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Abstract

In this paper, we describe a strategy of using compressed bitmap indices to speed up queries on
both numerical data and text documents. By using an efficient compression algorithm, these compressed
bitmap indices are compact even for indices with millions of distinct terms. Moreover, bitmap indices can
be used very efficiently to answer Boolean queries over text documents involving multiple query terms.
Existing inverted indices for text searches are usually inefficient for corpora with a very large number
of terms as well as for queries involving a large number of hits. We demonstrate that our compressed
bitmap index technology overcomes both of those short-comings. In a performance comparison against
a commonly used database system, our indices answer queries 30 times faster on average.

To provide full SQL support, we integrated our indexing software, called FastBit, with MonetDB.
The integrated system MonetDB/FastBit provides not only efficient searches on a single table as FastBit
does, but also answers join queries efficiently. Furthermore, MonetDB/FastBit also provides a very
efficient retrieval mechanism of result records.

1 Introduction

Bitmap indexing is a technology that was considered appropriate for small cardinality attributes only, usually
below 100 distinct values, such as the 50 states in the US, or 100 age values for people. Consequently, they
were not used for numeric values with a large cardinality, such as floating point temperature values, or for a
large number of terms.

The main difficulty with bitmap indices is that usually a bitmap is required for each value, and if left
uncompressed their sizes and the corresponding search time grows with the number of bitmaps. For example,
consider having 1,000,000 people, and an attribute containing their yearly income, where it can be in the
range of 0-100,000. Assume that the value of income is represented in a 32 bit integer, then the total size of
that attribute would be 32,000,000 bits. If this was represented as 100,000 bitmaps where each is 1,000,000
bits long, the total volume of the index would be 1011 bits. For this reason compressed bitmap indices are
used. Typically, the size of the compressed bitmaps is a fraction of the original data, as compared to 2-3
times the size of the data for a conventional index, such as a B-tree. However, there is an additional cost of
processing the search over the compressed bitmap indices, because of the need to decompress them before
a search can be performed efficiently.

Recent work [33], has introduced a specialized compression technique for bitmap indices, called Word-
Aligned Hybrid (WAH), that is compute friendly, in that logical operations can be performed on the com-
pressed bitmaps directly. Over the past few years, we have successfully demonstrated that the index which
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uses WAH encoding, referred to as FastBit1, significantly improves the performance of multi-attribute quer-
ies on numerical data with high-cardinality attributes. In this paper we take the idea of bitmap indices a step
further and show that compressed bitmap indices can also be used for Boolean queries over text to find all
documents that match a certain search criterion.

FastBit is an efficient compressed bitmap index technology that provides a subset of the SQL func-
tionality. In particular FastBit works extremely well on attributes (columns) of the same relational table,
evaluating a multi-attribute query by applying logical operation on the bitmap search results from each at-
tribute. However, FastBit is not designed to perform join operations. In order to provide a complete SQL
interface we integrated FastBit with the in-memory database system MonetDB being developed at CWI,
Netherlands. We chose MonetDB since it is based on a column-wise storage model that is well-suited for
partial range queries where only the attributes involved in the query are brought into memory for search.
Since bitmap indices are designed to index one attribute at-a-time, MonetDB is a natural choice for the use
of bitmap indices.

We present a detailed performance study to evaluate the efficiency of bitmap indices for both Boolean
queries over text and traditional database queries over numerical values. Our performance experiments are
based on the Enron email data set consisting of emails sent and received by Enron employees. This data set
is particularly attractive for studies on index data structures since it contains numerical, categorical and text
data. Typical database systems would use (1) B-trees for querying numerical and categorical values and (2)
inverted files for text searches. Our performance study demonstrates that bitmap indices are very efficient
for both.

The methodology used for the performance studies is based on separating text data (subject and body
of the email messages) from the rest of the data (sender email address, recipient email address, day, time,
etc.) This allowed us to perform separate queries on the text data and the more “conventional” data (nu-
merical data). We then ran combined queries that require a join over the two tables. We executed a large
number of queries (varying the hit ratio) using only FastBit, then combining results from the two tables
by applying an external join (essentially a sort-merge algorithm), and finally running the same queries on
the MonetDB/FastBit system. The results will be discussed in detail, but in general, we observed that the
application of FastBit to both numerical and text data to perform combined queries has proven to be very
efficient.

The paper is organized as follows. In Section 2 we revise the related work on index data structures for
querying numerical and categorical values. In particular we focus our attention on bitmap indices. Next,
we discuss databases systems that support full-text searching and motivate the advantages of compressed
bitmap indices for querying both numerical and text data. In Section 3 we introduce the Enron data set which
is large collection of email messages that was made public recently. This data set is particularly attractive
for research on index data structures since it contains numerical, categorical and text data. In Section 4 we
describe our framework for indexing text data with our bitmap index implementation called FastBit. The
challenges of integrating FastBit into the open-source database management system MonetDB are described
in Section 5. Next we perform a detailed experimental evaluation of querying both numerical and text data
with FastBit and compare the performance with the integrated system MonetDB/FastBit as well as with
MySQL (see Section 6). We summarize the findings of our studies in Section 7 and point out open research
topics with respect to using bitmap indices for text searching.

2 Related Work

2.1 Querying Numerical and Categorical Values

In the database community, a general strategy to reduce the time needed to answer a query is to devise
an auxiliary data structure, or an index, for the task. Earlier database systems were more commonly used
for transaction type applications, such as banking. For this type of application, indexing methods such as

1FastBit bitmap index software is available at http://codeforge.lbl.gov/projects/fastbit/.

http://codeforge.lbl.gov/projects/fastbit/
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bitmap index
RID A =0 =1 =2 =3

1 0 1 0 0 0
2 1 0 1 0 0
3 3 0 0 0 1
4 2 0 0 1 0
5 3 0 0 0 1
6 3 0 0 0 1
7 1 0 1 0 0
8 3 0 0 0 1

b1 b2 b3 b4

Figure 1: A sample of an equality-encoded bitmap index, where RID is the record ID and A is an integer
attribute with values in the range of 0 to 3.

B+-tree and hash-based indices were found to be particularly efficient [9, 20]. One notable characteristic of
data in these applications is that they change constantly and therefore their associated indices must also be
updated quickly.

As more data are accumulated over time, the need to analyze large historical data sets is gaining attention.
The storage system for this type of relatively stable data is generally known as data warehouse [7, 8, 13]. The
type of operations performed on data warehouses are often called On-Line Analytical Processing (OLAP).
For these operations, bitmap indices are particularly efficient [18, 36, 35]. In comparison with a typical
B+-tree, a bitmap index usually answers queries with a large number of hits faster than a B+-tree, but it
takes longer to update a bitmap index after an insertion of a new record or a modification of an existing
record. However, for most data warehouses, the typical update operation is to append a large number of
new records. In this case, appending new records to a bitmap index may even take less time than updating a
B+-tree because the time to append to bitmap indices is a linear function of the number of new records while
the time to update a B+-tree is always a superlinear function. For this reason, bitmap indices are well-suited
for OLAP type of applications.

As an illustration, let us consider a bitmap index for an integer attribute A that takes its value from 0, 1,
2, and 3. In this case, we say that the attribute cardinality of A is 4. The basic bitmap index consists of four
bitmaps, b1, b2, b3, and b4. Each bitmap corresponds to one of the four possible values of A and contains as
many bits (0 or 1) as the number of rows in the table. In the basic bitmap index, a bit is set to 1 if the value
of A in the given row equals the value associated with the bitmap.

Let N denote the number rows in a table and C denote the attribute cardinality. It is easy to see that a
basic bitmap index contains CN bits in its bitmaps. As the attribute cardinality increases, the basic bitmap
index requires correspondingly more storage space. In the worst case where each value is distinct, C = N ,
the total number of bits is N2. There are a number of different strategies to reduce this maximum index size;
we organize them into three orthogonal groups.

Binning Instead of recording each individual value in a bitmap, the strategy of binning seeks to associate
multiple values with a single bitmap [32, 24]. For example, to index a floating-point valued attribute B with
a domain between 0 and 1, we may divide the domain into a number of bins, say 10. In this case, a bitmap
will be associated with each bin, such as [0, 0.1), [0.1, 0.2), . . . , [0.9, 1].

Binning clearly can control the number of bitmaps used. However, the index is no longer able to resolve
all queries. For example, when answering a query involving the condition “B < 0.05”, the most helpful
information we can get from the above binned index is that there are a number of records with B in the bin
of [0, 0.1). We call these records the candidate hits of the query (or simply candidates). These candidates
have to be examined to determine exactly which ones are actually hits [26]. Checking the candidates often
dominates the total query response time. A bitmap Index without binning can be thought of as binning with



LBNL-61768 4

one bin per value.

Encoding We can view the output from binning as a set of bin numbers. The encoding step is to translate
these bin numbers into bits in bitmaps. The basic bitmap uses an encoding, referred to as equality encoding,
where each bitmap is associated with one bin number and a bit is set to 1 if the value falls into the bin,
0 otherwise. Other common encoding strategies include range encoding and interval encoding [5, 6]. In
both range encoding and interval encoding, each bitmap corresponds to a range of bins. They are designed
to answer range queries with one or two of the bitmaps. These encoding schemes can also be composed
into multi-level and multi-component encodings [5, 34]. One well-known example of a multi-component
encoding is the binary encoding scheme [31, 19], where the ith binary digit of the bin number is concatenated
together to form the ith bitmap of the index. This encoding produces the fewest number of bitmaps, however,
to answer most queries, all of the bitmaps in the index are accessed. In contrast, other encoding schemes,
such as the interval encoding, usually access only some of the bitmaps when answering a query.

Compression Compression can be applied on the bitmaps generated from the above binning and encoding
steps to reduce the storage requirement. Any text compression technique may be used here. However, in
order to reduce the query response time, specialized bitmap compression methods are preferred. One of the
best-known bitmap compression methods is the Byte-aligned Bitmap Code by Antoshenkov [3].

Another efficient bitmap compression method is the Word-Aligned Hybrid (WAH) code [35, 33]. In a
number of timing measurements, it was shown to be about 10 times faster then BBC on a variety of datasets.
As for the index size, the basic bitmap index compressed with WAH is shown to use at most O(N) words,
where N is the number of records in the dataset. In the worst case, the proportionality constant is 4. This
worst case index size is comparable with the typical size of a B+-tree used in some popular DBMS.

Given a range condition involving an index compressed with WAH, the total response time is propor-
tional to the number of hits. This is optimal in terms of computational complexity. In addition, compressed
bitmap indices are in practice superior to other indexing methods because the result from one index can be
easily combined with that of another through bitwise logical operations, thus performing multiple-attribute
queries efficiently.

2.2 Database Systems for Full-Text Searching

Supporting text retrieval in database systems has become an important research topic as many applications
require queries that combine both text and other database attributes. The research literature discusses incor-
porating text retrieval capabilities into different types of database systems such as relational database systems
[14] , object oriented databases [37] and XML databases [1] . Proposals for architecture for systems that
combine relational databases with text searching capabilities are reported in [10] and [15]. Other papers deal
with modeling issues, query languages and appropriate index structures [22, 21] for such database systems.
A more recent prototype of such a system, called QUIQ, is described in [14]. The engine of this system,
called QQE, consists of a DBMS that holds all the base data and an external index server that maintains the
unified index. Inserts and updates are made directly to the DBMS. The index server monitors these updates
to keep its indices current. It can also be updated in bulk-load mode. Another recent paper, [12], describes
a benchmark called TEXTURE which examines the efficiency of database queries that combine relational
predicates and text searching. Several commercial database systems were evaluated by this benchmark.

Another approach for combining text retrieval and DBMS functionality is to use object oriented databases
using the external function capability of the database system. A prototype that uses this approach is reported
in [37] which combines a structured-text retrieval system (TextMachine) with an object-oriented database
system (OpenODB).

As XML document is able to represent a mix of structured and text information, a third approach that is
recently gaining some popularity is to combine text retrieval with XML databases. For example in [1], it is
proposed to extend the XQuery language with complex full-text searching capabilities.
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Supporting text in databases requires appropriate index structures. One type of index proposed for text
searching is called Signature files. The space overhead of this index is lower than inverted files (10%-20%)
but the search is always sequential over the whole index. This index uses a hash function that maps words
in the text to bit masks consisting of B bits called signatures. The text is then divided into blocks of b words
each. The bit mask for each block is obtained by ORing the signatures of all the words in the block. A
search for a query word is conducted by comparing its signature to the bit mask of each block. In case that
at least one bit of the query signature is not present in the bit mask of a block, the word cannot be present in
this block. Otherwise, the block is called a candidate block as the word may be present in it. All candidate
blocks must be examined to verify that they indeed contain the query word.

Another common structure for indexing text files, found in commercial database systems and text search
engines, is the inverted file index. This data structure consists of a vocabulary of all the terms and an
inverted list structure [29]. For each term t the structure contains the identifiers (or ordinal numbers) of
all the documents containing t as well as the frequency of t in each document. Such a structure can also
be supplemented with a table that maps ordinal document numbers to disk locations. As inverted files
are known to require significant additional space (up to 80% of the original data), recent work [2] deals
with methods of compressing inverted files. The authors also show that their method is quite efficient in
decompressing the inverted files. A comprehensive survey of inverted files for text searching can be found
in [39].

2.3 Compressing Inverted Files with Bitmap Indices

The inverted indices commonly used for text searching are usually compressed as well [16, 30, 38]. One
obvious difference between a bitmap compression method and a compression method for inverted indices is
that they are designed to represent different types of data. A bitmap compression scheme represents bitmaps
(0s and 1s), while a compression scheme for an inverted index generally compresses differences between
successive document identifiers or term frequencies. The primary use of the compressed data in an inverted
index is to reconstruct the document identifiers. For this reason, the compression methods designed for
the inverted index used to be measured only by their compressed sizes. However, recently there has been
some emphasis on compute efficiency as well [2, 30]. In particular, Anh and Moffat have proposed a Word-
Aligned Binary Compression for text indexing, which they call slide [2]. We note that their primary design
goal was to reduce the compressed sizes rather than improving the search speed. Making the decompression
(i.e., reconstruction of the document identifiers) more CPU friendly is only a secondary goal. They achieve
this by packing many code words that require the same number of bits into a machine word. Because all
these code words require the same number of bits, they save space by only representing their sizes once.
In contrast, WAH imposes restrictions on lengths of the bit patterns that can be compressed so that the
bitwise logical operations can be performed on compressed words directly. In particular, a WAH code word
is always a machine word.

Because of their differences, it is usually not efficient to use a bitmap compression method to compress
document identifiers or a compression method for the inverted index to compress bitmaps. What we propose
to do in this paper is to turn a term-document matrix (a version of the inverted index) into a bitmap index,
then compress the bitmap index. This approach allows us to make the maximum use of the efficient bitmap
compression method WAH.

In this paper, we apply compressed bitmap indices to inverted files. Such an approach was not considered
viable in the past for indexing over a large number of terms, since bitmap indices were considered efficient
only for searching attributes with low cardinality. However, the WAH-compressed indices have been shown
to be very efficient even in the case of high cardinality attributes, and therefore are a good candidate for
supporting search within text attributes in databases. We show in this paper that such indices are indeed
very efficient when used for inverted file structures. A great advantage of using this method for text data
is that it allows the WAH-based bitmap indices to combine efficiently queries for both numeric and text
data. This is accomplished by simply applying logical operations on the resulting bitmaps of both types
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Table 1: Schema of database table EnronUniversal.
Column Name Explanation

mid Message ID
senderFirstName Only for Enron employees
senderLastName Only for Enron employees
senderEmail Email of any sender
recipientFirstName Only for Enron employees
recipientLastName Only for Enron employees
recipientEmail Email of any recipient
day Day email was sent
time Time email was sent
rtype Information about how message

was sent: “TO”, “CC”, “BCC”

Table 2: Schema of database table EnronMessage.
Column Name Explanation

mid Message ID
subject Subject of email message
body Body of email message
folder Name of folder used in email client

of attributes after the individual attributes are searched. Extensive performance experiments shown in this
paper confirm this methodology.

3 Case Study: The Enron Data Set

The Enron data set, a large set of email messages, is used by various researchers in the areas of textual
and social network analysis. The data set was made public by the Federal Energy Regulatory Commission
during the criminal investigation into Enron’s collapse in 2002. This data set is particularly attractive for
studies on index data structures since it contains numerical, categorical and text data. Our case study is
based on the data prepared by Shetty and Adibi [23] and contains 252,759 email messages stored in four
MySQL tables, namely EmployeList, Message, RecipientInfo and Reference Info.

In early performance experiments comparing FastBit with MySQL, we showed that FastBit significantly
outperforms MySQL for queries over numerical and categorical values [27]. One of the key findings of these
experiments was to materialize parts of the tables in order to avoid expensive join operations during query
processing.

In this paper we go one step further and also evaluate the performance of bitmap indices for Boolean
queries over text. In particular, we search the subject and the body of the email messages for certain terms.
In order to allow queries over both numerical and text data, we chose a different database schema design
than originally proposed by Shetty and Adibi [23]. Rather than using 4 tables, our database schema only
uses two tables called EnronUniversal and EnronMessage (see Tables 1 and 2).

The table EnronUniversal contains both numerical and categorical values, whereas EnronMessage
only contains text data. EnronUniversal is a materialization of the parts of the columns from the three
original tables EmployeeList, Message and RecipientInfo. EnronMessage contains a subset
of the columns of the original table Message. The advantage of this schema design is to use bitmap indices
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Figure 2: Framework for Indexing Text with FastBit.

for query processing for both tables. The attribute mid in EnronMessage is a foreign key to the attribute
of the same name in EnronUniversal and is used to join message text attributes with corresponding
numerical and categorical data.

Let us briefly point out one particular point about the content of table EnronUniversal. The first
and last names of both the sender and the recipients are only available for some Enron employees. However,
the full email addresses of the senders and recipients are available for all messages. This artifact might be
due to a problem in the original collection of the email messages.

4 Extending Bitmap Indices to Support Full Text Search

In the past we successfully used FastBit’s compressed bitmap index technology to efficiently query large sets
of numerical data [27]. In this section we will describe how to extend bitmap indices to support Boolean
queries over text data.

Indexing text usually requires the following two steps:

• Text parsing and term extraction

• Index generation

In our framework we use Lucence [11] for text parsing and term extraction. The output of Lucene is
a term-document list which is an inverted index that contains all identified terms across all documents and
a set of document identifiers (IDs) of each document containing the term. Once the term-document list is
obtained, we convert the term-document list into a bitmap index consisting of a dictionary of the terms and
a set of compressed bitmaps.

We will demonstrate our indexing framework with a simple example illustrated in Figure 2. Let us
assume we have a database table called EnronMessage that contains the four columns mid, body,
subject and folder. The column mid contains the Message ID used in the MySQL version of the
Enron e-mail message dataset [23]. It has integer values. The columns body, subject and folder
contain text values. In order to use Lucene to identify the terms contained in the messages, we store each
message body in a separate file with the mid as the file name. In Figure 2 separation is indicated by “body1”,
“body2”, etc. Lucene is used to parse each file and extract the terms from the documents. The output from
Lucene is a list of terms, and for each term a list of files containing the term (the inverted list). Since the
file names are the mids, we effectively produce a list of mid values for each term. For instance, the term
“berkeley” appears in the messages with the IDs 1, 3, 5 and 8. Similarly, the term “columbia” appears in the
messages with the IDs 5, 7, 8 and 9.

The next step is to build the bitmap index. However, before we can index the identified terms with
bitmaps, we need to introduce an auxiliary data structure, called a dictionary, that provides a mapping
between the terms and the bitmaps. In our example, “berkeley” is represented by the numerical value 1,
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“columbia” by the value 2 and “enron” by the value 3 (see “dictionary” in Figure 2). Next, the message
IDs originally stored in the term-document lists can be encoded with bitmaps. For instance, the bitmap
representing “berkeley” contains the bit string 101010010 to indicate that “berkeley” is contained in the
messages 1, 3, 5 and 8. Similarly, the bitmap representing “columbia” contains the bit string 000010111 to
indicate that “columbia” is contained in the message 5, 7, 8, and 9. In other words, a bit is set to 1 if the
respective term is contained in a message, otherwise the bit is set to 02.

Using compressed bitmap indices for storing term-document lists efficiently supports Boolean queries
over terms. For instance, finding all emails where body contains the terms “berkeley” and “columbia”
requires reading two bitmaps and combining them with a logical AND operation. As we showed in the past,
these basic bitmap operations are very efficient.

5 Integrating FastBit into MonetDB

We decided to integrate FastBit into a relational database for two reasons. First, as part of a relational
database management system, FastBit would benefit from the system’s ability to undertake tasks beyond
indexing and querying, such as performing joins between tables and enforcing consistency in the data.
Second, by adding FastBit to a relational database system, relational data can benefit from FastBit’s high
performance when queries or subqueries are of a form that can use a FastBit index. With the addition of
text searching to FastBit, adding FastBit to a relational system also provides a high performance tool for
integrating Boolean queries over text with more traditional database queries.

The database system we targeted is MonetDB, an open source, in-memory database developed by
CWI [17]. In this section we will begin by describing MonetDB and our reasons for choosing it. We
will then present the details of our integration of FastBit into MonetDB.

5.1 Why MonetDB?

MonetDB is our target relational database system for FastBit integration because of its data layout. Unlike
most databases, such as MySQL or Oracle, that use horizontal or row-based storage, MonetDB uses vertical
partitioning also known as a decomposed storage model (DSM). See Figure 3 for a comparison of the storage
techniques. In a database with row-based storage, entire records are stored contiguously, thus making access
to entire records efficient, but wasting I/O and memory bandwidth when only a small subset of attributes is
required [4, 25, 28]. For instance, in Figure 3b the records are read right to left, top to bottom during a scan
even if the query is interested in only attribute a2 in each record. That is, the entire record is loaded even
though only a small part of it is needed. With a DSM, single attributes are stored contiguously (Figure 3c)
resulting in efficient I/O that involves only the required attributes. MonetDB’s data layout is therefore
analogous to FastBit indexing, where each attribute is indexed and stored separately.

The MonetDB SQL Server is a two-layer system [17]. On the bottom is the MonetDB kernel that
manages the actual data. At this layer, the data is not stored as a complete relational table, but is decomposed
into separate Binary Association Tables (BAT) – one for each attribute. Each entry in the BAT is a two-field
record containing an object identifier (OID) and an attribute data value. All attribute values for the same
relational tuple will have the same OID even though they are stored in separate BATs. Interaction with
these BATs is accomplished via the Monet Interpreter Language (MIL), which can be extended with new
commands as we describe in Section 5.2.4.

The SQL module sits atop the MonetDB kernel and provides an SQL interface for client applications.
Though the relational tables are actually decomposed into many BATs, the SQL module allows users to
interact with the data in the normal relational manner. The SQL module is responsible for transaction and
session management as well as transforming SQL queries into MIL code to be executed by the MonetDB

2In general, the document identifiers may not be directly used as row numbers for setting the bits in the bitmaps. We may
actually need an additional step of mapping the document identifiers to row numbers. This additional level of operational detail is
skipped for clarity.
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a1 a2 a3
a11 a21 a31

a12 a22 a32
...

...
...
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{a12, a22, a32}

...
{a1n, a2n, a3n}


a11

a12
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a1n
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a22
...

a2n




a31

a32
...

a3n


(a) Logical
View.
Each row has
three columns

(b) Horizontal Parti-
tioning.
Store values from the
same row contiguously

(c) Vertical Partition-
ing
Store values from the
same column contigu-
ously

Figure 3: An illustration of horizontal and vertical Partitioning.

kernel. With the help of the MonetDB developers at CWI, we decided it would be best to integrate FastBit
into the SQL module rather than the underlying MonetDB kernel. In the following sections we will give an
overview of the changes required to integrate FastBit into MonetDB/SQL. Note that all changes described
occurred within the SQL module; the MonetDB kernel was left unchanged. The MonetDB kernel was
version 4.12 and the SQL module was version 2.12. Both are available from the MonetDB website at
http://monetdb.cwi.nl/.

5.2 Nuts and Bolts

Integrating FastBit into MonetDB’s SQL module (MonetDB/SQL) required four tasks: (1) addition of the
FASTBIT keyword to MonetDB’s SQL parser, (2) functionality to allow MonetDB to send data to a FastBit
library for index construction, (3) rules to recognize subqueries that are FastBit eligible during query opti-
mization, and (4) integration of FastBit and MonetDB execution so that a unified query result is produced
by MonetDB. In the following subsections we will describe each of these tasks.

5.2.1 SQL

To enable FastBit index use within MonetDB, the keyword “FASTBIT” was added to the parser. FastBit in-
dices may be created using the standard
“CREATE INDEX” syntax: “CREATE FASTBIT INDEX
index name ON table name (a1, a2, . . .)”, where the ak are the attributes within the table on which
an index should be created. The order of the attributes does not matter, unlike with other index types.

MonetDB does not have a text searching capability such as MySQL’s MATCH (. . .) AGAINST (. . .)
built into its SQL parser. To overcome this problem, we chose to override the “=” operator in the WHERE
clause. When “=” is used with a column that is a text attribute, i.e., a character blob but not a fixed or variable
length string, we interpret that as a Boolean query for the presence of a term in that attribute. To search for
multiple terms, several equality expressions may be combined using the normal SQL logical operators such
as “AND” and “OR”. Figure 4 shows an example of the syntax we used for doing full text searching within
MonetDB with FastBit.

5.2.2 Building Indices

Building FastBit indices within MonetDB begins with the parsing and execution of the “CREATE FASTBIT
INDEX” command described in the previous section. First, the types of attributes that the user specified for
the index are checked because FastBit supports only a subset of the data types found in MonetDB. Currently,
FastBit can index integers, floating point numbers, character strings (variable and fixed length), and large
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MySQL:
SELECT COUNT(*)
FROM EnronMessage m, EnronUniversalFB u
WHERE MATCH(body) AGAINST(’HAVE’)
AND day < 20010101 AND m.mid = u.mid

MonetDB:
SELECT COUNT(*)
FROM EnronMessage m, EnronUniversalFB u
WHERE body = ’have’
AND dday < 20010101 AND m.mid = u.mid

Figure 4: The same query written for MySQL and MonetDB. In the case of MonetDB, we will assume that
a FastBit index exists on the text attribute. If not, this query will test for the condition where attribute body
equals ’have’, rather than testing for the presence of the term ’have’ in the body.

text objects. The SQL Date type and user-defined data types are examples of attribute types that FastBit can-
not yet index. If all of the attribute types are acceptable, the data for each attribute is read from MonetDB’s
storage and passed to the FastBit library, which builds a compressed bitmap index over the attribute. The
OIDs for the indexed records are also sent to FastBit, but they are not indexed. Instead they are stored and
are used during query execution (see Section 5.2.4) to translate a FastBit result into a form that is usable by
MonetDB/SQL.

As data is added or modified in the the underlying indexed relations, FastBit indexes must be updated
or rebuilt. We trap for these events within MonetDB/SQL, but handle them in only a naı̈ve way. Improving
the update, delete, and append performance is future work.

5.2.3 Recognizing FastBit Eligible Queries

Recognizing queries that can benefit from FastBit is a more challenging piece of the implementation. FastBit
cannot support as rich a set of operations, such as joins, that a full-fledged database system like MonetDB
can. Therefore, FastBit cannot answer an entire query by itself, but it can dramatically speed important parts
of query processing. The key, then, is to determine what parts of the query, if any, FastBit can execute.

When MonetDB receives a query from a client it performs the same steps as most database management
systems: the query string is parsed and the parse tree is used to generate a query plan, which can then be
optimized and executed. In MonetDB an additional final step transforms the query plan into MIL code that
is then sent to the MonetDB kernel for execution.

We use the tree representing the query plan (see Figure 5) to identify subqueries that FastBit can execute.
In the query plan tree, subqueries are represented by subtrees, so our task was actually to identify appropriate
subtrees. Instead of using the final tree, we found it easier to perform our FastBit subquery identification
on an intermediate version of the tree–one that contains all of the necessary relational operations but that
has not yet been made into a binary tree. This was convenient because a WHERE clause involving multiple
attributes can be found in a single node at this stage. Identifying a subquery answerable by FastBit requires
finding a subtree with the following properties:

1. The subtree must involve only one table. FastBit does not perform operations between tables such as
joins.

2. The subtree must involve only attributes on which a FastBit index has been created.

3. The operations involving those attributes must be operations that FastBit can perform. For instance,
SQL supports similarity matching, i.e., the LIKE comparison, but FastBit does not.
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Figure 5: A query plan generated by MonetDB for answering a query over one attribute. If there is a FastBit
index on the attributes, then the right half of this plan can be replaced by one FastBit operation.

We use rules about the structure of the tree, including node types, to locate subtrees that satisfy the above
requirements. When such a subtree is found, we replace it with a new node of type FastBit that contains the
information necessary to execute a FastBit query equivalent to the subtree.

During the MIL code generation phase, the query plan tree is traversed and appropriate code is gener-
ated for the nodes encountered. We have extended MIL with a fastbit execute command which is
essentially a wrapper for a call to the FastBit library with some extra code to translate the FastBit result
into a form that can be used by MonetDB. When a FastBit node is encountered during code generation, the
FastBit command is created and supplied with the name of the index and attributes to use in the query as
well as the location of the constants to be used in any comparisons.

5.2.4 Integrating FastBit and MonetDB Execution

FastBit execution within MonetDB/SQL query execution begins when a fastbit execute MIL com-
mand is encountered. Figure 6 shows a fastbit execute MIL code snippet.

A call to fastbit execute, as shown in Figure 6, provides the FastBit library with the following
information. The first parameter is a data structure that contains system wide information and is a standard
component of most commands. The second parameter is the name of the index, in this case “eu fb”. The
third parameter contains the query string for FastBit to process; “%s” is a placeholder for the constants
specified as var A0 and var A1 in this example. The fourth parameter tells FastBit how many attributes
are in the query, and variables containing constants for comparison with those attributes follow in the next
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var A0 := "john.smith@enron.com";
var A1 := int("20010101");
var s8 := A0;
var s9 := A1;
var s7 := fastbit execute(myc, "eu fb",

"%s = senderemail AND dday < %s", 2, s8, s9);
...
<Other MIL Commands>

Figure 6: An MIL code snippet showing FastBit execution within MonetDB via the fastbit execute
command. The use of FastBit does not require any modification to the query execution following the FastBit
command. That is, the result of the FastBit command is of the same form as the result that would have been
generated by the subplan that it replaced.

positions. This command can handle queries with any number of attributes.
The FastBit execution wrapper constructs a FastBit query from the information provided in the fastbit

execute command. This query returns an array that contains the OIDs of tuples that satisfy the query.
These OIDS that were stored alongside the FastBit indices (Section 5.2.2) are the key to integrating the
FastBit result into the larger MonetDB/SQL query plan. The original query plan would have returned a BAT
containing the OIDs satisfying the subquery represented by the tree, so in order to integrate the FastBit result
into MonetDB/SQL, the fastbit execute command merely has to return a similarly constructed BAT.
We do this by allocating a temporary BAT. We then store the OIDs into the BAT and return it as the result of
the command’s execution. For example, in Figure 6, when the fastbit execute command completes,
var s7 will be a BAT containing the OIDs of the tuples which satisfied the query sent to FastBit.

6 Experiments

This section contains a discussion of our experimental results and demonstrates that adding compressed
bitmap indices to a relational database system enables high performance, integrated querying of numerical
and text data.

The first two parts of this section (6.1 and 6.2) present some statistics about the term distribution in our
text data as well as the size and cardinality of the bitmap indices constructed for all attributes in the Enron
Data Set. The remainder of the section presents the experimental results. The experiments compare MySQL,
a popular open-source database management system supporting text searching, a stand-alone FastBit client,
and MonetDB integrated with FastBit. The experiments are broken down into three main areas: (1) queries
over only numerical and categorical data, i.e., traditional relational data, (2) queries over only text data, and
(3) queries across both numerical and text data involving a join between the two data sources.

Each query in the following experiments was issued both as a count query and as an output query,
terminology we will use throughout this section. A count query returns only the number of hits, that is, the
SQL SELECT clause contains SELECT COUNT(*). An output query retrieves data values associated with
the tuples in the result set. These two types of queries cover important classes of queries, namely those that
generate statistics about data and those that retrieve sets of values matching the query conditions. Also note
that all performance graphs are shown with a log-log scale.

All experiments were conducted on a server with dual 2.8 GHz Pentium 4 processors, 2 GB of main
memory, and an IDE RAID storage system capable of sustaining 60 MB/sec for reads and writes. Before
we executed each set of 1000 queries, we unmounted and remounted the file system containing the data and
the indices as well as restarted the database servers in order to ensure cold cache behavior.
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(a) Message “body” (b) Message “subject”

Figure 7: Term frequency distribution in the message “body” and “subject” of the Enron data set.

6.1 Data Statistics

The Figures 7a and 7b show the term frequency distributions of the “body” and the “subject” of the Enron
emails. The terms are extracted with Lucene. Note that both distributions match Zipf’s law as commonly
observed in many phenomena in nature. The total number of distinct terms in the message body is more
than 1.2 million. The total number of distinct terms in the message subject is about 40,000.

6.2 Size of Bitmap Indices

Table 3 shows the size of raw data compared with the size of the compressed bitmap indices for each column
of the table EnronUniversal. The table also shows the attribute cardinalities of the respective columns
to better demonstrate the potential size of the indices. Apart from the index size for the column mid, the
sizes of the compressed bitmap indices are much smaller than the raw data. Consider, for instance, the size
of the bitmap index for the column recipientEmail which has an attribute cardinality of nearly 70,000.
Even for such a high-cardinality attribute, the size of the compressed bitmap is only about 29% of the raw
data. For the column senderEmail, which has a lower attribute cardinality, the size of the bitmap index
is only about 3% of the raw data.

Table 4 shows the size of the compressed bitmap indices for the table EnronMessage, i.e. the table
that stores the text data. In addition to the size of the raw data, we also provide the size of the uncompressed
term-document list. Let us consider the index size for the email body, which contains more than 1.2 million
distinct terms. The size of the compressed bitmap index is about half the size of the term-document list,
which in turn is about half the size of the raw data. On average, we use less than 100 bytes per term indexed.
This result clearly shows that the size of compressed bitmap indices is reasonably small even for indexing
term-document lists with very high cardinalities.

6.3 Query Performance for Numerical and Categorical Values

In this section we evaluate the performance of FastBit for querying numerical and categorical values of the
table EnronUniversal. We performed one, two, and three dimensional queries over the table. In this
section we will begin with a brief comparison of MonetDB with FastBit against MonetDB without FastBit.
Then we will compare the performance of MySQL, MonetDB with FastBit, and the FastBit stand-alone
client for both the count and output queries.
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Table 3: Size of the raw data compared with the size of compressed bitmap indices for each column of the
table EnronUniversal. For the categorical values also the size of the dictionary is given.

Column Card. Data Dict. Bitmap
[MB] [MB] [MB]

mid 252,759 8.26 8.26
senderFirstName 112 7.21 0.0007 0.14
senderLastName 148 7.70 0.0001 0.14
senderEmail 17,568 48.00 0.4336 1.41
recipientFirstName 112 7.20 0.0007 0.14
recipientLastName 148 7.52 0.0001 1.40
recipientEmail 68,214 47.78 1.5454 13.69
day 1,323 8.26 0.74
time 46,229 8.26 3.24
rtype 3 6.45 0.0001 0.49

Table 4: Size of the raw data and the term-document list (td-list) compared with the size of compressed
bitmap indices including the dictionary for each column of the table EnronMessage.

Column Card. Data td-list Dict. Bitmap
[MB] [MB] [MB] [MB]

mid 252,759 1.01 8.09
subject 38,915 7.56 8.20 0.31 5.23
body 1,247,922 445.27 245.57 16.92 121.72
folder 3,380 20.98 8.09 0.04 0.14

(a) 1D Query (b) 2D Query (c) 3D Query

Figure 8: Performance of MonetDB with FastBit vs. MonetDB without FastBit on count queries of one,
two, and three dimensions. Note that for the three dimensional queries (c), no query produced more than
1000 hits so the scale of this graph differs from the others.

6.3.1 MonetDB With and Without FastBit

Figure 8 shows the performance of MonetDB with and without FastBit indices for one, two, and three-
dimensional count queries. In many, but not all cases, MonetDB with FastBit outperforms MonetDB without
FastBit. A key to understanding these performance graphs is to recall from Section 5.2.4 that integrating the
FastBit query result into MonetDB requires copying the OIDs returned by FastBit into a BAT that MonetDB
can understand. As the total number of hits increases, more copying is required. In Figures 8a and 8b the
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(a) 1D Count Query:
SELECT count(*)
FROM EnronUniversal
WHERE senderEmail = :S

(d) 1D Output Query:
SELECT recipientEmail
FROM EnronUniversal
WHERE senderEmail = :S

(b) 2D Count Query:
SELECT count(*)
FROM EnronUniversal
WHERE senderEmail = :S AND day < :D

(e) 2D Output Query:
SELECT recipientEmail, day
FROM EnronUniversal
WHERE senderEmail = :S AND day < :D

(c) 3D Count Query:
SELECT count(*)
FROM EnronUniversal
WHERE senderEmail = :S AND day < :D

AND recipientEmail = :R

(f) 3D Output Query:
SELECT day, time
FROM EnronUniversal
WHERE senderEmail = :S AND day < :D

AND recipientEmail = :R

Figure 9: Count and output queries on the table EnronUniversal. A summary of the performance
measurements is given in Table 5.
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(a) 1D Subject Query:
SELECT count(*)
FROM EnronMessage
WHERE MATCH(subject) AGAINST (:S1)

(d) 1D Body Query:
SELECT count(*)
FROM EnronMessage
WHERE MATCH(body) AGAINST (:B1)

(b) 2D Subject Query:
SELECT count(*)
FROM EnronMessage
WHERE MATCH(subject) AGAINST (:S1)

AND MATCH(subject) AGAINST (:S2)

(e) 2D Body Query:
SELECT count(*)
FROM EnronMessage
WHERE MATCH(body) AGAINST (:B1)

AND MATCH(body) AGAINST (:B2)

(c) 2D Subject and Body Query:
SELECT count(*)
FROM EnronMessage
WHERE MATCH(subject) AGAINST (:S1)

AND MATCH(body) AGAINST (:B1)

(f) 3D Body Query:
SELECT count(*)
FROM EnronMessage
WHERE MATCH(body) AGAINST (:B1)

AND MATCH(body) AGAINST(:B2)
AND MATCH(body) AGAINST (:B3)

Figure 10: Count queries on the subject and body attributes of the table EnronMessage. A summary of
the performance measurements is given in Table 6.
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effect of this copying is evident as the number of hits becomes very large.
Figure 8b, a two-dimensional query, demonstrates FastBit’s ability to improve query performance.

Whereas MonetDB performs selection over two BATs and joins the results, FastBit can directly combine
the indices of both attributes to answer the query. The three- dimensional query shown in Figure 8c shows
MonetDB with FastBit to be better or about as good as MonetDB without FastBit.

6.3.2 Count Queries

After evaluating the performance of integrating FastBit with MonetDB, we will now compare the perfor-
mance of MySQL, FastBit and
MonetDB/FastBit for queries over the table Enron-
Universal. The first set of experiments shows one, two, and three dimensional count queries (see Figures
9a to c). As already previously stated, for each experiment we executed 1000 queries with different equality
conditions.

Consider, for instance, the query:

SELECT count(*)
FROM EnronUniversal
WHERE senderEmail’ = :S

In this case, “:S” means that this value varies for all the 1000 queries. In particular, we have chosen the
top 1000 senders and recipients of emails. The results clearly show that for these types of multi-dimensional
count queries, FastBit significantly outperforms MySQL. On average, FastBit is about a factor of 30 faster
than MySQL (for details see the summary Table 5).

6.3.3 Output Queries

In the next set of experiments we measured the performance of output queries (see Figures 9d to e). These
experiments clearly show that MonetDB/FastBit is the overall winner. We also note that FastBit by itself
performs worse than the integrated system MonetDB/FastBit. The reason for this behavior of FastBit is
relying on its bitmap indices for the retrieval of string values. This approach is not efficient because the
index size is larger than the size (number of bytes) of the selection. In our tests, the number of hits in join
queries is not more than 100,000, but the index sizes are on the order of megabytes. The approach used by
MonetDB, which directly accesses the raw data is more efficient.

In summary, these results underline the performance advantage of integrating FastBit with MonetDB.

6.4 Query Performance for Text Searching

In this section we evaluate the performance of FastBit’s Boolean text search capability against MySQL’s full-
text index based on inverted files. All experiments measure the response time for retrieving the document
IDs (emails) that match a certain search criterion. Note that FastBit does not perform any scoring operation
for ranking the query results.

For the query conditions we chose the top 1000 most frequent terms. Using the top 1000 most frequent
terms is also “interesting” from a text analysis point of view since these terms are more discussed among
people and might thus have a higher semantic meaning.

Figure 10 shows the response times for 1000 Boolean text queries over the subject and the body of the
email messages from the Enron data set. Note that 10a searches for one term contained in the message
subject while the query depicted in Figure 10b searches for two terms. Similarly, Figures 10d, 10e, and 10f
show one, two, and three term queries for the message body, respectively.

FastBit is about a factor of 500 faster than MySQL for Boolean queries over the message subject (for
details on the total query execution times see Table 6). For Boolean queries over the message body, the
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Table 5: Total time in seconds for running 1,000 queries against the table EnronUniversal. The first set
of times is for count queries. The second set is for select queries. This table is a summary of the results
presented in Figure 9.

MySQL FastBit MonetDB/FastBit

Fig. 9a 5.17 0.17 1.53
Fig. 9b 51.56 1.29 2.73
Fig. 9c 30.84 1.57 3.19
Total time 87.57 3.03 7.45
Speedup 28.9 11.75
Fig. 9d 47.66 181.64 6.35
Fig. 9e 53.17 95.93 5.86
Fig. 9f 30.90 2.84 3.30
Total time 131.73 280.41 15.51
Speedup 0.47 8.49

performance improvement of FastBit over MySQL is on average about a factor of 30 (see rows 4 to 6 in
Table 6).

The graph in Figure shows the performs of queries over body and subject. This query is particularly
interesting since it searches for terms in two different columns. The results show that for queries with a
lower number of hits, FastBit is the winner. As the number of hits increases, the integrated system Mon-
etDB/FastBit shows the best performance.

6.5 Query Performance for both Numerical and Text Data

Our last set of experiments is the most challenging because it requires a join operation over the tables Enron
Universal and EnronMessage. Note that FastBit by itself currently does not support join operations
so we implemented a simple sort-merge join algorithm outside of FastBit. In particular, a join query
over two tables consists of four FastBit queries. The first query evaluates the query condition on the
table EnronUniversal. Analogously, the second query evaluates the query condition on the table
EnronMessage. Next, the lists of resulting message IDs (mids) of both queries are sorted and inter-
sected to find the common ones. The list of common mids is then sent back as two queries in the form of
“mid IN (12, 35, 89, ...).” Finally, the desired columns are retrieved from the two tables. In
addition to the slow retrieval time for FastBit, this ad hoc join procedure is slow because the need to parse
the long query string involving the mids.

For count queries (see Figure 11) FastBit is again the most performant strategy. We also note that the
performance of the integrated system MonetDB/FastBit is only slightly worse.

As expected from our previous results, for output queries, the integrated system MonetDB/FastBit per-
forms the best (see Figure 12).

6.6 Summary of Performance Results

A summary of all the results is presented in Tables 5, 6 and 7. These tables show the total time for running
1000 queries against various tables as well as the speedup factors of FastBit and MonetDB/FastBit with
respect to MySQL.
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(a)
SELECT count(*)
FROM EnronMessage m, EnronUniversal u
WHERE MATCH(body) AGAINST (:B1)
AND senderEmail = :S AND m.mid = u.mid

(b)
SELECT count(*)
FROM EnronMessage m, EnronUniversal u
WHERE MATCH(body) AGAINST (:B1)
AND recipientEmail = :S AND m.mid = u.mid

(c)
SELECT count(*)
FROM EnronMessage m, EnronUniversal u
WHERE MATCH(body) AGAINST (:B1)
AND senderEmail = :S
AND day < :D AND m.mid = u.mid

(d)
SELECT count(*)
FROM EnronMessage m, EnronUniversal u
WHERE MATCH(body) AGAINST (:B1)
AND recipientEmail = :S
AND day < :D AND m.mid = u.mid

Figure 11: Integrated numerical and text count queries. These queries are shown in the format used by
MySQL. A summary of the performance measurements is given in Table 7.

7 Conclusions

We have investigated a way of using compressed bitmap indices to represent the commonly used term-
document matrix to support Boolean queries on text data. By using a compute-efficient compression tech-
nique, we not only are able to keep the indices compact but also make it possible to answer Boolean queries
very efficiently. In our detailed experimental study we show that our bitmap index technology called FastBit
answers Boolean count queries over text data about 30 times faster than MySQL.

To further extend the functionality of FastBit, we have also integrated our technology with the open-
source database management system called MonetDB. The advantage of this integration is that MonetDB
can leverage an efficient text search capability for Boolean queries. Analogously, FastBit’s benefits from the
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(a)
SELECT recipientEmail, day, subject
FROM EnronMessage m, EnronUniversal u
WHERE MATCH(body) AGAINST (:B1)
AND senderEmail = :S AND m.mid = u.mid

(b)
SELECT senderEmail, day, subject
FROM EnronMessage m, EnronUniversal u
WHERE MATCH(body) AGAINST (:B1)
AND recipientEmail = :S AND m.mid = u.mid

(c)
SELECT recipientEmail, day, subject
FROM EnronMessage m, EnronUniversal u
WHERE MATCH(body) AGAINST (:B1)
AND senderEmail = :S AND day < :D
AND m.mid = u.mid

(d)
SELECT senderEmail, day, subject
FROM EnronMessage m, EnronUniversal u
WHERE MATCH(body) AGAINST (:B1)
AND recipientEmail = :S AND day < :D
AND m.mid = u.mid

Figure 12: Integrated numerical and text output queries. These queries are shown in the format used by
MySQL. A summary of the performance measurements is given in Table 7.

integration is full support of the SQL interface that was previously not available in FastBit. Our performance
experiments demonstrate that the integrated system significantly reduces the time required to answer join
queries over both numerical and text data. It addition, the combined system shows significant performance
improvements for retrieving string values subject to a multi-dimensional query condition.

The work presented in this paper extends the FastBit bitmap index technology to efficiently query both
numerical and text data. Our current research focused on Boolean queries on text. In the future we will
investigate the feasibility of using compressed bitmap indices for other types of text searches such as rank
or similarity queries. Another avenue for further research is to compare the compression techniques used
for bitmap indices with the compression techniques used for inverted indices.
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Table 6: Total time in seconds for running 1,000 count queries against the table EnronMessage. This table
is a summary of the results presented in Figure 10.

MySQL FastBit MonetDB/FastBit

Fig. 10a 324.79 0.58 1.56
Fig. 10b 311.11 0.58 1.45
Fig. 10c 41.08 15.68 12.68
Fig. 10d 532.12 13.34 13.32
Fig. 10e 518.70 18.06 15.71
Fig. 10f 515.64 20.66 17.51
Total time 2243.44 68.90 62.23
Speedup 32.56 36.05

Table 7: Total time in seconds for running 1,000 join queries against the tables EnronUniversal and Enron-
Message. The first set of times is for count queries. The second set is for select queries. This table is a
summary of the results presented in Figures 11 and 12.

MySQL FastBit MonetDB/FastBit

Fig. 11a 1302.28 16.54 16.03
Fig. 11b 866.98 23.37 17.45
Fig. 11c 1312.75 18.15 16.93
Fig. 11d 975.18 24.81 18.10
Fig. 11e 556.80 6.40 2.98
Fig. 11f 436.64 8.18 4.10
Total time 5450.63 97.45 75.59
Speedup 55.93 72.11
Fig. 12a 1303.24 82.55 18.24
Fig. 12b 970.31 78.64 18.51
Fig. 12c 1313.37 54.62 17.96
Fig. 12d 977.99 53.00 19.17
Fig. 12e 557.27 21.24 3.35
Fig. 12f 463.98 21.45 4.44
Total time 5586.16 311.5 81.67
Speedup 17.93 68.4
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