
A Performance Comparison of bitmap indexes

Kesheng Wu Ekow J. Otoo Arie Shoshani

Abstract

Many data warehousing systems and database management systems make exten-

sive use of bitmap indexing schemes. To ensure optimal performance, these bitmaps

should be eÆcient in both memory usage and computation time. In this paper, we

perform experimental comparisons of various compression schemes for bitmap indexes

to identify which ones are most eÆcient in a large scienti�c data management sys-

tem. Because bitwise logical operations are the most common operations on these

bitmaps, our experiment measures the performance of the bitwise logical operations

between the compressed bitmaps. Generic compression schemes, such as gzip, that are

eÆcient in reducing the space requirement cannot be subjected to logical operations

without explicit decompression. This is costly in computational time and memory us-

age. It is generally more eÆcient to use schemes that can perform logical operations

directly on the compressed bitmaps. To further ensure good performance, some com-

pression schemes have been designed to be byte-aligned. A well-known example of

such a scheme is the Byte-aligned Bitmap Code (BBC). Since most current computers

operate on words just as fast as on bytes, we also explored the performance of two

word-aligned schemes in comparison with BBC. Such word-aligned schemes have not

been previously studied. From the extensive experiments we carried out, we found that

the word-aligned schemes signi�cantly outperform BBC with only a modest increase in

storage. On both synthetic data and real data from scienti�c experiments, the word-

aligned schemes use an average of 50% more space, but are about 12 times faster in

performing logical operations on the compressed bitmaps.

1 Introduction

Bitmap based indexing schemes of various kinds have attracted considerable research and

commercial interests recently [3, 8, 15]. They are found to be e�ective in reducing processing

time of complex queries on slowly changing datasets, such as those in data warehousing

and decision support systems. Commercial database systems, e.g., Oracle 8, IBM DB2,

and Sybase IQ, now implement some forms of a bitmap index scheme. The bitmap index

has also been e�ectively used for indexing very large scienti�c datasets [11, 12]. EÆcient

representation of these bitmap indexes are important to ensure the theoretical advantages

are realized in practice. This paper summarizes our experiences of search for an eÆcient

data structure for representing these bitmap indexes.

To show how bitmap indexes are generated and used, we give one example [3, 4, 15].

Figure 1 shows two sets of bitmap indexes each for an attribute of a tiny database consisting

1

bitmap index

i Ri A B H W

1 W 0 0 0 1

2 B 0 1 0 0

3 W 0 0 0 1

4 H 0 0 1 0

5 W 0 0 0 1

6 W 0 0 0 1

7 B 0 1 0 0

8 W 0 0 0 1

b1 b2 b3 b4

bitmap index

i Xi < 1 [1,3] [4,6] > 6

1 1 0 1 0 0

2 4 0 0 1 0

3 7 0 0 0 1

4 6 0 0 1 0

5 0 1 0 0 0

6 6 0 0 1 0

7 0 1 0 0 0

8 4 0 0 1 0

b5 b6 b7 b8

Figure 1: Two sample bitmap indexes for two attributes R, on the left, and X, on the right.

of only two attributes and eight tuples (rows). On the left, the attribute R has categorical

values, and each bit sequence of the bitmap index denotes whether Ri is one of the four

categories. For example, the 4th value of R is H, the 4th bit of the bit sequence representing

R = H is 1, the 4th bit of the other three sequences are 0. On the right, attribute X

contains integer values that are divided into four ranges (also called bins). In this case, each

bit sequence is associated with a bin and represents whether a value is in the bin. To answer

a range query, some bit sequences are combined together using bitwise logical operations. For

convenience, we have labeled the eight bit sequences b1; : : : ; b8. To answer query \(R = B)

AND (X < 4)", one performs the logical operation (b2 AND (b5 OR b6)). As demonstrated

in this example, the bitmap index is well suited for categorical values that are common in

data warehousing environment [3, 8, 15].

For large datasets with hundreds of attributes and millions of rows in the dataset [11, 12],

it is easy to generate thousands of bit sequences each with millions of bits. Typically, these

bit sequences are stored on disk and are compressed to reduce storage requirement. We call

data structure representing these compressed bit sequence bit vectors. The logical operations

are the primary operations on the bit sequences from the bitmap indexes. The speed of logical

operations on these bit vectors is crucial to the overall eÆciency of query processing. The

goal of this paper is to search for a compressed bit vector scheme that supports fast bitwise

logical operation.

Bit sequences are so common in computer programs that the Standard Template Library

(STL) of C++ language supports two schemes to represent them, namely vector<bool>

and bitset [13]. The container type vector<bool> is more suitable for storing long bit

sequences. The STL standard does not require the data to be compressed and does not

provide any bitwise logical operations. For these reasons, specialized data structures are

needed. One possibility is to use a general purpose compression tool such as gzip [6] or bzip2

[10]. These schemes are e�ective in reducing the �le sizes. Bit vectors compressed this way

have to be explicitly decompressed before the logical operations. The decompression process

may be done one segment at a time to limit the memory required for the operands of a

logical operation. The diÆcult choice is in dealing with the result of the operation. One

2

either stores the result without compression at a signi�cant cost in computer memory or

compresses it at a signi�cant cost in time.

To limit the memory usage, the ideal scheme should perform direct logical operations

on the compressed bit vectors and produce compressed result. In an earlier paper [5], the

Byte-aligned Bitmap Code (BBC) was identi�ed to be close to this ideal case. It is generally

faster than other compressed schemes and it compresses quite well too. However, BBC

only outperforms other schemes in some cases. In a subsequent study, the author proposed

a complex dynamic scheme for switching among a number of schemes [1]. The diÆculty

of using such a strategy is that one either has to duplicate all bit sequences in di�erent

formats or has to convert to and from di�erent forms on the y. In both above mentioned

studies [1, 5], the authors have only considered byte based schemes, i.e., these schemes access

memory one byte at a time. Since on most computers accessing one word takes about the

same amount of time as accessing a byte [9], a word based scheme may potentially allow

faster logical operations. The disadvantage is that a word based scheme might take more

space than a byte based scheme. Our hope is to �nd a word based scheme that compresses

reasonably well but performs logical operation at clearly faster speed. Through extensive

testing, we have identi�ed two word based schemes that greatly outperform BBC yet use

only slightly more storage.

The remainder of this paper is organized as follows. In Section 2 we review three com-

monly used bit vectors schemes and identify the key features of BBC. Section 3 contains the

description of the two word based schemes. Section 4 contains performance tests on synthetic

data and analyses of the performance characteristics. We con�rm the relative performance

di�erences using real application data in Section 5. A short summary is given in Section 6.

2 Review of byte based schemes

In this section, we briey review three well known schemes for representing bit sequences.

We also use this chance to introduce the terminology used to described the later schemes.

A straightforward way of representing a bit sequence is to use one bit of computer memory

to represent one bit of the sequence. We call this the literal (LIT) representation. It does

not compress bit sequences, and logical operations on literal bit vectors are extremely simple

and fast. The ideal bit vector scheme should be at least as fast as the literal scheme but use

much less memory.

The second type of schemes in our comparisons is the general purpose compression scheme

such as gzip and bzip2. They are highly e�ective in compressing data �les. We use gzip to

represent these schemes because it is usually faster than bzip2 in decompressing the data. In

our tests involving gzip, only the operands of a logical operation are compressed; the results

are not. This is to save time. Had we compressed the result as well, the measured times

would be signi�cantly longer.

There are a number of compression schemes that o�er good compression and allow fast

bitwise logical operations as mentioned earlier. One of the best known schemes is the Byte-

aligned Bitmap Code (BBC) [2, 5]. The BBC scheme can perform bitwise logical operations

very eÆciently. In addition, it compresses almost as well as gzip. We use BBC as the

representative of the byte based compression schemes.

3

Many of the specialized bitmap compression schemes including BBC are based on the

basic idea of run-length encoding that represents consecutive identical bits (also called �lls)

by its bit value and its length. The bit value of a �ll is called the �ll bit. If the �ll bit is zero,

we call the �ll a 0-�ll, otherwise it is a 1-�ll. A �ll can be represented by its length and the �ll

bit. General purpose compression schemes try to store repeating bit patterns in a compact

way. The run-length encoding is among the simplest of these compression schemes. For this

reason, these specialized bitmap compression schemes can support faster logical operations.

There are many ways of using the run-length encoding idea to compress a bit sequence.

The naive implementation of using a word to represent all �ll lengths is ine�ective because it

uses more space to represent short �lls than in the literal scheme. One common improvement

is to represent short �lls literally. The second improvement is to use as few bits as possible

to represent the �ll length. Given a bit sequence, the BBC scheme �rst divides it into bytes

and then groups the bytes into runs. Each BBC run consists of a �ll followed by a tail of

literal bytes. Since a BBC �ll always contain a number of whole bytes, the BBC scheme

represents �ll length as number of bytes rather than number of bits. All these characteristics

contribute to its e�ectiveness.

A property that is crucial to the eÆciency of the BBC scheme is the byte alignment. The

essence of this property is that a �ll size is limited to be an integer multiple of a literal byte.

This ensures that during any bitwise logical operation it never breaks up a literal byte to

extract individual bits. Removing the alignment requirement can lead to better compression.

For example, the ExpGol scheme [7] can compress better than BBC partly because it does not

have byte alignment. However, bitwise logical operations on ExpGol bit vectors are usually

much slower than that of BBC [5]. Bitwise operations between two words or two bytes are

generally supported by the computing hardware and each operation takes e�ectively one

clock cycle. The operation of breaking up a byte to extract some bits involves shifting and

masking that usually takes a number of clock cycles. Additional time is needed to perform

bitwise logical operations and to assemble the bits into bytes or words. Altogether, a bitwise

logical operation that needs to access individual literal bits takes considerably longer than

one that only accesses whole bytes or words. For this reason, our word based schemes should

be word-aligned.

3 Word based schemes

Most of the known compressed schemes are byte based, that is, they access computer mem-

ory one byte at a time. On most modern computers, accessing one byte takes as much time

as accessing one word [9]. A computer CPU with MMX technology o�ers the capability of

performing a single operation on multiple bytes. This may automatically turn byte accesses

into word accesses. However, because the bytes in a BBC bit vector have complex dependen-

cies, logical operations implemented in high-level languages are unlikely to take advantage

of the MMX technology. Instead of relying on the hardware and compilers, we developed

two special schemes that access only whole words. The two new schemes are named the

word-aligned hybrid run-length code (WAH) and the word-aligned bitmap code (WBC).

4

128 bits 1,20*0,3*1,79*0,25*1

31-bit groups 1,20*0,3*1,7*0 62*0 10*0,21*1 4*1

groups in hex 40000380 00000000 00000000 001FFFFF 0000000F

WAH (hex) 40000380 80000002 001FFFFF 0000000F 00000004

Figure 2: A WAH bit vector. Each code word (bottom) represents a multiple of 31 bits from

the bit sequence shown on the top except the last two words that represent the four leftover

bits.

3.1 Word-aligned hybrid run-length code (WAH)

This is based on the hybrid run-length code (HRL) that represents long �lls using run-length

encoding and represents short �lls literally. There are two types of code words in HRL:

literal and �ll. In our current 32-bit implementation, we use the Leftmost Bit (LMB) of a

word to distinguish between a literal word (0) and a �ll word (1). The lower 31 bits of a

literal word contains the literal bit values of the bit sequence. The second leftmost bit of a

�ll word is the �ll bit and the 30 lower bits store the �ll length. The word-aligned hybrid

run-length code (WAH) imposes the word-alignment requirement on the �lls, which requires

all �ll lengths to be integer multiples of 31 bits (i.e., literal word size). We also represent �ll

lengths in multiples of literal word size. For example, if a �ll contains 62 bits, the �ll length

will be recorded as two (2).

Figure 2 shows a WAH bit vector representing a bit sequence that is an extension of b6
in Figure 1. The second line shows how the bit sequence is divided into 31-bit groups and

the third line shows the hexadecimal representation of the grouping. The last line shows

the values of the words used in WAH coding. The �rst three words are normal code words,

two literal words and one �ll word. The �ll word 80000002 indicates a �ll of two-word long

containing 62 consecutive zero bits. The forth word is the active word and the last one

counts the number of useful bits in the active word. Among the three code words, two are

literal words, only the second one is a �ll word. In this case, the three normal code words

represent 124 bits and the active word contains the last 4 bits.

3.2 Word-aligned bitmap code (WBC)

This scheme is designed to mimic the behavior of the BBC scheme. In this case, we �rst

group bits of a bit sequence into words, then group words into runs. A run contains a �ll

followed by a number of literal words called a tail. On a 32-bit machine, a literal WBC

word contains 32 bits from the sequence it represents. All �ll lengths must be multiples of

32 bits. A header word is used for each run. It contains three pieces of information, the �ll

bit, the �ll length and the tail length. Both the �ll length and the tail length are measured

in the number of words. In our current 32-bit implementation, we use the rightmost 16 bits

to store the tail length, the LMB to store the �ll bit and the remaining 15 bits to store the

�ll length.

Figure 3 shows how this scheme represents the same bit sequence shown in Figure 2. The

�rst line of this �gure shows a hexadecimal representation of the same 128 bits grouped into

5

128 bits 80000700 00000000 00000000 01FFFFFF

WBC (hex) 00000001 80000700 00020001 01FFFFFF 00000000 00000000

Figure 3: A WBC bit vector representing the same bit sequence as in Figure 2.

32 bits each corresponding a literal representation in 32-bit words. This sequence is divided

into two runs. Run 1 includes only the �rst word and run 2 includes the last three words.

The header word (00000001) of run 1 indicates that it contains no �ll words and one literal

word; the header word (00020001) of run 2 indicates that it contains a 0-�ll of two words

long followed by one literal word. The last two words are again the active word and its

associated counter. In this case, both of them are zero indicating that there is no useful bits

in the active word.

4 Performance on synthetic data

In this section, we present some timing results on synthetic data. In theory, we know what

to expect, the goal here is to how well the word-aligned schemes meet our expectation. This

section is organized into three subsections. The �rst subsection contains how the synthetic

test data is generated and how the programs are timed. The second subsection contains some

representative timing results. The last subsection contains our analyses of the performance

characteristics.

4.1 Experiment setup

The design goal of synthetic data is to reveal typical performance characteristics of the dif-

ferent bit vector schemes. For simplicity we will use time as the measure of logical operation

performance. We have conducted a number of tests on di�erent machines. To our surprise,

the relative performance among the di�erent schemes is independent of the speci�c machine

architecture. In this paper, we only report the timing results from a Sun Enterprise 450

that is based 400 MHz UltraSPARC II CPUs 1. The test data were stored in �les residing

on a �le system consisting of �ve disks connected to the internal UltraSCSI controller and

managed by a VERITAS Volume Manager2. The VERITAS software distribute �les onto the

�ve disks to maximize the SCSI controller. The machine has four gigabytes (GB) of RAM

which is large enough to store each of our test cases in memory. The cache size is 4 MB.

In most cases, this cache is too small to store the two operands and the result of a logical

operation. All test bit sequences used in this section contain 100 million bits. To limit space,

we will only show performance of the logical OR operations. Other logical operations have

similar relative performance characteristics.

Our synthetic data were generated based on two characteristics of bit sequences, namely

the bit density and the clustering factor. We de�ne the bit density as the fraction of bits in

1Information about the E450 is available at http://www.sun.com/servers/workgroup/450.
2Information about VERITAS Volume Manager is available at http://www.veritas.com/us/products.

6

0.0001 0.001 0.01 0.1 0.5 1
10

4

10
5

10
6

10
7

10
8

density

si
ze

 (
by

te
s)

LIT
BBC
WAH
WBC
gzip

0.0001 0.001 0.01 0.1 0.5 1
10

−4

10
−3

10
−2

10
−1

10
0

10
1

density

re
ad

 t
im

e
(s

ec
)

LIT
BBC
WAH
WBC
gzip

(a) sizes of bit vectors (b) time to read one bit vector

Figure 4: Sizes and time needed to read bit sequences of the random dataset.

a sequence that have the value one. The clustering factor is de�ned as the average number

of bits in 1-�lls. The �rst group of test data are generated to have speci�ed bit density.

This group consists of 20 bit sequences with ten di�erent bit densities ranging from 0.0001

to 0.5. If the bit density is d, each bit of these bit sequence has a probability d of being one.

We don't test bit sequences with higher density than 0.5 because all the algorithms tested

should behave the same if every bit of a bit sequence is turned into its complement. This

set of test data is referred to as the random dataset. The performance results shown in the

next subsection are produced with this dataset.

The second test dataset is produced by a simple Markov process. We use this process

to generate bit sequences of speci�ed bit density and clustering factor (denoted by c). Our

Markov dataset consists of 100 bit sequences with ten di�erent bit densities and �ve dif-

ferent clustering factors (2, 4, 8, 32, 128). The clustering factors of the bit sequences from

the random dataset are close to one. With increased clustering factors, most schemes can

compress better.

4.2 Some performance data

In this subsection, we show the performance data on the random dataset. The goal is to show

some representative performance plots before we attempt to characterize the performance.

The results reported in Figure 4 is on the sizes of the �ve schemes and the times it

takes to read one bit vector from a �le. As the bit density increases from 0.0001 to 0.5, the

bit sequences become less compressible and it takes more computer memory to represent

them. When the bit density is 0.0001, all four compressed schemes use less than 1% of

the disk space required by the literal scheme. At a bit density of 0.5, the test sequences

become incompressible and the compressed schemes all use slightly more space than the

literal scheme. As expected, the two word based schemes, WAH and WBC, take up more

space than the two byte based schemes, BBC and gzip. In many cases, �les storing the

7

0.0001 0.001 0.01 0.1 0.5 1
10

−3

10
−2

10
−1

10
0

10
1

density

O
R

 t
im

e
(s

ec
)

LIT
BBC
WAH
WBC

0.0001 0.001 0.01 0.1 0.5 1
10

−3

10
−2

10
−1

10
0

10
1

density

to
ta

l t
im

e
(s

ec
)

LIT
BBC
WAH
WBC
gzip

(a) logical OR time (b) total time

Figure 5: CPU seconds needed to perform a bitwise OR operation. The total time includes

the time to read the two operands from �les.

WAH and WBC bit vectors are 2.5 times as large as those for the byte based schemes.

When the bit density is 0.0001, each BBC run represents about 10,000 bits and can be

coded in three bytes. The same 10,000 bits are represented by two words in both WAH and

WBC schemes. At a bit density of 0.05, the word based schemes take almost as much space

as the literal scheme. The probability that two consecutive words contain only zero bits is

(1 � 0:05)64 = 0:04. Since the word-aligned schemes can only compress �lls that are more

than one word in length, the two word-aligned scheme can save about 4% space compared

to the literal scheme. The probability that two consecutive bytes contain only zero bits is

(1 � 0:05)16 = 0:44. In other words, there are many short �lls that can be compressed by

the two byte based schemes.

On the random dataset, the two word based schemes, WAH and WBC use nearly the

same amount of space and can be read in about the same amount of time. The two byte

based schemes, BBC scheme and gzip use about the same amount of disk space.

The most likely scenario of using these bit vectors in a real database systems is to read

a number of them from �les and then perform bitwise logical operations. Thus the time

to read bit vectors from �les is an important aspect of the overall performance. In most

cases, the bit vectors simply need to be read into memory and stored in the corresponding

in-memory data structures. Only the gzip scheme needs signi�cant amount of CPU cycles

to decompress the data �les into the literal representation. This is clearly the case as shown

in Figure 4.

Figure 5 show the times it takes to perform bitwise logical operations. It shows timing

results of logical operation OR. Each �gure has two plots, one showing only the logical

operation time and the other showing the total time including the times to read the two

operands from �les. In an actually application, once the bit vectors are read into memory,

they are likely to be used more than once. The average cost of a logical operation would be

somewhere between what is shown in the left plot and the right plot.

8

Among the schemes shown in this set of �gures, it is clear that the two word-aligned

schemes, WAH and WBC, use about the same amount of time and they use much less time

than both the BBC and the gzip schemes. In all test cases, the gzip scheme uses at least

three times more time than the literal scheme. In half of the test cases, the WAH and WBC

scheme are more than an order of magnitude faster the BBC scheme.

The logical operations on the uncompressed literal bit vectors are faster than those on

the compressed ones in some cases. For the random test data, when bit density is between

0.01 and 0.5, the logical operations on literal bit vectors can be up to eight times faster

than all other methods. However, the di�erences among the total times are smaller because

it takes longer to read the literal bit vectors. In Figure 5, we see that when bit density is

0.5, the lines for both WAH and WBC fall right on top of the line for the literal scheme.

In these cases, both WAH and WBC bit vectors contain only literal words and they can

perform logical operations as fast as the literal scheme. In general, it is possible to force any

bit sequence to be stored in such a manner. However, so far we are not able determine exact

when to only keep the decompressed form without also keep the compressed form as well.

4.3 Analyses

We have seen that WAH and WBC outperforms BBC on random data. Here we attempt to

reveal the reasons behind the performance di�erences.

From Figure 5, we might conclude that bit density determines the performance. However,

the clustering factor of the bit sequences also strongly a�ect the logical operation speed as

shown in Figure 6. From these �gures it is not clear what it is the relation among the bit

density, the clustering factor and the logical operation time. In addition, computing the bit

density and the clustering factor for a bit sequence is time-consuming because one has to

examine every bit. It turns out that the logical operation time is directly proportional to

the number of code words used to represent the bit sequences [14]. Since the compression

algorithms used in the two word-aligned bit vectors are very inexpensive, it is eÆcient to

�rst compress a bit sequence than determine if it should be decompressed or not.

The time-consuming part of a logical operation includes decoding each code word of

the two operands of the logical operation and encode the result bit vector. The decode

operation is proportional to the total number code words in the two operands. The logical

operations of BBC,WAH and WBC generates code words(bytes) directly. For each such code

words(bytes), the encoding function is invoked to determine whether it can be combined with

the preceding code word. In most cases, the total time of this encoding process is also directly

related to the total number of code words in the two operands [14]. Logical operations on

BBC bit vectors are slower than the word based schemes because its encode and decode

algorithms are much more complex and it needs to invoke them more times. The WBC

scheme is modeled after the BBC scheme. Because BBC has four di�erent run types and

WBC only has one, it is easy to see that the encoding and decoding algorithm for BBC would

be much more complex than that of WBC. Since BBC use bytes to represent bit sequences,

the �lls and literal tails typically contain less bits than the corresponding WBC code words.

Because of this, there are more BBC �les and tails than WBC. This causes the encoding

and decoding algorithm to be invoked more time for BBC than for WBC.

9

0.0001 0.001 0.01 0.1 0.5 1
10

−4

10
−3

10
−2

10
−1

10
0

density

to
ta

l t
im

e
(s

ec
)

LIT
random
2
4
8
32
128

0.0001 0.001 0.01 0.1 0.5 1
10

−4

10
−3

10
−2

10
−1

10
0

density

to
ta

l t
im

e
(s

ec
)

LIT
random
2
4
8
32
128

(a) WAH (b) WBC

Figure 6: Clustering factor improves the logical operation speed.

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

10
1

compression ratio

O
R

 t
im

e
(s

ec
)

BBC
WAH
WBC

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

10
1

compression ratio

to
ta

l t
im

e
(s

ec
)

BBC
WAH
WBC

(a) logical OR time (b) total time

Figure 7: Logical operation time is almost proportional to compression ratio.

To verify that the logical operation time is proportional to the bit vector sizes, we plotted

the time against the sizes in Figure 7. The data points in this plot include tests from both

the random dataset (larger points) and the Markov dataset (smaller points). In this �gure

we choose to use the compression ratios to represent the number of code words in the bit

vectors. The compression ratio is the ratio of space required to store the compressed bit

vector to that of the uncompressed one. Given that the bit sequences have exactly the same

number of bits, the average compression ratio is proportional to the total number of code

words. In the log-log plots, it is easy to see that there is a linear relation between the logical

operation time and the compression ratio when the compression ratio is less than 0.5. The

same is true for the total time except the lower left corner. This is because the time to read

the small �les (those with very low compression ratios) are dominated by the IO system

10

LIT gzip BBC WAH WBC

12.4 2.01 2.43 3.60 3.50

Figure 8: Total sizes (MB) of the bitmap indexes stored in various schemes.

overhead that is not related to �le sizes.

Let t denote either the logical operation time or the total time, and let r denote the

compression ratio, assuming t and r are related by log(t) = � log(r) + �, we can use a linear

regression to determine the coeÆcient �. If � is one, then the relation between t and r is

linear. For both the logical operation time and the total time of all three compressed bit

vector schemes, the values of � are in the range of 0.96 to 1.04. In fact the � value for

the logical operations on WAH bit vectors is 1.004. This con�rms that the relation between

the logical operation time and the compression ratio is indeed linear. The dashed lines in

Figure 7 are from the result of these linear regressions.

5 Performance on a real dataset

This project was initially motivated by the needs of a high energy Physics project called

STAR3 [11, 12]. In this section, we present some timing results on bitmap indexes for a set

of actual data generated from STAR. There are 868,437 tuples and 502 attributes in this

dataset. To limit the scope of this test, we selected 10 attributes that are most likely to

be used in an actual user query. In this test, each attribute is indexed like attribute X in

Table 1, i.e., the bit sequences represent a binning of the attribute values. The test index

uses 12 bins for each attribute. The expected range of each attribute is divided into 10 bins.

Two additional bins are used to store values fall blow and above the expected range.

After generating all the bit sequences, we store them in four di�erent bit vector schemes,

LIT, BBC, WAH, and WBC. Figure 8 shows the total sizes of the �les that hold the bitmap

indexes. On this bitmap index, the compressed schemes use less than one third of the space

required by the literal scheme. Comparing the word-aligned schemes against BBC, WAH

and WBC use about 50% more space. From the previous tests, we know that it is possible

for WAH to use as much as 2.6 times the space as BBC. On this set of application data,

WAH uses only about 50% more space than BBC because most of the space are taken up by

the incompressible bit vectors. Both BBC and WAH use about the same amount of space

to represent these bit vectors.

Figures 9 shows the logical operation performance on the two sets of indexes. As before

the left plot shows the logical operation time and the right shows the total time including

the time to read the two bit vectors from �les. In both plots, the horizontal axes represent

compression ratios. The test cases used for generating the data in Figures 9 involve all the

bit sequences of the test dataset. Because the bit sequences are relative small, in many

cases the IO overhead dominates the total logical operation time and the total time is

around 2� 10�4seconds. In these anomalous cases, the total times are about same for both

3Information about the project is also available at http://www.star.bnl.gov/STAR.

11

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

compression ratio

O
R

 t
im

e
(s

ec
)

LIT
gzip
BBC
WBC
WAH

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

compression ratio

to
ta

l t
im

e
(s

ec
)

LIT
gzip
BBC
WBC
WAH

(a) logical OR time (b) total time

Figure 9: Time (CPU seconds) needed to perform bitwise OR on the STAR dataset.

word-aligned schemes and byte-aligned scheme. However, in most cases, the word-aligned

schemes are still signi�cantly faster. When the compression ratios are close to one, the

logical operations on WAH bit vectors are close to 80 times faster than the same operations

on BBC bit vectors. In these cases, even include the time to read two bit vectors, the WAH

scheme is still about 20 times faster than BBC. If we sum up all the total times from all test

cases, the sum for BBC is about 12 times of those for WAH and WBC. In other words, on

average WAH and WBC are about 12 times as fast as BBC. If the IO time is not included,

the average di�erences are even larger.

Compared to the literal scheme, the BBC scheme is faster in less than half of the test

cases, the WAH and WBC are faster in about 60% of the test cases. Even in the worst cases,

the two word-aligned schemes take no more than twice as long as the literal scheme.

6 Summary

To enhance the e�ectiveness of bitmap indexes for large datasets, we set out to search for

a compressed bit vector that is able to support fast bitwise logical operations. The essence

of our approach is to trade space for speed. More speci�cally, we noticed that the best

existing schemes are byte-aligned. Naturally, we wanted to check the e�ectiveness of the

word-aligned schemes. In this paper, we have developed two such schemes, namely, WAH

and WBC. They are expected to be faster at a cost of more space. What is unexpected it

that they use only 50% more space than BBC, but are 12 times faster. For large indexes,

this performance enhancement should greatly improve the response time to a query. Because

the cost in space is modest, we believe the word-aligned schemes are superior data structure

for storing bitmap indexes.

12

7 Acknowledgments

The authors wish to express our sincere gratitude to Professor Ding-Zhu Du for his help in

simplifying the analyses of the complexity of the logical operations.

This work was supported by the Director, OÆce of Science, OÆce of Laboratory Policy

and Infrastructure Management, of the U.S. Department of Energy under Contract No.

DE-AC03-76SF00098.

This research used resources of the National Energy Research Scienti�c Computing Cen-

ter, which is supported by the OÆce of Science of the U.S. Department of Energy.

References

[1] Sihem Amer-Yahia and Theodore Johnson. Optimizing queries on compressed bitmaps.

In Amr El Abbadi, Michael L. Brodie, Sharma Chakravarthy, Umeshwar Dayal, Nabil

Kamel, Gunter Schlageter, and Kyu-Young Whang, editors, VLDB 2000, Proceedings

of 26th International Conference on Very Large Data Bases, September 10-14, 2000,

Cairo, Egypt, pages 329{338. Morgan Kaufmann, 2000.

[2] G. Antoshenkov. Byte-aligned bitmap compression. Technical report, Oracle Corp.,

1994. U.S. Patent number 5,363,098.

[3] C.-Y. Chan and Y. E. Ioannidis. Bitmap index design and evaluation. In Proceedings

of the 1998 ACM SIGMOD: International Conference on Management of Data. ACM

press, 1998.

[4] C. Y. Chan and Y. E. Ioannidis. An eÆcient bitmap encoding scheme for selection

queries. In A. Delis, C. Faloutsos, and S. Ghandeharizadeh, editors, SIGMOD 1999,

Proceedings ACM SIGMOD International Conference on Management of Data, June

1-3, 1999, Philadelphia, Pennsylvania, USA. ACM Press, 1999.

[5] T. Johnson. Performance measurements of compressed bitmap indices. In M. P. Atkin-

son, M. E. Orlowska, P. Valduriez, S. B. Zdonik, and M. L. Brodie, editors, VLDB'99,

Proceedings of 25th International Conference on Very Large Data Bases, September 7-

10, 1999, Edinburgh, Scotland, UK. Morgan Kaufmann, 1999. A longer version appeared

as AT&T report number AMERICA112.

[6] Jean loup Gailly and Mark Adler. zlib 1.1.3 manual, July 1998. Source code available

at http://www.info-zip.org/pub/infozip/zlib.

[7] A. Mo�at and J. Zobel. Parameterised compression for sparse bitmaps. In N. Belkin, P.

Ingwersen, and A. M. Pejtersen, editors, Proc. ACM-SIGIR International Conference

on Research and Development in Information Retrieval, Copenhagen, June 1992, pages

274{285. ACM Press, New York, 1992.

[8] P. O'Neil. Model 204 architecture and performance. In 2nd International Workshop in

High Performance Transaction Systems, Asilomar, CA, volume 359 of Springer-Verlag

Lecture Notes in Computer Science, September 1987.

13

[9] D. A. Patterson, J. L. Hennessy, and D. Goldberg. Computer Architecture : A Quanti-

tative Approach. Morgan Kaufmann, 2nd edition, 1996.

[10] Julian Seward. bzip2 and libbzip2, March 2000. Source code available at http://-

sourceware.cygnus.com/bzip2.

[11] A. Shoshani, L. M. Bernardo, H. Nordberg, D. Rotem, and A. Sim. Multidimensional

indexing and query coordination for tertiary storage management. In 11th International

Conference on Scienti�c and Statistical Database Management, Proceedings, Cleveland,

Ohio, USA, 28-30 July, 1999. IEEE Computer Society, 1999.

[12] K. Stockinger, D. Duellmann, W. Hoschek, and E. Schikuta. Improving the performance

of high-energy physics analysis through bitmap indices. In 11th International Conference

on Database and Expert Systems Applications DEXA 2000, London, Greenwich, UK,

September 2000.

[13] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley Publishing, 3nd

edition, 1997.

[14] Kesheng Wu, Ekow J. Otoo, Arie Shoshani, and Henrik Nordberg. Notes on Design and

Implementation of Compressed Bit Vectors. Berkeley, CA, 2001. In preparation.

[15] M.-C. Wu and A. P. Buchmann. Encoded bitmap indexing for data warehouses. In Four-

teenth International Conference on Data Engineering, February 23-27, 1998, Orlando,

Florida, USA, pages 220{230. IEEE Computer Society, 1998.

14

