
FastBit: An Efficient Indexing Technology For

Accelerating Data-Intensive Science

Kesheng Wu

Berkeley Lab, Berkeley, CA, 94720

E-mail: KWu@lbl.gov

Abstract. FastBit is a software tool for searching large read-only datasets. It organizes user
data in a column-oriented structure which is efficient for on-line analytical processing (OLAP),
and utilizes compressed bitmap indices to further speed up query processing. Analyses have
proven the compressed bitmap index used in FastBit to be theoretically optimal for one-
dimensional queries. Compared with other optimal indexing methods, bitmap indices are
superior because they can be efficiently combined to answer multi-dimensional queries whereas
other optimal methods can not. In this paper, we first describe the searching capability of
FastBit, then briefly highlight two applications that make extensive use of FastBit, namely Grid
Collector and DEX.

1. Introduction

It is a significant challenge to search for key insight in the huge amount of data being produced by
many data-intensive science application. For example, a high-energy physics experiment called
STAR is producing nearly a petabyte of data a year and has accumulated many millions of files
in last five years of operation. One of the core missions of the STAR experiment is to verify
the existence of a new state of matter called the Quark Gluon Plasma (QGP) [1]. An effective
strategy for this task is to find the high-energy collisions that contain signatures unique to QGP,
such as a phenomenon called jet quenching. Among the hundreds of millions of collision events
captured, a very small fraction of them, maybe only a few hundreds, contain clear signatures
of jet quenching. Efficiently identifying these events and transferring the relevant data files to
analysis programs are a great challenge. Many data-intensive science applications are facing
similar challenges in searching their data.

In the past few years, we have been working on a set of strategies to address this type
of searching problem. Usually, the data to be searched are read-only1. Our approach takes
advantage of this fact. Since most database systems (DBMS) are built for frequently modified
data, FastBit can perform searching operations significantly faster than those DBMS.

Conceptually, most data can be thought of as tables, where each row of the table represents
an object or a record, and each column represents one attribute of the record. To accommodate
frequent changes in records, a typical DBMS stores each record together on disk. This allows
easy update of the records, but in many operations the DBMS effectively reads all attributes
from disk in order to access a few that are relevant for a particular query. FastBit stores
each attribute together on disk, which allows one to easily access the relevant columns without

1 Another name that may characterize the data more accurately is Write-Once Read-Many (WORM).

LBNL-57982



involving any other columns. Even though an update may take longer to execute, but because
the update usually come in the form of bulk append operations, the new records can usually be
integrated into existing tables efficiently. In the database theory, separating out the values of a
particular attribute is referred to as a projection. For this reason, using column-wise organized
data to answer user queries is also known as the projection index [2].

Each column of a table is also referred to as a dimension of the data. Many scientific datasets
have tens or hundreds of dimensions; they are called high-dimensional data. User queries usually
involve conditions on several attributes; they are known as multi-dimensional queries. It is
well-known that for multi-dimensional queries on high-dimensional data the projection index
performs better than most of well-known indexing schemes including B-Tree. Since FastBit
uses column-wise organization for user data, without any additional indices it is using the
projection index, which is already very efficient. Our indexing technology further speeds up
the searching operations. We have analyzed our bitmap index and showed it to be optimal
for one-dimensional queries [7, 8]. Some of the best indexing methods including B+-tree and
B*-tree have this optimality property as well. However, bitmap indices are superior because
they can be efficiently combined to answer multi-dimensional queries.

2. FastBit Bitmap indices

In collaboration with Ekow Otoo and Arie Shoshani.

FastBit implements a number of different bitmap indices. In this section, we briefly review
one of the simplest bitmap indices. Figure 1(a) illustrates a bitmap index for an integer attribute
called X. The values of X can be 0, 1, 2, or 3. For each possible value, a sequence of 0s and
1s are used to represent whether the value of X at row i is the specified value. Each column of
bits is called a bitmap. These bitmaps together with their associated information are called a
bitmap index. Bitmap indices in various forms have been used before [3, 4]. One shortcoming
of the basic bitmap index shown in Figure 1(a) is that the index size is proportional to the
number of distinct values (also known attribute cardinality) of the attribute indexed. For low
cardinality attributes such as X, the index size is small. However, scientific datasets frequently
have attributes with cardinalities in the thousands or even millions. For these attributes, the
basic bitmap index would be too large to be useful. We overcome this size problem with an
efficient compression called the Word-Aligned Hybrid (WAH) code.

Using general purpose compression schemes such as LZ77 can effectively compress the
bitmaps. However, the operations on bitmaps compressed this way are much slower than
the same operations on the uncompressed ones. This makes the query response time longer
with compression than without compression. To reduce the query response time, specialized
compression schemes have been developed, the most well-known of which is the Byte-aligned
Bitmap Code (BBC) [5, 6]. BBC compresses very well; BBC compressed indices are not much
larger than those compressed with LZ77. However, query processing time using BBC compressed
indices can be much less than that using LZ77 compressed indices. In the same spirit of
trading some space for faster operations, the Word-Aligned Hybrid (WAH) compression uses
moderately more space than BBC but is much faster in answering queries [7, 8]. Both analysis
and timing measurements confirm that the query response time using WAH compressed indices
grows linearly as the number of query results (i.e., hits) increases as shown in Figure 1b). This is
theoretically optimal. In addition, in all tests, WAH compressed indices are faster in answering
the same query as BBC compressed indices.

Figure 2 shows the query processing time of multi-dimensional queries. It also includes two
different implementations of BBC, one is our own and the other is from a popular commercial
DBMS, labeled “BBC” and “DBMS” respectively. The horizontal axis is the query box sizes
which are the fraction of attributes’ domain selected by the query conditions. For each query
box size, 1000 queries were used to compute the average time. On average, the WAH compressed



bitmap index
row b0 b1 b2 b3

ID X =0 =1 =2 =3
1 0 1 0 0 0
2 1 0 1 0 0
3 3 0 0 0 1
4 2 0 0 1 0
5 3 0 0 0 1
6 3 0 0 0 1
7 1 0 1 0 0
8 3 0 0 0 1

0 1 2 3 4 5

x 10
7

0

5

10

15

number of hits

to
ta

l t
im

e 
(s

ec
)

WAH, uniform
WAH, Zipf
BBC, uniform
BBC, Zipf

(a) A sample bitmap index (b) Time to process one-dimensional query

Figure 1. The WAH compressed bitmap index is optimal. The timing plot on the right shows
that in the worst case (indices for uniform random attributes) the query processing time used
by the WAH compressed indices is a linear function of the number of hits. For more realistic
data distributions, such as the Zipf distribution, the query processing time is significantly less
than in the worst case.

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
−3

10
−2

10
−1

10
0

query box size

qu
er

y 
pr

oc
es

si
ng

 ti
m

e 
(s

ec
)

WAH
BBC
DBMS
projection

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
−2

10
−1

10
0

10
1

query box size

qu
er

y 
pr

oc
es

si
ng

 ti
m

e 
(s

ec
)

WAH
BBC
DBMS
projection

(a) 2-dimensional queries (b) 5-dimensional queries

Figure 2. The average query processing time of random range queries on the 12 most queried
attributes of a subset of STAR data.

index is about 5 times as fast as our own implementation of the BBC compressed index and
about 12 times as fast as the commercial implementation.

3. Grid Collector

In collaboration with Jerome Lauret, Wei-Ming Zhang, Alexander Sim, Junmin Gu, Arie

Shoshani, Arthur Poskanzer, and Victor Perevoztchikov.

Grid Collector is a software system that extends the STAR analysis framework to provide
event-based and location-transparent data access. A high-level sketch is shown in Figure 3.
Without Grid Collector, all data files needed by an analysis job have to be on disk before it
can start. In addition, all collision events stored in a file has to be read into memory so that
the user code can decide which ones to further analyze. In most cases, the total execution time
is dominated by the time required to read the events. Grid Collector provides the end user
with a convenient way to specify events to be analyzed and at the same time avoids reading the



Figure 3. A high-level illustration of the Grid Collector.

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
0

10
1

10
2

10
3

10
4

selectivity

sp
ee

du
p

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

4

selectivity

sp
ee

du
p

(a) All timing results (b) A close-up for low selectivity cases

Figure 4. The speedup of using Grid Collector measured on five different subsets of STAR
data.

unwanted events. Figure 4 shows the speedup values of using Grid Collector on five different
subsets of the STAR data. When an analysis is highly selective, say selecting 1 out of 1000
events, i.e., selectivity of 0.001, using Grid Collector can speed up analysis jobs by a factor of
10 to 100. It is common for many analysis jobs to select about 10% of the events from a subset
of data. In this case, the speedup is between 2 and 3 [9, 10].

4. DEX

In collaboration with Kurt Stockinger, John Shalf, Wes Bethel. Based on an earlier project with

Wendy Koegler, Jacqueline Chen and Arie Shoshani.

The search results produced by FastBit are internally represented as compressed bitmaps.
They can be easily converted into consecutive mesh points (called line segments) for data
produced from regular meshes [11, 12]. Because a line segment is a compact representation of the
regions of interest, we have devised algorithms that can find regions of interest in theoretically
optimal time. More specifically, the time required to identify a region of interest on a regular
mesh is a linear function of the number of line segments as shown in Figure 5(b). This makes it
possible to perform on-line ad hoc exploration on very large simulation data sets.

5. Summary

By taking advantage of the read-only nature of scientific data, our FastBit searching software
provides significantly faster searching operations than commonly used DBMS. One of the key
technology is the Word-Aligned Hybrid (WAH) code for compressing bitmap indices. WAH
compressed indices have not only been proven to be theoretically optimal for one-dimensional



0 1 2 3 4

x 10
5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

number of line segments

re
gi

on
 fi

nd
in

g 
tim

e 
(s

ec
)

(a) A layer of an exploding Supernova (b) The time to find connected regions of various sizes

Figure 5. DEX can efficiently find connected regions in 3D mesh data. Finding regions of
interest in a 480 x 480 x 480 supernova simulation never took more than 2 seconds.

queries, but also been shown to be more efficient than any known methods for multi-dimensional
queries as well. Applying this searching tool in a number of data-intensive applications has
demonstrated it be extremely efficient.

Acknowledgments
This work was supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC03-76SF00098.

References
[1] S. A. Bass, M. Gyulassy, H. Stöcker, and W. Greinerk. Signatures of quark-gluon plasma formation in high

energy heavy-ion collisions: a critical review. J. Phys. G: Nucl. Part. Phys., 25:R1–R57, 1999.
[2] P. O’Neil and D. Quass. Improved query performance with variant indices. In Proceedings of SIGMOD’97,

pages 38–49. ACM Press, 1997.
[3] P. O’Neil. Model 204 architecture and performance. In 2nd International Workshop in High Performance

Transaction Systems, Asilomar, CA, pages 40–59. Springer-Verlag, September 1987.
[4] C.-Y. Chan and Y. E. Ioannidis. Bitmap index design and evaluation. In Proceedings of SIGMOD’98, pages

355–366. ACM press, 1998.
[5] G. Antoshenkov. Byte-aligned bitmap compression. Technical report, Oracle Corp., 1994. U.S. Patent

number 5,363,098.
[6] T. Johnson. Performance measurements of compressed bitmap indices. In VLDB’99, pages 278–289, San

Francisco, 1999. Morgan Kaufmann.
[7] Kesheng Wu, Ekow J. Otoo, and Arie Shoshani. On the performance of bitmap indices for high cardinality

attributes. In Proceedings of VLDB 2004, pages 24–35. Morgan Kaufmann, 2004.
[8] Kesheng Wu, Ekow J. Otoo, and Arie Shoshani. An efficient compression scheme for bitmap indices.

Technical Report LBNL-49626, Lawrence Berkeley National Laboratory, Berkeley, CA, 2002.
[9] Kesheng Wu, Junmin Gu, Jerome Lauret, Arthur M. Poskanzer, Arie Shoshani, Alexander Sim, and Wei-

Ming Zhang. Grid collector: Facilitating efficient selective access from data grids. In Proceedings of

International Supercomputer Conference In Heidelberg, 2005, 2005. A draft appeared as LBNL report
LBNL-57677.

[10] Kesheng Wu, Wei-Ming Zhang, Victor Perevoztchikov, Jerome Lauret, and Arie Shoshani. The grid collector:
Using an event catalog to speed up user analysis in distributed environment. In Proceedings of CHEP,
2004.

[11] Kurt Stockinger, John Shalf, Wes Bethel, and Kesheng Wu. Dex: Increasing the capability of scientific data
analysis pipelines by using efficient bitmap indices to accelerate scientific visualization. In Proceedings of

SSDBM 2005, 2005. A draft appeared as LBNL report LBNL-57023.
[12] Kesheng Wu, Wendy Koegler, Jacqueline Chen, and Arie Shoshani. Using bitmap index for interactive

exploration of large datasets. In Proceedings of SSDBM 2003, pages 65–74, Cambridge, MA, USA, 2003.


