Parallel Data Access and Grid I/O
Bill Gropp, Rob Ross, Rajeev Thakur, Rob Latham, Neill Miller, ANL

Ghaleb Abdulla, Tina Eliassi-Rad, LLNL

Alok Choudhary, Wei-Keng Liao, Jianwei Li, Avery Ching, NWU

Summary

Many scientific applications are constrained by the rate at which data can be moved on and off storage resources. The goal of this work is to provide software that enables scientific applications to more efficiently access available storage resources. This includes work in parallel file systems, optimizations to middleware such as MPI-IO implementations, and the creation of new high-level application programmer interfaces (APIs) designed with high-performance parallel access in mind.
Today’s scientific applications demand that high performance I/O be part of their operating environment. These applications access datasets of many gigabytes (GB) or terabytes, checkpoint frequently, and create large volumes of visualization data. Such applications are hamstrung by bottlenecks anywhere in the I/O path, including the storage hardware, file system, low-level I/O middleware, application level interface, and in some cases the mechanism used for Grid I/O access. This work addresses inefficiencies in all the software layers by carefully balancing the needs of scientists with implementations that allow the expression and exploitation of parallelism in access patterns.

Just above the I/O hardware in a high-performance machine sits software known as the parallel file system. This software maintains the directory hierarchy and manages file data distribution across a large number of I/O components. Our parallel file system implementation, the Parallel Virtual File System (PVFS), can provide multiple GB/second parallel access rates, is freely available, and is in use at numerous academic, laboratory, and industry sites. PVFS will operate on both IA32 and IA64 Linux, making it a useful tool for clusters of any size, and will be the first parallel file system running on the Cray Red Storm machine.

Above the parallel file system is software designed to aid applications in more efficiently accessing the parallel file system. Implementations of the MPI-IO interface are arguably the best example of this type of software. This software provides optimizations that help map complex data movement into efficient parallel file system operations. Our implementation of the MPI-IO interface, ROMIO, is freely distributed and is the most popular MPI-IO implementation for both clusters and a wide variety of vendor platforms.

MPI-IO is a powerful but low-level interface that operates in terms of basic types, such as floating point numbers, stored at offsets in a file. Scientific applications desire more structured formats that map more closely to the structures applications use, such as multidimensional datasets. File formats that include attributes of the data, such as the input parameters and date of creation, and are portable between platforms, are also desirable. The Hierarchical Data Format (HDF5) interface, popular in the astrophysics community among others, is one such high level API. HDF5 uses MPI-IO for parallel I/O access as well.

SciDAC and I/O. Our previous work on PVFS and ROMIO forms a solid technology base for new capabilities that address issues in scientific computing in general and in specific communities. Four examples are: enhanced I/O request capabilities for PVFS and ROMIO, automatic access pattern detection and hint generation, Grid I/O access through MPI-IO, and the Parallel NetCDF (Network Common Data Form) interface.

Scientific applications, especially those using high-level APIs such as HDF5 or NetCDF, access structured data within files. These access patterns can be described with MPI-IO; however, they do not map well to the traditional block access interfaces of most file systems. By providing file system support for more structured accesses, and supporting this mechanism in ROMIO, our performance improves by two or more orders of magnitude for many common multidimensional array accesses. This work is applicable to most applications running on clusters today and is available in current PVFS and ROMIO releases.

Likewise, detecting the pattern of access of scientific applications can aid in more efficient I/O access strategies. Our automated hint generation work will provide a mechanism for automatically identifying hints that would increase performance for the application on subsequent runs. These hints can be passed to MPI-IO and used to tune the behavior of the MPI-IO and parallel file system layers. Hint generation will be accomplished by the use of an automated system for detecting access patterns of scientific applications through analysis of log files generated during previous runs.

Some applications now operate on data located across the wide area network (WAN). Unfortunately for scientists, most of the APIs that they are accustomed to using to access data stored locally will not currently operate on data stored remotely. Grid-enabling ROMIO will allow existing applications to access remote data sources with no significant work on the part of scientists. This should significantly improve the usability of Grid I/O resources.

[image: image2.png]SUM

CENTER

Figure 1: FLASH I/O Benchmark Performance

Our Parallel NetCDF work provides a new interface for accessing NetCDF data sets. NetCDF is a high level API widely used in the climate and fusion areas. Our new parallel API closely mimics the original API, but is designed with scalability in mind and is implemented on top of MPI-IO. Synthetic benchmarks show significant performance and scalability improvements over previous efforts. More importantly, the FLASH astrophysics I/O benchmark ported from HDF5 to parallel NetCDF shows checkpoint operations take 20-50% less time with Parallel NetCDF (Figure 1). This is because our Parallel NetCDF implementation better matches application I/O to MPI-IO operations than does HDF5.

For further information contact:

Rob Ross

MCS Division, Argonne National Laboratory

Phone: 630-252-4588

[image: image1.png]Time to Write (sec)

Parallel NetCDF vs. HDFS Performance CIBN SP at SDSC)

HDFS Checkpoint ——

16

Number of Compute Nodes

4

rross@mcs.anl.gov
