wg/ site under “meetings” – Sept 1-2, 2004), we described a scenario of interaction with a Virtual Organization Manager (VOM) for permitting clients to use space (to enforce their quotas). Clients can use the quota allocation (using an extended-certificate) to negotiate space reservations. It is necessary that SRMs report space as it was used. In the above mentioned document we observed that space usage should be cumulative for the period requested, and should not include any policy considerations. Since SRMs negotiate both a minimum guaranteed and best-effort space, both need to be reported.

Another point was brought up during the meeting: the SRMs should report activities in the spaces reserved, since one of the important costs to a storage system is data movement into and out of storage systems. The issue of file sharing was raised. For example, if a file is brought into cache for one user, that incurs a transfer charge. Should a second user accessing the same file be charged too? Our conclusion was that the second user should not be charged, as it is a false charge, and that on the average all users will benefit from file sharing equally. Thus, the transfer charge measure was added to the accounting specification in the above document.

Another item discussed was how to measure and charge for file usage even if there was no activity on these files. Since the number of files can vary over a period, it was unclear how to report that, since averaging is not a good measure. We considered reporting usage at the end of the period, but this was judged too expensive to compute dynamically. Consequently, we chose to ignore this item.

