LBNL-57511

Query-Driven Visualization of Large Data Sets

Kurt Stockinger, John Shalf, Kesheng Wu and E. Wes Bethel
2005

Abstract

We present a practical and general-purpose approach to large and complex visual data analysis where visualization processing, rendering and subsequent human interpretation is constrained to the subset of data deemed interesting by the user. In many scientific data analysis applications, "interesting" data can be defined by compound Boolean range queries of the form (temperature > 1000) AND (70 < pressure < 90). As data sizes grow larger, a central challenge is to answer such queries as efficiently as possible. Prior work in the visualization community has focused on answering range queries for scalar fields within the context of accelerating the search phase of isosurface algorithms. In contrast, our work describes an approach that leverages state-of-the-art indexing technology from the scientific data management community called "bitmap indexing". Our implementation, which we call "DEX" (short for dextrous data explorer), uses bitmap indexing to efficiently answer multivariate, multidimensional data queries to provide input to a visualization pipeline. We present an analysis overview and benchmark results that show bitmap indexing offers significant storage and performance improvements when compared to previous approaches for accelerating the search phase of isosurface algorithms. More importantly, since bitmap indexing supports complex multidimensional, multivariate range queries, it is more generally applicable to scientific data visualization and analysis problems. In addition to benchmark performance and analysis, we apply DEX to a typical scientific visualization problem encountered in combustion simulation data analysis.

full text LBNL-57511 (PDF)

Appeared in Proceedings of IEEE VIS 2005
Related projects
Query-Driven visualization
DEX
More research work by John Wu
Bitmap Index
Connected Component Labeling
Eigenvalue Computation
Inforamtion available elsewhere on the web
CiteSeer
DBLP
Google Scholar
Contact us
Disclaimers

John Wu