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Abstract—Bulk of the streaming data from scientific simula-
tions and experiments consists of numerical values, and these
values often change in unpredictable ways over a short time
horizon. Such data values are known to be hard to compress,
however, much of the random fluctuation is not essential to the
scientific application and could therefore be removed without ad-
verse impact. We have developed a compression technique based
on statistical similarity that could reduce the storage requirement
by over 100-fold while preserve prominent features in the data
stream. We achieve these impressive compression ratios because
most data blocks have similar probability distribution and could
be reproduced from a small block. The core concept behind this
work is the exchangeability in statistics. To create a practical
compression algorithm, we choose to work with fixed size blocks
and use Kolmogorov-Smirnov test to measure similarity. The
resulting technique could be regarded as a dictionary-based
compression scheme. In this paper, we describe the method
and explore its effectiveness on two sets of application data.
We pay particular attention to the Fourier components of the
reconstructed data and show that in addition to preserving
unique features in data it is also faithfully preserving the Fourier
components whose periods extend more than a few blocks.

I. INTRODUCTION

In science, computerized simulation and monitoring sys-
tems are producing petabytes of data right now [1], [2],
and their data production rates are increasing. This creates
significant challenges for data management and data analysis.
One common tool for addressing the data volume issue is
compression [3], [4]. The bulk of such data is floating-point
values, which are known to be particularly hard to compress,
even for lossy compression techniques [5], [6] because these
values contain small but unpredictable variations in space and
time. Often the analysis tasks on the data focus on the large-
scale features of the data, not the small variations. In such
cases, capturing the large-scale statistical properties correctly
would be sufficient. In this work, we aim to devise one
such compression technique that can preserve the large-scale
features in the data while only preserving some statistical
properties at the fine-scale.

On large datasets with mostly floating-point values, the
lossless compression techniques typically can not reduce the
storage requirement significantly, therefore, none of the recent
developed compression methods for numerical values attempts
to preserve the full precision of the original values. These tech-
niques are lossy [7], [5], [8], [9], [6]. Among them, ZFP [6]
and SZ [5] are particularly effective in taking advantage of the
relatively slow variations of the neighboring values in space
and time. They can both reduce the storage requirements by
a factor of over 100 on large simulation datasets becaue the
phenomenon being simulated are captured in enough precision
that the neighboring cells typically have adjoining values.

However, in many sensor data streams, such smoothness is
not present, for example, the electric current from a power
grid monitor dataset and the electric voltage in an electroen-
cephalogram (EEG) both appear to be quite random. In such
cases, these state of art floating-point compression algorithms
are still not effective.

In the above mentioned example datasets, we note that the
small random fluctuations are not of interest to the domain
scientists. Therefore, it is sufficient to capture some key sta-
tistical properties of the data. In designing a new compression
method, the key choice what statistical properties should be
preserved. The basic statistical concept we plan to follow is
called exchangeability [10]. To make this general theoretical
construct usable in a computer algorithm, we propose to break
the incoming data stream into blocks and adopt a simple
statistical test to measure the similarity between two blocks.
We call our similarity measure the Locally Exchangeable
Measure or LEM for short [11]. As we show later, there is a
very effective way to implement our LEM based compression
technique.

The statistical test used in this work is Kolmogorov-Smirnov
(KS) test, which effectively compares the cumulative distribu-
tion of two input sequences. Thus, the similarity preserved in
this new technique is the empirical probability distribution of
the data block. When two blocks’ probability distributions are
about the same (according to KS test), they are declared to
be the same, and one of them would be reproduced from the
other.

Traditionally, the difference between the compressed data
and the original data is measured using their Euclidean
distances, and a method that produces smaller distances is
better than the one that produces larger distances. Our new
compression method does not attempt to keep a small distance
between the compressed data sequence and original data se-
quence, but instead attempts to keep a small distance between
the probability distributions of the two sequences. This is a
significant departure from the common practice in designing
compression techniques.

We have described an initial study of this technique re-
cently [12]. That study was limited to examine the compres-
sion ratio with a set of electric power grid data. Though we
will briefly examine the same data set in this work. One key
objective of this work is to demonstrate our approach can
preserve important properties such as the extreme values and
the Fourier spectrum of the input data. We also use a new data
set from neural science to demonstrate that the effectiveness
of our approach is not limited to one application.

The rest of this paper is organized as follows. In Section II,
we briefly review related work and discuss the key design



considerations of the new algorithm. In Section III, we provide
a brief overview of the IDEALEM implementation and give
some suggestions on how to choose the key parameters. An
extensive evaluation of IDEALEM is given in Section IV. We
conclude with a brief summary and the discussion of future
work in Section V.

II. NEW STRATEGY FOR DATA COMPRESSION

Data compression reduces the storage required for rep-
resenting the same information. This is accomplished by
identifying patterns in the data [3]. Data compression methods
are categorized into two broad classes: lossless coding where
the reconstruction of compressed data is identical to the
original data; and lossy coding where the reconstructed data is
different from the original data. Next, we briefly review related
compression methods and highlight two design considerations
that drive our work on the new compression method named
IDEALEM (Implementation of Dynamic Extensible Adaptive
Locally Exchangeable Measures) [13]. The first one is re-
defining the distance (similarity) measure to relax the order
of values and to increase the possibility of compression; and
the second is to allow analysis to be performed directly on the
compressed data.

a) Relaxing Order of Values: Since the lossy compres-
sion techniques are better at reducing the storage requirement,
we focus on lossy techniques. For floating-point values, a com-
mon coding method is quantization [3]. Many of the most ef-
fective compression techniques, such as ZFP [6] and SQE [8],
are based on quantization. Another common approach is to
apply some forms of prediction based on neighbors in space
and time [5].

The information loss due to compression is generally
measured by the Euclidean distance (`2 distance) between
reconstructed data and the original data. This distance may be
represented as the mean squared error (MSE) or the signal-
to-noise ratio (SNR) [14], [3]. One fundamental limitation of
this approach is that the order of the values is preserved. In
some applications, the order of these values is not important,
such as the electric current on a power grid. Giving up on
preserving the order of the incoming values should lead to
better compression.

b) Allowing Analysis without Decompression: Our LEM
based compression method IDEALEM stores the first instance
of each group of similar data block as is. These preserved
data blocks act as dictionary entries of a dictionary-based
compression compression method [15], [3]. Similar to all
other dictionary-based compression methods, the compressed
data can be used directly without decompression. This is a
useful property we plan to exploit in the future for more
advanced analysis operations. In this work, we focus on the
basic properties of the compressed data, such as preserving
extreme values.

By storing the first instance of each group of similar
blocks precisely, we can reproduce this block exactly when we
encounter it for the first time during decompression. By this
design choice, if this block only appears once, it is preserved
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Fig. 1: An illustration of IDEALEM compression method.
Blocks X1, X2, and X4 were generated from the normal
distribution N (110, 1) ≡ Θ1, while block X3 is from a
different generator Θ2.

accurately. Typically, the blocks containing extreme values are
distinct from others and therefore would be preserved with
IDEALEM compression.

When a dictionary block is used a second time, we need to
decide what to do with the actual values. One simple choice
is to repeat the same values in the same order. However, as
we will see later, this choice leaves artifacts in the Fourier
spectrum. To avoid these artifacts, we perform a random
shuffle of the values in dictionary block.

III. OUTLINE OF IDEALEM

Fig. 1a shows time series data of total 64 samples. If we
assume that each sequence of 16 samples is an instantiation
of a random variable Xi (i = 1, . . ., 4), we can consider
similarities between these random variables. In Fig. 1a, X1,
X2, and X4 look similar; whereas X3 looks different from
other random variables. The design of IDEALEM is based
on these observations: we may represent X1, X2, and X4

using a single random variable, assuming that the three random
variables have an identical distribution.

Fig. 1b displays the graphical model representation of the
observations shown in Fig. 1a. We conceive a latent random
variable Θj (j = 1, 2) that governs random variables sharing
the common distribution. In this paper, we focus on a practical
data compression scheme leveraging the identical distribution
shared by random variables with the same parent Θj , rather



than consider relationships between these latent variables
and infer the exchangeability of a new random variable for
dynamic sampling, as discussed in the previous work [11],
[12].

Specifically, if we keep only a single sequence (distribution)
from X1, X2, and X4, we can achieve compression ratio of 3,
where the compression ratio is defined to be the ratio of the
original size over the compressed size.

Given a sequence of values, IDEALEM breaks the sequence
into fixed-size blocks and then test whether a new block is
possibly produced from the same generator that produced one
of the earlier blocks. In the current software implementation,
this test is performed with Kolmogorov-Smirnov (KS) test.
The output from a KS test is a score indicating the likelihood
that the two sequences being compared are drawn from the
same distribution, which we take to be the likelihood that the
two data blocks are generated by the same generator. The user
is expected to provide the threshold α for KS test, which can
significantly affect the effectiveness of compression method
overall. When the user neglects to provide one, the default
value is 0.05, which is commonly used in many applications.

Other than block size and KS test threshold α, another
important parameter users have to decide is the number of
dictionary entries to be kept active during the compression
and decompression process. The current implementation of
IDEALEM uses a byte to address the entries in this dictionary,
which limits the dictionary size to no more than 255 [13]. Let
B denote the block size and D denote the dictionary size
(number of dictionary entries). The total memory required by
this dictionary is proportional to B×D. To limit the size of this
dictionary, we should keep the product of B and D relatively
small. However, having a larger D typically means there is a
higher likelihood of finding a match for a new block, which
implies that we should a larger D. Since the limit imposed
by our software is 255, which is small enough, we generally
recommend users to keep D as 255. This is the value we use
in the evaluations presented in the next section. In this set of
tests, we keep the value of B as 32.

IV. EVALUATION

Next we present an empirical evaluation of IDEALEM with
the goal of demonstrating its usefulness in some cases. One of
common criteria used to measure the effectiveness of a data
reduction method is the compression ratio, defined to be the
ratio between the original storage requirement and the com-
pressed storage requirement. The second quality measure we
use is the Fourier spectra of the compressed data. In addition,
we will also provide evidence that IDEALEM preserves the
extreme values in the original data, as discussed in Section II.
We will not discuss conventional quality measures such as
the mean squared error or the signal-to-noise ratio because
IDEALEM is not designed to control the Euclidian distances
between the original data and the compress data.

For this evaluation work, we use two sample datasets from
two different application domains: electric power grid and
neural science. The electric power grid monitoring dataset is

from a device known as micro-Phaser Measurement Unit, or
µPMU [16], [17], which records the voltage, current as well
as their phase angles at milliseconds time intervals. These
devices are usually installed at power transformers to monitor
the health of the power grid system. The particular sample
µPMU data has 5.3 million records and was collected at a
transformer onsite at Lawrence Berkeley National Lab.

The second dataset is a sample of intracranial electroen-
cephalogram (EEG) (also known as electrocorticography) [18].
We refer to it as the EEG dataset. This dataset consists of
about 800,000 data values from a single channel of an EEG
recording without patient information. We examine the Fourier
spectrum of the EEG data because it is a property important
to the neural science and engineering [18], [19].

A. Compressing µPMU Data

As a reference, we first provide the results of one of the best
floating-point compression method ZFP [6], [20]. Similar to
IDEALEM, ZFP is a lossy compression method. In numerous
performance tests [6], ZFP was found to outperform all other
compression methods, particularly for scientific simulation
data in 3D arrays. On these 3D arrays, ZFP achieved compres-
sion ratios of 100 without noticeable information loss. These
3D datasets are from high-resolution simulations of physical
phenomenon were the neighboring mesh points have similar
values. Typically, on lower dimensional arrays, such as the 1D
array used to represent the time series in the µPMU data, there
are fewer neighbors to take advantages of and therefore less
opportunity for compression. As shown in Fig. 2, the observed
compression ratios are much less than 100.

Fig. 2a shows actual values of the µPMU dataset. Fig. 2b
and Fig. 2c shows the results of ZFP compression with two
different parameter setting.1 It is clear that a large accuracy
tolerance leads to more information loss and higher compres-
sion ratio. In the limit where a very large accuracy tolerance
is used, eventually all reconstructed data values are set to zero
and the corresponding compression ratio reaches 21.3.

Fig. 3 shows results of IDEALEM compression on the same
data used in Fig. 2. The three plots shown three different KS
test thresholds α. Clearly, this threshold significantly affects
the compression ratios. With the default threshold value of
0.05, the compression ration is over 100.

Another important observation from Fig. 3 is that there
are no apparent compression artifacts, while there are clearly
visible compression artifacts in the results of ZFP compres-
sion shown in Fig. 2b and 2c, even though ZFP achieves
much lower compression ratios. The band structure shown
in Fig. 2c is the distinctive signature of quantization artifact.
Since IDEALEM always uses the values that actually appeared
in the original data, it does not have any problem with
quantization. Furthermore, its design also preserves extreme
values as explained in Section II, which are often the most
noticeable features in a dataset.

1The fixed-accuracy mode (option -a) was used [20], which specifies
the maximum absolute difference between an uncompressed value and a
reconstructed value.
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Fig. 2: Scatter plots of one time series of the µPMU data. ZFP compression ratios are 7.5 in Fig.2b and 9.1 in Fig. 2c, both
are much less than 100 achieved for 3-D simulation data [6].

(a) IDEALEM α = 0.01 (b) IDEALEM α = 0.05 (c) IDEALEM α = 0.1

Fig. 3: Compression ratios of IDEALEM with with the above parameters are (a) 189.29, (b) 111.08, and (c) 86.91, respectively.
They are considerably higher than with ZFP, and without the visible compression artifacts.

B. Compressing EEG Data

Fig. 4 shows the EEG dataset along with the compressed
versions from ZFP and IDEALEM. As with the µPMU dataset,
we again see that IDEALEM can achieve much higher com-
pression ratio without creating visible compression artifact.
More specifically, with an accuracy tolerance that is already
producing visible quantization bands ZFP is only able to
achieve a compression ratio of 12.6, while IDEALEM easily
achieves a compression ratio of 106.6 without producing no-
ticeable compression artifact. Again, IDEALEM compressed
data requires less storage space and is able to represent the
original data more faithfully.

With this set of EEG data, the application scientists want
to preserve the Fourier spectrum for their analysis tasks [18],
[19]. Therefore, we next examine the spectra of the original
data and the compressed data. As shown in Fig. 5, the left
halves of three spectral lines are the same, where a period of
these Fourier components may span many data points, i.e., the
large-scale features, are preserved well under IDEALEM com-
pression. By construction, IDEALEM replaces values within
a data block, and therefore would significantly alter Fourier
components whose periods span a couple of blocks or a few
points. For the case shown in Fig. 5, the block size is 32. We
see that the Fourier components with frequencies less than

1/32 (∼ 0.03) are the same in all three plots.
On the right side of Fig. 5, we see that the compressed data

have different Fourier components than the original data. In
particular, when we simply repeat the data in the dictionary
blocks, the Fourier components of the compressed data clear
contain artifacts due to the repeating values (bottom plot with
label “NoShuffle” in Fig. 5); while the version of IDEALEM
that shuffles the values in the dictionary blocks can avoid the
obvious artifacts as shown in the middle plot labelled “Shuffle”
in Fig. 5. Even though this reproduction of the high frequency
components are not perfect, we note that these components are
many orders of magnitude smaller than the lower frequency
components, which indicates that they might be less important
than the lower frequency components.

V. CONCLUSIONS

We propose a new way to construct data reduction tech-
niques based on the statistical concept known as exchange-
ability. For each group of exchangeable data blocks, one
representative data block is stored, which effectively creating a
dictionary-based compression method. In this work, we report
our experience of designing and implementing a concrete
version of this dictionary-based compression method named
IDEALEM. This method breaks an incoming data stream into
fixed-size blocks and represents similar blocks with a one that



Fig. 4: Scatter plot of a sample EEG data, top: original data; middle: ZFP -a 0.0004, compression ratio 12.6; bottom:
IDEALEM, compression ratio 106.6.
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Fig. 5: FFT Spectra of the sample EEG data shown in Fig. 4. When reproducing the data block compressed out, whether or
not to shuffle the dictionary data can affect the spectral properties at higher frequencies.



appears earlier in the data. Instead of measuring the similarity
of two blocks based on traditional measures such as the Euclid-
ian distance, we use a statistical tool known as Kolmogorov-
Smirnov test (KS test). Through a simple design choice, we are
able to keep distinctive features in a dataset, while significantly
reducing the size needed to keep common data blocks. On two
sets of data from very different applications, power grid and
neural science, IDEALEM reduces the storage requirement
by more than 100-fold, while capturing important features
in the data such as voltage sags and current spikes at the
same time. In the neural science dataset, it is able to preserve
the strong Fourier components and the Fourier components
that span multiple data blocks. In both cases, IDEALEM is
able to dramatically reduce the storage requirement while
preserving features important to the domain scientists, which
clearly demonstrate the usefulness of the compression method.

We have a number of tasks planned to extend the IDEALEM
compression method. For example, we have mentioned three
parameters that affects IDEALEM performance, one imme-
diate plan is to quantify how these parameters affects the
compression ratio and other properties. The current version
works on data as a sequence, one future plan is to extend
this technique to multi-dimensional arrays that are common
in scientific applications. In addition, dictionary-based com-
pression methods are known to support a wide range of
analysis operations without decompression, we would like to
exercise this property to support more efficient operations on
the compressed data. Additionally, IDEALEM is not the only
way to realize the idea of statistical data reduction, and KS test
is not exactly a test for exchangeability. We’d like to explore
other options to expand the tools for data reduction.
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