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Given an OLAP query expressed over multiple source OLAP databases, we study the problem of
estimating the result OLAP target database. The problem arises when it is not possible to derive
the result from a single database. The method we use is linear indirect estimation, commonly used
for statistical estimation. We examine two obvious computational methods for computing such a
target database, called the “Full cross product” (F) and the “Pre-aggregation” (P) methods. We
study the accuracy and computational cost of these methods. While the F method provides a more
accurate estimate, it is more expensive computationally than P. Our contribution is in proposing
a third new method, called the “Partial Pre-aggregation” method (PP), which is significantly less
expensive than F, but is just as accurate. We prove formally that the PP method yields the same
results as the F method, and provide analytical and experimental results on the accuracy and
computational benefits of the PP method.
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ministration]:Statistical Databases
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1. INTRODUCTION

1.1 The Problem

In the 1990’s the area of On-Line Analytical Processing (OLAP), which was in-
troduced for the analysis of transactions of enterprise data, has attracted a lot of
interest in the research community [Agrawal et al. 1997], [Codd et al. 1993], [Gray
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et al. 1996], [Gyssens and Lakshmanan 1997], [Lenz and Shoshani 1997]. Similar to
Statistical Databases that were introduced in the 1980’s [Chan and Shoshani 1981],
OLAP databases have a data model that represents one or more “measures” over
a multidimensional space of “dimensions”, where each dimension can be defined
over a hierarchy of “categories” [Codd et al. 1993]. In the OLAP domain, such
databases and aggregations over them are often referred to as “data cubes” [Gray
et al. 1996]. Similarities and differences between Statistical and OLAP Databases
are discussed in [Shoshani 1997].

In many socio-economic applications only summarized data or aggregated data
are available because the base data for the summaries (often referred to as “micro-
data”) are not kept or are unavailable for reasons of privacy. For example, the
Census Bureau is required by law to protect information about individuals, and
therefore releases only summary data. Similarly, patient data in hospitals are con-
fidential, but the summary data from hospitals are extremely valuable to health au-
thorities. Another reason for keeping only summary data is to improve performance
of OLAP databases rather than computing over the base data. The evaluation of
queries is performed over the summary data to achieve quick answers rather than
on the base data.

We will refer to Statistical Databases or OLAP Databases that contain summa-
rized data as “summary databases”, and the measures associated with them as
“summary measures” over the dimensions. Each summary measure must have a
“summary operator” associated with it, such as “sum”, or “average”. For example,
in the summary database of population by state, race, and age, “population” is the
measure, the summary operator is “sum”, and “state”, “race”, and “age” are the
dimensions. In this paper, we address the problem of estimating queries expressed
over multiple summary databases. That is, given that the base data is not available
and that a query cannot be derived from a single summary database, we examine
the process of estimating the desired result from multiple summary databases by a
method of interpolation common in statistical estimation, called “linear indirect es-
timation”. Essentially, this method takes advantage of the fact that the summary
databases were derived from the same base data, and therefore are correlated.
For example, suppose that we have a summary database of “total-income by age,
education-level, and sex” and another summary database of “population by state,
age, race, and sex”. If we know that there is a correlation between “population”
and “total-income” of states, we can infer the result “total-income by state” even
though state is not one of the dimensions in the “total-income” database. We say, in
this case, that “population” was used as a proxy measure to estimate “total-income
by state”. The problem we are addressing is how to efficiently answer joint queries
over such summary databases.

1.2 Results

Given two source summary databases that were generated from the same base
data, each having a summary measure over a set of dimensions, the linear indirect
estimation method is used to generate a target database. Typically, the requested
summary measure from one database, which we refer to as the primary database
measure, is applied over a subset of the dimensions from the second database,
which we refer to as the “proxy” database. The resulting “target” database will
ACM Transactions on Database Systems, Vol. V, No. N, September 2006.
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have therefore a “target measure” that is the same as the “primary” database,
and “target dimensions” that exist in the proxy database, and possibly from the
primary database as well. The estimation is achieved by first calculating the target
measure over the full cross product of the dimensions from both databases using
proportional estimation, and then aggregating over all the non-target dimensions,
i.e., the dimensions that are not requested in the result (we give a detailed example
in Section 2).

The cost of generating the full cross product can be prohibitive for large databases,
and therefore it is a common practice to aggregate over all the non-target dimen-
sions of both databases first (i.e., before generating the full cross product), and
only then generate the cross product using proportional estimation to generate the
result. However, this method, which we call the “pre-aggregation” method (P),
while computationally efficient, yields results that are not as accurate as the “full
cross product” method. In Section 2.3, we describe the method for calculating the
accuracy of the result relative to the precise result derived from the base data.

We have observed that the summary databases used to generate the estimated
results typically have some dimensions in common. For example, in the databases
mentioned above: “total-income by age, education-level, and sex” and “popula-
tion by state, age, race, and sex”, “age” and “sex” are in common. This is shown
schematically in Figure 1 where we use the X-node notation introduced in [Chan
and Shoshani 1981] to represent the cross product of the dimensions below it, and
the summary measure above it. We conjectured that we can get the same accu-
racy as the “full cross product” method by pre-aggregating only the non-common
dimensions. For example, if the target database is total-income-by-state, we can
aggregate first over “education-level” in the total-income database, and over “race”
in the “population” database. Then, we can form the cross product of the resulting
databases, and finally aggregate over the non-target common dimensions “sex” and
“age” of this cross-product. It turns out that our conjecture was correct, and this
produces precisely the same result as the “full cross product” method. We call
this method the “partial pre-aggregation” method. This method saves unnecessary
computations for obtaining the same accuracy as the full cross product method,
and can be many-fold more efficient depending on the number and the cardinalities
of non-common dimensions that can be pre-aggregated.

In this paper, we prove formally that the “partial pre-aggregation” (PP) method
is as precise as the “full cross product” (F) method. We also prove that the PP
method is always less expensive than the F method, provided that there is at least
one non-common dimension in each of the source summary databases. Furthermore,
we prove that “partial pre-aggregation” can be applied together with operations
over category hierarchies of the dimensions. For example, if the state dimension
includes the organization of states into regions (i.e., a category hierarchy), and the
query requests total-income by region, we could aggregate first within the dimension
“state-region” to the “region” level and only then apply the “pre-aggregation”
method over the dimensions. This reduces the computational cost. Conversely, we
prove that if dis-aggregation from the region to the state level is desired, one can
perform the dis-aggregation after the partial pre-aggregation method is applied,
again reducing the computational cost. In addition to these results we develop
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Fig. 1. Illustration of two summary databases, and a joint query

formulas for the computational cost of the three methods: F, P, and PP. Using
these formulas and a measure of accuracy, called Average Relative Error, we derive
experimental results showing the trade-off between the gain in accuracy versus the
increase in computational cost. We show that the gain in accuracy can be very
large, especially when the cardinality-product of the dimensions is high, which is
usually the case. We also show the large gain in computational cost of the PP
method versus the F method when the cardinality-product is large. Finally, we
extend the main result of applying the PP method for two databases to the case
of three or more databases. We prove that it is possible to pre-aggregate over
non-common dimensions without loss in accuracy, provided that these dimensions
appear in only one database each (i.e., a dimension that appears in two or more
databases is considered a common dimension). Furthermore, we show that under a
more strict condition, called the proxy-non-commonality (PNC) condition, applying
the proxy databases in any order yields the same result, and therefore the same
accuracy.

Incidentally, the cardinality of some dimensions can be very large. Even pre-
aggregating over a single dimension with a large cardinality can reduce the compu-
tational complexity many fold. Dimensions with large cardinalities exist when items
such as type of products, diseases, and chemical or biological species are used as
dimensions (often with a classification hierarchy). The development of such hierar-
chical codes is often done as part of standards activities, such as NAICS, the North
American Industry Classification System. There are similar large standardization
activities in various business and scientific domains.
ACM Transactions on Database Systems, Vol. V, No. N, September 2006.



... · 5

1.3 Related Works

The abovementioned problem falls under the general area of answering queries
from multiple summary databases. In this area, several studies were published.
In [Malvestuto 1993], for instance, the definition of a universal statistical database
containing several summary tables which share the same summary measure is ex-
amined. Given a query, a system of linear equations over the universal database is
constructed whose solutions satisfy the query. A similar approach has been used
in [Ng and Ravishankar 1995], where the universal table scheme definition was not
used for practical implementation reasons. Instead, the authors consider combina-
tions of the given tables and use a measure for the best quality of the response to
the query. Both of these papers assume that the databases have the same sum-
mary measure. In this paper, we target the problem of non-homogeneous summary
databases, where the summary measures are different.

In [Faloutsos et al. 1997], the estimation of the unknown contents of a summary
database (i.e., the values in each cell of a table) when the marginal distributions 1 of
the table are given, is addressed. Their approach is based on interpolating the values
from the marginal values by enforcing some criterion, such as the smoothness of the
distribution of values. In our work, we take a different approach of estimating the
values of the target database by using additional information from proxy databases.

In [Buccafurri et al. 2001], the authors studied the problem of estimating range
queries over aggregate data using a probabilistic approach for computing the ex-
pected value and variance of the answers. The estimation of a range query is based
on the knowledge of a compressed representation of the data cube. Specifically, the
data cube is partitioned into blocks of possibly different sizes where each block con-
tains a number of aggregate data values. In this work, the authors addressed query
estimation without making any assumption on the data distribution. In contrast,
we rely on the correlation of data distributions between the summary databases for
the estimation of the target results.

In a previously published paper [Pourabbas and Shoshani 2003], we introduced
the idea of using partial pre-aggregation which is the subject of this paper, and
illustrated its usefulness with examples. In this paper, we prove formally that our
proposed method is as accurate as the full cross product method (in the previous
paper only a sketch of the proof was provided). We also prove in this paper that the
PP method can be applied with aggregation over the category hierarchy (roll-up),
and dis-aggregation (drill-down) operators over the category hierarchies in order to
reduce computational cost. In addition, we introduce a method for estimating the
computation cost, and prove that the PP method is always more efficient than the F
method. We show, by way of examples, that the savings in computation costs that
our method provides can be many-fold depending on the number of non-common
dimensions that can be pre-aggregated. Finally, we expand the methodology from
two databases to multiple databases.

The paper is structured as follows. The next section describes the methodol-
ogy we use to reduce the cost of estimating the joint queries when using a proxy

1“Marginals” is a commonly-used term in Statistics that refers to the summary of rows and
columns in the “margins” of a table.
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database, and introduce the method for evaluating the accuracy. In this section we
also introduce the joint query syntax which provides the basis for a formal analysis
of the results in this paper. Section 3 provides the formal definitions and examples
of the three methods for generating the estimation of the query results. In Section 4
we prove that the PP method gives the same results as the F method. In Section 5
we develop the methodology for applying the PP method together with roll-up and
drill-down operations over category hierarchies. In Section 6 we develop formulas
for performance evaluation of the three methods, and prove that the PP method is
always less expensive computationally than the F method. Section 7 evaluates the
accuracy and cost trade-offs. Finally, Section 8 extends the results of using the PP
method to three or more databases. Section 9 contains the conclusions.

2. METHODOLOGY AND FORMAL MODEL

2.1 Approach

We focus on a class of queries defined by a single summary measure over multi-
ple summary databases where the result requires aggregation along one or more
dimensions. The summary operators that we consider in this paper are COUNT,
SUM. However, given that both COUNT and SUM are computed (thus doubling
the computational cost), the AVERAGE operator can be supported as well. As
stated above, it is assumed that the base data, or micro-data, are not available for
privacy reasons or are no longer available when the multiple databases are queried.

We assume that common dimensions in the summary databases have the same
domain values and each dimension has at least two possible values. Range queries
may specify a subset of the values. For example, the query might ask for results
only for “Black” and “Hispanic” for the race dimension that has seven race values.
For the purpose of evaluating computational costs, we consider only queries that
include all possible values for each dimension of interest. Thus, our joint query
syntax does not include the ability to specify a subset of dimension values. However,
we note that it is possible to restrict the computation for subsets of values by
simply calculating only the combination of values of interest. For example, for the
joint query to estimate population by state and race, where state is restricted to
“Alabama” and “Georgia”, and race is restricted to “Black” and “Hispanic”, only
the corresponding four cells have to be calculated.

To motivate our work, let us reconsider the summary databases mentioned in the
previous section and shown in Figure 1. Note that from now on we use the shorter
term “Education” instead of “Education-level”. One database represents Total-
Income by Education, Age, and Sex, and the second database represents Population
by State, Age, Race, and Sex. All the dimensions have a single category hierarchy
level except one of the dimensions that has three levels of categories: State→ Region
→ Country. The query over the two summary databases: find the “Total-Income by
State”, is represented with the broken line in Figure 1. Similar queries at a higher
level of the category hierarchy are “Total-Income by Region”, and “Total-Income
by Country”. Note that “State” is not a dimension in the Total-Income summary
database, and thus it is not possible to derive “Total-Income by State” from that
summary database alone.

Consider the databases mentioned in Figure 1 written in the following nota-
ACM Transactions on Database Systems, Vol. V, No. N, September 2006.
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tion: “summary-measure (dimension,...,dimension)”. Using this notation the two
databases are: Total-Income(Age,Education,Sex) and Population(State,Age,Race,
Sex). Our goal is to derive Total-Income(State).

One obvious method of estimating this result is to aggregate each of the source
summary databases to the maximum level. We call this the Pre-aggregation (P)
method. In this case, we can aggregate Population(State,Age,Race,Sex) over Age,
Race, Sex to produce Population(State)2 and Total-Income(Age,Education,Sex) over
Age, Education, and Sex to produce Total-Income(•), where the symbol “•” indi-
cates aggregation over all the dimensions. Then, we can calculate the propor-
tional estimated values using linear indirect estimation (see Section 2.2) to pro-
duce Total-Income(State). Another possibility is to produce the full cross product:
Total-Income(State,Age,Education,Race,Sex) using Population as a proxy summary
measure. Then, from this result we can aggregate over Age, Education, Race and
Sex to get Total-Income(State). We call this the Full cross product (F) method.
This method is based on the well-known “small area estimation” methodology ac-
cording to which the most accurate result that can be obtained using linear indirect
estimation is when the solution is based on the largest number of cells that can be
generated from the source summary databases.

The proposed Partial Pre-aggregation (PP) method achieves the same accuracy
as the F method but at a much lower computational cost. This is achieved by
noticing that it is possible to pre-aggregate over all the dimensions that are not in
common to the two source databases before performing the cross product, and still
achieve the same accuracy of the full cross product computation. According to this
method, in our example, Sex and Age are in common to the two databases. Thus, we
first aggregate over Education in the Total-Income(Age,Education,Sex) database to
produce Total-Income(Age,Sex), and over Race in Population(State,Age,Race,Sex)
database to produce Population(State,Age,Sex). Then, we use the linear indirect
estimation to produce Total-Income(State,Age,Sex). Note that we have State in
Total-Income(State,Age,Sex) in addition to Sex, Age, because it is the dimen-
sion we want in our result. Finally, we aggregate over Age, and Sex in Total-
Income(State,Age,Sex) to produce Total-Income(State). We show that this result
is as accurate as the result obtained by using the F method, but by performing
the aggregations over the non-common dimensions first we reduce the computation
needed. We extend these results to the case of the dimensions that are defined over
category hierarchies. We also extend these results to the case of multiple source
summary databases.

2.2 The Linear Indirect Estimation Method

Our methodology of estimating the result of a joint query is based on the linear in-
direct estimation method, known in the literature as Small Area Estimation (SAE)
[Rao 2003]. There is great interest in the SAE method because of the tendency in
many countries to base future censuses on administrative record systems [Chand
and Alexander 1996]. This technique is quite popular, not only from a theoretical
point of view [Ghosh and Rao 1994], but it is used in practice in commercial prod-

2Population(State) is equivalent to Population(State,ALL,ALL,ALL), where ALL indicates the
construct introduced in [Gray et al. 1996]. For the sake of brevity, we use the first notation.
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ucts, such as RTI international [RTI ]. The main idea of such an approach is to
use data from surveys of variables of interest at the national or regional level, and
to obtain estimates at more geographically disaggregated levels such as counties
or other small areas. This approach is characterized by indirect estimation tech-
niques, and is used in many domains (e.g., socio-economic area [Pfeffermann 2002],
and health area [Elliott et al. 1996]).

An indirect estimation calculates values of the variable of interest using available
auxiliary (called predictor or proxy) data at the local level that are correlated with
the variable of interest [Ghosh and Rao 1994], [Pfeffermann 2002], [Schaible 1996].
For example, suppose that we have Total-Income at the Region level, and Population
at the State level. We can use the population data (at the State level) as a proxy for
predicting the Total-Income at a State level. It is assumed that the Total-Income
and Population are correlated, and therefore the distribution of Total-Income at
the State level is proportional to the distribution of Population at the State level.
Specifically, we can use the following proportions for a particular Statei that belongs
to Regionj :

Total-Income(Statei)=Total-Income(Regionj)
Population(Statei)

Population(Regionj)
.

The population of Regionj is calculated by summing up the population of all the
states in that region. A more generalized notation for all state values is:

Total-Income(State)=Total-Income(Region)
Population(State)∑

Region Population(State)

In the above example, we illustrate how Linear Indirect Estimation is used to
generate proportional fractions of the proxy measure. Now, suppose that the
databases have multiple dimensions, some of which can be in common between
the databases. The approach of “small area” estimation is to estimate the result
based on the smallest possible areas by calculating the full cross product of the di-
mensions, and then aggregating to the desired dimensions. For example, given the
databases Income(Age,Education,Sex), and Population(State,Age,Race,Sex), where
Income(State,Age) is requested, the small area estimation methodology requires the
calculation (by linear indirect estimation) of the cross product Income(State,Age,
Education,Sex,Race) and then aggregating over that to get Income(State,Age). The
expression for generating the cross product in the above example can be found in
Section 3, Example 2.

Formally, let i denote a small area. A target measure Y (d) is provided over a
set of dimensions d. Y (d) was generated from Y (d) =

∑
i Y (i, d). Y (i, d) is no

longer available. However, auxiliary information in the form of X(i, d) is available.
A linear indirect estimation of Y for small area i is defined by:

Ŷ (i) =
∑

d Ŷ (i, d) =
∑

d Y (d)
X(i, d)
X(d)

where X(d) =
∑

i X(i, d). X(i, d)/X(d) represents the proportion of the population
of small area i relative to the total population over set of dimensions d. Note that
in this method, the sum over all estimated values,

∑
i Ŷ (i), must be equal to sum

over the true value
∑

d Y (d) [Ghosh and Rao 1994]. This condition is illustrated in
ACM Transactions on Database Systems, Vol. V, No. N, September 2006.
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the examples in Section 3 (see Table IV).
A more general case is when the set of dimensions for X and Y does not fully

overlap. Let dX and dY represent the set of dimensions for X and Y , respectively.
The above formula can be generalized, as follows:

Ŷ (i, dX ∪ dY ) = Y (dY )
X(i, dX)∑

i,
(
dX−(dX∩dY )

) X(i, dX)
(1)

This is the basis for the F method as defined in Definition 3.1 in Section 3.

2.3 Average Relative Error

The estimate is subject to error. For the purpose of evaluating the estimated errors,
we assume in our examples, that we know the values from the base data, and can
evaluate the error exactly. This provides us with the means of comparing the
accuracy of the results using different computational methods.

A method that is commonly used for measuring accuracy is the average relative
error (ARE) [Ghosh and Rao 1994]. This is defined simply by taking the absolute
value of the difference between each estimated value and the corresponding precise
value and dividing by the precise values. The fractions are summed and divided by
the number of estimated values. Formally,

ARE =
1
m

m∑

i=1

|v̂i − vi|
vi

. (2)

where v̂i and vi are, respectively, the estimated and precise (or base data) values,
and m is the number of small areas for which estimated values were calculated.

We use the Average Relative Error (ARE) together with computational cost
expressions to evaluate the trade-off of cost and accuracy in Section 7.

2.4 The Joint Query Syntax

We define the syntax of a joint query on two summary databases, in terms of the
common and non-common dimensions of the databases. In the following sections,
we assume two source summary databases, called DBP and DBQ that are used to
answer joint queries and produce a target database DBT . The databases are defined
as follows: DBP = MP ({Ai

P 0 < i ≤ m}), DBQ = MQ({Aj
Q 0 < j ≤ n}), and

DBT = MT ({Ak
T 0 < k ≤ t}), where MP , MQ, and MT are the measures of the

corresponding databases, Ai
P , Aj

Q, and Ak
T are the corresponding dimensions, and

m, n, and t are the cardinalities of the corresponding dimensions. In expressing a
joint query over the two source summary databases, one of the measures, either MP

or MQ is selected. Without loss of generality, suppose that MP is selected. Thus,
MP = MT . MQ is called the proxy measure, DBQ is called the proxy database, and
DBP is called the primary database.

Given two source summary databases DBP and DBQ that are used to generate a
target database DBT , we can classify the source database dimensions as belonging
to three disjoint groups: target dimensions, common dimensions, and non-common
dimensions. First, we pick the dimensions in the source databases that are specified
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in the target database for the target group; then the remaining dimensions are
considered common if they are in both source databases, and are considered non-
common otherwise. Note that a target dimension can exist in both source databases.
For example, given DBP = MP (A1, A2, A3, A4), and DBQ = MQ(A1, A3, A5, A6),
and DBT = MP (A1, A2, A5). A1, A2 and A5 are classified as target dimensions, and
therefore are not eligible for the common or non-common groups. A3 is classified
as common, and A4 and A6 are classified as non-common. The target dimensions
are further classified as common-target if they exist in both source databases, and
as non-common-target if they exist in a single source database only. Thus, A1 is a
common-target dimension and A2, A5 are non-common-target dimensions.

We use the following notation: DBP = MP (AC
P , AC

P , AT C

P , AT C

P ), and DBQ =

MQ(AC
Q, AC

Q, AT C

Q , AT C

Q ), where C, C, and T refer to the common, non-common,
and target dimension-groups, respectively. Note that AC

P = AC
Q, and AT C

P = AT C

Q .
We use the notation AT for the group of target dimensions {Ak

T 0 < k ≤ t}.
Thus, DBT = MT (AT ). Using the notation above, we have AT = AT C

P ∪AT C

P ∪AT C

Q .

Note that AT C

Q must always exist to make the proxy summarization meaningful.

However, AT C

P and AT C

P may or may not exist. Indeed, if AT C

Q does not exist, then
there is no need to use DBQ, since the results can be obtained from DBP only.

Example 1 Let us consider the source summary databases mentioned above: Total-
Income(Age,Education,Sex), and Population(State,Age,Race,Sex). For the sake of
brevity, we use “Income” to mean “Total-Income” in the rest of paper. Let us
assume that the joint query expressed over them is Income(State). In this case, In-
come(State) is the target summary database, Population(State,Age,Race,Sex) is the
proxy database, and Income(Age,Education,Sex) is the primary database. AT =

{State} is the target dimension, where AT C

Population = AT C

Income =Ø, AT C

Population =

{State}, AT C

Income =Ø are the non-common target dimensions, AC
Population = AC

Income

= {Age, Sex} are the common dimensions between the source summary databases,
and AC

Population = {Race}, and AC
Income = {Education} are the non-common di-

mensions. If the joint query expressed over the source databases is Income(State,Sex),

then AT = {State, Sex} and accordingly, AT C

Population = AT C

Income = {Sex}, AT C

Population

= {State}, AT C

Income =Ø, and AC
Population = AC

Income = {Age}.

3. DEFINITION OF THE AGGREGATION METHODS

We assume that the joint query is formulated on two source summary databases. In
order to describe the proposed Partial Pre-aggregation method, we first define the
Full cross product, and the Pre-aggregation methods. For the definition of these
methods, we use the formalism defined for a joint query in Section 2.4.

3.1 The Full Cross Product (F) Method

The next definition provides the expression for calculating the estimate of the tar-
get database using linear indirect estimation for the full cross product F method.
ACM Transactions on Database Systems, Vol. V, No. N, September 2006.
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The expression is in terms of the common, non-common, and target groups of di-
mensions. Note that consistent with the notation used in the literature, we use the
symbol “ˆ” over the target measure to indicate that this is an estimated result.

The following definition is based on Eq. 1 in Section 2.2, where the dX ∪ dY

represents the union of common and non-common dimensions, dX ∩ dY represents
the common dimensions, and i represent the target dimensions.

Definition 3.1. Let MP (AC
P , AC

P , AT C

P , AT C

P ) and MQ(AC
Q, AC

Q, AT C

Q , AT C

Q ) be
two source summary databases. The full cross product estimator of DBT = M̂P (AT C

P ,

AT C

P , AT C

Q ) is the estimator that is computed by applying the linear indirect esti-
mation as follows:

M̂P [F](AC
P , AC

P , AT C

P , AT C

P , AC
Q, AT C

Q ) =

MP (AC
P , AC

P , AT C

P , AT C

P )
MQ(AC

Q, AC
Q, AT C

Q , AT C

Q )
∑

AC
Q

,AT C

Q

MQ(AC
Q, AC

Q, AT C

Q , AT C

Q )

(3)

and then summarizing over the common and non-common dimensions:

M̂P [F](AT C

P , AT C

P , AT C

Q ) =
∑

AC
P

,AC
P

,AC
Q

M̂P [F](AC
P , AC

P , AT C

P , AT C

P , AC
Q, AT C

Q )

Example 2 Table I and Table II represent the data in the source summary databases
Income(Age,Education,Sex), and Population(State,Age,Race,Sex). Suppose that
Income(State) is the target summary database. We first obtain the full cross prod-
uct summary database by Eq. (3):

Încome[F](State, Age,Education, Race, Sex) =

Income(Age,Education, Sex)
Population(State, Age,Race, Sex)∑

State,Race Population(State, Age,Race, Sex)

which is shown in Table III (only one state is shown); then we summarize all
dimensions except the target dimension. The result is shown in Table IV, third
column. Note that in this example the single target dimension is in the proxy
database Population.

3.2 The Pre-aggregation (P) Method

The pre-aggregation method is based on summarizing the summary databases over
all common and non-common dimensions before the application of the linear indi-
rect estimation method.

Definition 3.2. Let MP (AC
P , AC

P , AT C

P , AT C

P ) and MQ(AC
Q, AC

Q, AT C

Q , AT C

Q ) be

source summary databases. The pre-aggregation estimator of DBT = M̂P (AT C

P , AT C

P ,

AT C

Q ) is the estimator that is computed by pre-summarizing all common and non-
common dimensions in the source summary databases as follows:
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Table I. Income(Age,Education,Sex)

Income Sex

Age Education Male Female

< 25 High School 105774000 84364500
Bachelor or higher degree 161874000 126092500

25÷34 High School 219398500 192286000
Bachelor or higher degree 265824500 234622500

35÷44 High School 454273000 447521000
Bachelor or higher degree 564399000 537749000

45÷54 High School 1026221000 943504500
Bachelor or higher degree 1202296500 1144370000

55÷64 High School 1073901500 988478000
Bachelor or higher degree 1146216500 1027928500

65÷74 High School 840126000 799786500
Bachelor or higher degree 975004500 866734000

≥ 75 High School 742101500 669896500
Bachelor or higher degree 751386000 664883000

MP (AT C

P , AT C

P ) =
∑

AC
P

,AC
P

MP (AC
P , AC

P , AT C

P , AT C

P )

MQ(AT C

Q , AT C

Q ) =
∑

AC
Q

,AC
Q

MQ(AC
Q, AC

Q, AT C

Q , AT C

P )

and then applying the linear indirect estimation:

M̂P [P](AT C

P , AT C

P , AT C

Q ) = MP (AT C

P , AT C

P )
MQ(AT C

Q , AT C

Q )
∑

AT C

Q

MQ(AT C

Q , AT C

Q )
(4)

Example 3 Consider Table I and Table II. To apply the P method, we first sum-
marize all common and non-common dimensions in the source summary databases
Income and Population:

∑
Age,Race,Sex Population(State, Age, Race, Sex) = Population(State)∑
Age,Education,Sex Income(Age,Education, Sex) = Income(•)

Then, by applying linear indirect estimation, we obtain:

Încome[P](State) = Income(•) Population(State)∑
State Population(State)

Since the only target dimension is in the proxy database Population, we sum
over all dimensions in the Income database. The result of the target summary
database Încome(State) is shown in Table IV, fourth column. We observe that
Încome[F](State) and Încome[P ](State) are different, and therefore their Average
Relative Errors are different. We will address the accuracy issue in a later section by
using the expression for calculating the Average Relative Error (ARE) (see Eq. 2).
ACM Transactions on Database Systems, Vol. V, No. N, September 2006.
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Table II. Population(State,Age,Race,Sex)

Population Sex Sex

Age Race State Male Female State Male Female . . .

< 25 White Alabama 290 221 California 802 715 . . .
Black 270 204 569 687 . . .

Hispanic 241 149 443 467 . . .
Other 250 136 390 222 . . .

25÷ 34 White 495 537 802 704 . . .
Black 343 343 569 490 . . .

Hispanic 332 154 443 375 . . .
Other 353 163 290 274 . . .

35÷ 44 White 906 670 1065 945 . . .
Black 586 590 880 920 . . .

Hispanic 420 296 667 668 . . .
Other 344 286 491 445 . . .

45÷ 54 White 1130 969 3190 3490 . . .
Black 870 577 2860 3090 . . .

Hispanic 646 585 1960 1910 . . .
Other 567 498 1579 1789 . . .

55÷ 64 White 739 559 2180 2870 . . .
Black 618 530 2399 2390 . . .

Hispanic 511 390 1710 1790 . . .
Other 440 375 1520 1639 . . .

65÷ 74 White 475 430 1716 1379 . . .
Black 527 474 1310 1127 . . .

Hispanic 456 360 867 890 . . .
Other 335 269 640 715 . . .

≥ 75 White 497 468 1116 865 . . .
Black 429 318 880 612 . . .

Hispanic 394 335 765 555 . . .
Other 306 239 500 518 . . .

We show that the accuracy difference between the PP method and the P method
can be very significant, and is sensitive to the cardinality of the dimensions: the
larger the cardinality, the larger the difference.

3.3 The Partial-Pre-aggregation (PP) Method

This method was devised with the expectation that it will provide the same accuracy
as the F method but with a lower computational complexity. As mentioned above,
the main idea is to summarize the source summary databases only over non-common
dimensions, and then estimate the target summary database with the common and
target dimensions.

Definition 3.3. Let MP (AC
P , AC

P , AT C

P , AT C

P ) and MQ(AC
Q, AC

Q, AT C

Q , AT C

Q ) be
source summary databases. The partial pre-aggregation estimator of DBT = M̂P (AT C

P ,

AT C

P , AT C

Q ) is the estimator that is computed by pre-summarizing over all the non-
common dimensions in the source databases as follows:
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Table III. Încome[F](State,Age,Education,Race,Sex)

Încome Sex

State Age Education Race Male Female

Alabama < 25 High school White 2080894.105 1366602.250
Black 1937384.167 1261479.000
Hispanic 1729294.756 921374.3678
Other 1793874.228 840986.0001

Bachelor or higher degree White 3184550.573 2042545.078
Black 2964926.396 1885426.226
Hispanic 2646471.338 1377100.528
Other 2745302.218 1256950.817

......... ......... ......... ......... .........

......... ......... ......... ......... .........

......... ......... ......... ......... .........
≥ 75 High school White 19478449.720 17832407.830

Black 16813390.200 12116892.500
Hispanic 15441668.390 12764650.900
Other 11992767.840 9106721.091

Bachelor or higher degree White 19722146.400 17698950.230
Black 17023744.070 12026209.770
Hispanic 15634860.520 12669120.360
Other 12142810.460 9038566.464

Total 696964726.800 540632187.100

......... ......... ......... ......... ......... .........

Table IV. Încome(State) by methods F (or PP) and P, and their ARE

Income=I Î([F ]/[PP ]) Î[P ]
|Îi[F ]−Ii|

Ii

|Îi[P ]−Ii|
Ii

Alabama (AL) 958808000 1237596914 1238898065 0.290766153 0.292123204
California (CA) 3925821500 3357547451 3241886947 0.144752901 0.174214379
Florida (FL) 2070083000 2346319696 2227279446 0.133442328 0,075937267
Nevada (NV) 825903000 846220715 862525859 0.024600607 0.044342809
Missouri (MO) 640774500 873014896 1012815964 0.362437013 0.580612156
New Jersey (NJ) 1091973500 851977231 852821696 0.219782136 0.219008798
Texas (TX) 5026737500 4709126342 4707215468 0.063184353 0.063564495
Virginia (VA) 2030547000 2319814110 2398172234 0.142457727 0.181047389
Washington (WA) 1686365000 1715395645 1715397321 0.017214924 0.017215918

Total 18257013000 18257013000 18257013000

ARE 0.155404238 0.183118491

MP (AC
P , AT C

P , AT C

P ) =
∑

AC
P

MP (AC
P , AC

P , AT C

P , AT C

P )

MQ(AC
Q, AT C

Q , AT C

Q ) =
∑

AC
Q

MQ(AC
Q, AC

Q, AT C

Q , AT C

Q )

then estimating the cross product:
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Table V. Încome[PP](State,Age,Sex)

Încome Sex

State Age Male Female

Alabama < 25 19082697.78 10952464.27
25÷ 34 42617914.01 30419041.28
35÷ 44 86519239.21 65229031.38
45÷ 54 159694598.8 123830217.71
55÷ 64 137391938.4 105596069.57
65÷ 74 123408500.9 101351843.79
≥ 75 128249837.6 103253519.1

Total 696964726.8 540632187.1

...... ...... ...... ...... ......

M̂P [PP](AC
P , AT C

P , AT C

P , AT C

Q ) = MP (AC
P , AT C

P , AT C

P )
MQ(AC

Q, AT C

Q , AT C

Q )
∑

AT C

Q

MQ(AC
Q, AT C

Q , AT C

Q )

and finally summarizing over the common dimensions as follows:

M̂P [PP](AT C

P , AT C

P , AT C

Q ) =
∑

AC
P

M̂P [PP](AC
P , AT C

P , AT C

P , AT C

Q ) (5)

Example 4 Consider again Table I and Table II. First, we summarize the source
summary databases over non-common dimensions as follows:

∑
Education Income(Age,Education, Sex) = Income(Age, Sex)∑
Race Population(State,Age, Race, Sex) = Population(State, Age, Sex)

Then, by applying the linear indirect estimation, we obtain

Încome[PP](State) =
∑

Age,Sex Încome[PP](State, Age, Sex)

=
∑

Age,Sex

(
Income(Age, Sex)

Population(State, Age, Sex)∑
State Population(State, Age, Sex)

)

In Table V, the result of the cross product for one state is illustrated. This
was used to generate Î ncome[PP](State). We note that the results obtained by
Î ncome[PP](State) were identical to Î ncome[F](State) shown in Table IV, and
therefore are shown in the same (third) column.

In Table VI, an example is shown with a common target dimension over source
summary databases in Table I and Table II. In this case, the target summary
database is Income(State,Sex), and the estimation by the PP method shown in the
fourth column is obtained by summarizing over the common dimension as follows:

Încome[PP](State, Sex) =
∑

Age Încome[PP](State,Age, Sex)

=
∑

Age

(
Income(Age, Sex)

Population(State,Age, Sex)∑
State Population(State,Age, Sex)

)
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Table VI. Încome(State, Sex) by methods F (or PP) and P, and ARE

State Sex Income=I Î([F ]/[PP]) Î[P ]
|Îi[F ]−Ii|

Ii

|Îi[P ]−Ii|
Ii

Alabama Male 544850500 696964727 705127459 0.279185257 0.294166857
Female 413957500 540632187 537115816 0.306008919 0.297514397

California Male 2018050500 1728559519 1669518558 0.143450811 0.172707245
Female 1907771000 1628987932 1571081867 0.146130258 0.176482992

Florida Male 1154800500 1300477704 1237122315 0.126149239 0.071286612
Female 915282500 1045841991 994424671 0.142643928 0.086467479

Nevada Male 430034000 441392745 446580724 0.026413598 0.038477711
Female 395869000 404827970 415739712 0.022631148 0.050195170

Missouri Male 328957000 444459592 523955277 0.351117599 0.592777404
Female 311817500 428555304 488594342 0.374378615 0.566924057

New Jersey Male 552702500 430903383 440179785 0.220370122 0.203586405
Female 539271000 421073849 412360106 0.219179505 0.235337879

Texas Male 2582131500 2417157398 2397791813 0.063890666 0.071390511
Female 2444606000 2291968943 2306049423 0.062438306 0.056678490

Virginia Male 1043676000 1183334254 1222374551 0.133813802 0.171220332
Female 986871000 1136479857 1174123104 0.151599203 0.189743243

Washington Male 873594000 885547178 886146019 0.013682761 0.014368252
Female 812771000 829848467 828727459 0.021011413 0.019632171

Total 18257013000 18257013000 18257013000

ARE 0.155783064 0.183830956

The estimation using the P method, shown in the fifth column, is obtained by
summarizing first over all common and non-common dimensions as follows:

∑
Age,Race Population(State, Age, Race, Sex) = Population(State, Sex)∑
Age,Education Income(Age, Education, Sex) = Income(Sex)

and then by applying the linear indirect estimation:

Încome[P](State, Sex) = Income(Sex)
Population(State, Sex)∑

State Population(State, Sex)

4. THE EQUIVALENCE OF PP AND F METHODS FOR TWO SOURCE SUMMARY
DATABASES

As discussed in Section 2.2, the indirect linear estimation over the full cross product
of the dimensions provides the most accurate estimated result. It follows that other
methods, such as the pre-aggregation P method may be statistically less accurate.
In this section, we prove that the partial pre-aggregation over dimensions in the
PP method gives precisely the same result as the F method. Thus, we need only
to analyze the accuracy of the P method relative to the PP method, since the PP
method produces the same accuracy as the F method.

In the following theorem we use the definitions for methods F and PP introduced
in the previous section.

Theorem 4.1. The estimation of any joint query M̂P (AT C

P , AT C

P , AT C

Q ) over

MP (AC
P , AC

P , AT C

P , AT C

P ) and MQ(AC
Q, AC

Q, AT C

Q , AT C

Q ) using the methods F and PP
give the same results.
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Proof. We show F⇔PP as follows:

M̂P [F](AT C

P , AT C

P , AT C

Q )

=
∑

AC
Q

,AC
P

,AC
Q

(
M̂P [F](AC

P , AT C

P , AT C

P , AC
Q, AC

Q, AT C

Q )
)

=
∑

AC
Q

,AC
P

,AC
Q


MP (AC

P , AC
P , AT C

P , AT C

P )
MQ(AC

Q, AC
Q, AT C

Q , AT C

Q )
∑

AC
Q

,AT C

Q

MQ(AC
Q, AC

Q, AT C

Q , AT C

Q )




=
∑

AC
Q


∑

AC
P

,AC
Q


MP (AC

P , AC
P , AT C

P , AT C

P )
MQ(AC

Q, AC
Q, AT C

Q , AT C

Q )
∑

AC
Q

,AT C

Q

MQ(AC
Q, AC

Q, AT C

Q , AT C

Q )







=
∑

AC
Q




(∑
AC

P

MP (AC
P , AC

P , AT C

P , AT C

P )
)




∑
AC

Q

MQ(AC
Q, AC

Q, AT C

Q , AT C

Q )
∑

AC
Q

,AT C

Q

MQ(AC
Q, AC

Q, AT C

Q , AT C

Q )







=
∑

AC
Q




(∑
AC

P

MP (AC
P , AC

P , AT C

P , AT C

P )
)




∑
AC

Q

MQ(AC
Q, AC

Q, AT C

Q , AT C

Q )

∑
AT C

Q

(∑
AC

Q

MQ(AC
Q, AC

Q, AT C

Q , AT C

Q )
)







=
∑

AC
Q




(∑
AC

P

MP (AC
P , AC

P , AT C

P , AT C

P )
)




∑
AC

Q

MQ(AC
Q, AC

Q, AT C

Q , AT C

Q )
∑

AT C

Q

(
MQ(AC

Q, AT C

Q , AT C

Q )
)







=
∑

AC
Q


MP (AC

P , AT C

P , AT C

P )
MQ(AC

Q, AT C

Q , AT C

Q )
∑

AT C

Q

MQ(AC
Q, AT C

Q , AT C

Q )




=
∑

AC
P

M̂P [PP]
(
AC

P , AT C

P , AT C

P , AT C

Q

)

The last term is the same as M̂P [PP](AT C

P , AT C

P , AT C

Q ) (see Eq. (5)).

5. APPLYING THE PP METHOD WITH OPERATIONS OVER CATEGORY HIER-
ARCHIES

Another situation where partial pre-aggregation might apply is when multiple cat-
egories of a dimension are involved in a joint query. For example, suppose that
the source databases are: Population(Race,Age), and Income(State,Race,Sex), and
the desired target database is: Population(Region,Race) where the category re-
lationship between State → Region is known. One possibility to evaluate this
query is to first apply the PP method to estimate P̂opulation(State,Race) by pre-
aggregating over the non-common dimensions Age and Sex, and then aggregating
P̂opulation(State,Race) from the State to the Region level to obtain P̂opulation(Region,
Race). The aggregation over State to the Region level is referred to as “roll-up”.

Another possibility is to roll-up Income(State,Race,Sex) to generate Income(Region,
Race,Sex) before applying the PP method. The question is whether the two evalu-
ation orders produce results with the same accuracy. If this is the case, then it is
possible to perform roll-up and pre-aggregation operations together, thus eliminat-
ing the need for intermediate results and consequently reducing the computational
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cost. We prove in Section 5.1 that the same accuracy is achieved regardless of the
order of applying pre-aggregation and roll-up operations.

A more interesting question is about performing the disaggregation over the cate-
gory hierarchy. This is referred to as drill-down. This situation occurs when different
categories of the same hierarchy appear in the dimensions of the source summary
databases. For example consider the source databases Population(Region,Race,Age),
and Income(State,Race,Sex). Note that the dimension Region in the Population
database, and the dimension State in the Income database belong to the same cat-
egory hierarchy. Now, suppose that the target database is Population(State,Race).
We need to drill-down the population from the Region to the State level by using
the Income database as a proxy. The usual technique for dis-aggregating by proxy
is to use the linear indirect estimation by forming the full cross product at the lower
category level (i.e., forming the drilled-down cross product), and then aggregating
over the non-target dimensions. For this example, it is necessary to form the cross
product P̂opulation(State,Race,Age,Sex), and then to aggregate over Age, and Sex.

We illustrate disaggregation by proxy using the example source databases intro-
duced above. The drilled-down cross product is generated as follows:

P̂ opulation(State, Race, Age, Sex) =

Population(Region, Race, Age)
Income(State, Race, Sex)∑

Sex Income(Region, Race, Sex)

Note that the term in the denominator Income(Region,Race,Sex) in the above
expression is obtained by a roll-up operation on Income(State,Race,Sex).

Here, again, the question is whether we can perform the PP method operations
and the drill-down operation in either order and get results with the same accuracy.
We prove that this is the case in Section 5.2.

In Section 5.3, we discuss the case where multiple category hierarchies are in-
volved. We provide a procedure for the steps that need to be taken to achieve the
maximum pre-aggregation that can be applied in this case without loss in accuracy.

As is stated in Section 2 on methodology, we consider here only the summary
operators COUNT and SUM, and assuming that COUNT and SUM are available
for all cells, the results also apply to the AVERAGE operator.

5.1 Using the PP Method with Rolling-up on Category Hierarchies

In this section we prove that the result obtained by rolling-up before applying the
PP method is the same as performing the roll-up operation last. We assume that
the dimension hierarchy to which the roll-up operator is applied is summarizable.
Summarizability is a condition that states that it is possible to obtain from the
summary database defined at category level A1 of a given hierarchy, another sum-
mary database defined at the higher level A2 of the same hierarchy by using the
roll-up function. The conditions for summarizability or correctness of aggregations
in OLAP are discussed in [Lenz and Shoshani 1997].

Let the roll-up operator be denoted by RA1→A2(M(A1)), where A1 and A2 repre-
sent two category levels of a category hierarchy. It applies the aggregation function
COUNT or SUM to the measure M(A1), and gives as result M(A2).

We address the case that each of the source summary databases has only one
target dimension that requires a roll-up operation. We use the notation At

P and
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At
Q to represent two different dimension-levels in the category hierarchy of the same

dimension t of DBP and DBQ. For example, State → Region are two dimension-
levels in the dimension Geographical area and Date → Month are two dimension-
levels in the dimension Time. We use the notation for lower and higher category
levels as At,L

P → At,H
P of target dimension At

P . Similarly, At,L
Q → At,H

Q of target

dimension At
Q. Finally, we use the notation AT ′

P = AT C′

P ∪ AT C′

P to represent the
remaining target dimensions not involved in the roll-up operation. Thus, AT

P =

AT ′
P ∪ At,L

P . Similarly, AT
Q = AT ′

Q ∪ At,L
Q , where AT ′

Q = AT C′

Q ∪ AT C′

Q . Using this
notation we can now formulate the following definition and theorem.

Definition 5.1. Let MP (AC
P , AC

P , AT C′

P , AT C′

P , At,L
P ) and MQ(AC

Q, AC
Q, AT C′

Q , AT C′

Q ,

At,L
Q ) be source summary databases and At,L

P → At,H
P , At,L

Q → At,H
Q represent cat-

egory hierarchies of dimensions from the source summary databases. We define M̂
to be the estimation result of a joint query over the source databases when applying
the roll-up operator first and then the PP method. Conversely, we define ˆ̂

M to be
the estimation results of a joint query over the source databases when applying the
PP method first and then the roll-up operator. The expressions for M̂ and ˆ̂

M are
provided precisely below.

(i) The estimation result of a joint query M̂P (AT C′

P , AT C′

P , At,H
P , AT C′

Q , At,H
Q ) over

the source summary databases is obtained by applying the roll-up operator first to
the target dimensions in the target database and proxy database, and then apply-
ing the PP method as follows:

RAt,L
P
→At,H

P

(
MP (AC

P , AC
P , AT C′

P , AT C′

P , At,L
P )

)
= MP (AC

P , AC
P , AT C′

P , AT C′

P , At,H
P )

RAt,L
Q
→At,H

Q

(
MQ(AC

Q, AC
Q, AT C′

Q , AT C′

Q , At,L
Q )

)
= MQ(AC

Q, AC
Q, AT C′

Q , AT C′

Q , At,H
Q )

and then the PP method on MP (AC
P , AC

P , AT C′

P , AT C′

P , At,H
P ) and MQ(AC

Q, AC
Q, AT C′

Q ,

AT C′

Q , At,H
Q ) is given as follows:

M̂P (AT C′

P , AT C′

P , At,H
P , AC

Q, AT C′

Q , At,H
Q ) =

MP (AC
P , AT C′

P , AT C′

P , At,H
P )

MQ(AC
Q, AT C′

Q , AT C′

Q , At,H
Q )

∑
AT C′

Q
,At,H

Q

MQ(AC
Q, AT C′

Q , AT C′
Q , At,H

Q )

Summarizing over the common dimensions, we have:

∑
AC

Q
M̂P (AT C′

P , AT C′

P , At,H
P , AC

Q, AT C′

Q , At,H
Q ) = M̂P (AT C′

P , AT C′

P , At,H
P , AT C′

Q , At,H
Q )

(ii) The estimation result of a joint query ˆ̂
MP (AT C′

P , AT C′

P , At,H
P , AT C′

Q , At,H
Q ) over

the source databases is obtained by applying the PP method to the source databases
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and then the roll-up operator on the target dimensions as follows:

ˆ̂
MP (AT C′

P , AT C′

P , At,L
P , AC

Q, AT C′

Q , At,L
Q ) =

MP (AC
P , AT C′

P , AT C′

P , At,L
P )

MQ(AC
Q, AT C′

Q , AT C′

Q , At,L
Q )

∑
AT C′

Q
,At,L

Q

MQ(AC
Q, AT C′

Q , AT C′
Q , At,L

Q )

The application of the roll-up operator on At,L
P in ˆ̂

MP (AT C′

P , AT C′

P , At,L
P , AC

Q, AT C′

Q , At,L
Q )

will result:

RAt,L
P
→At,H

P

(
ˆ̂

MP (AT C′

P , AT C′

P , At,L
P , AC

Q, AT C′

Q , At,L
Q )

)

= ˆ̂
MP (AT C′

P , AT C′

P , At,H
P , AC

Q, AT C′

Q , At,L
Q )

and then on At,L
Q in this last result will give:

RAt,L
Q
→At,H

Q

(
ˆ̂

MP (AT C′

P , AT C′

P , At,H
P , AC

Q, AT C′

Q , At,L
Q )

)

= ˆ̂
MP (AT C′

P , AT C′

P , At,H
P , AC

Q, AT C′

Q , At,H
Q )

Summarizing over common dimension AC
Q, we have ˆ̂

MP (AT C′

P , AT C′

P , At,H
P , AT C′

Q , At,H
Q ).

Theorem 5.1. Let MP (AC
P , AC

P , AT C′

P , AT C′

P , At,L
P ) and MQ(AC

Q, AC
Q, AT C′

Q , AT C′

Q ,

At,L
Q ) be source summary databases. The estimators of target database M̂(AT C′

P , AT C′

P ,

At,H
P , AT C′

Q , At,H
Q ) and ˆ̂

M(AT C′

P , AT C′

P , At,H
P , AT C′

Q , At,H
Q ) give the same results.

Proof. We present here the sketch of the proof. The formal proof is given in the
electronic appendix. In this proof the roll-up operator is considered to be a partic-
ular kind of summation operation. Hence, the proof proceed by showing that M̂ is
equivalent to ˆ̂

M through intermediate equations, which commutes/associates/distributes
with the other summation operators similar to the proof of Theorem 4.1.

5.2 Using the PP Method with Drilling-down on Category Hierarchies

This section contains a theorem that proves that similar to the case of roll-up, the
same accuracy is achieved regardless of the order of applying pre-aggregation and
drill-down operations. In order to prove this, we use the notation introduced in the
previous section.

Recall that the drill-down operation can only be performed when the dimensions
in the two source summary databases that are involved in the drill-down must be-
long to the same category hierarchy. Furthermore, the lower category must belong
to the proxy database. That is, At,L

Q → At,H
P .

Definition 5.2. Let MP (AC
P , AC

P , AT C′

P , AT C′

P , At,H
P ) and MQ(AC

Q, AC
Q, AT C′

Q , AT C′

Q ,

At,L
Q ) be source summary databases and At,L

Q → At,H
P . We define M̂ to be the es-
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timation result of a joint query over the source summary databases when applying
the drill-down operator first and then the PP method. Conversely, we define ˆ̂

M to
be the estimation results of a joint query over the source databases when applying
the PP method first and then the drill-down operator. The expressions for M̂ and
ˆ̂

M are provided precisely below.

(i) The estimation result of a joint query M̂P (AT C′

P , AT C′

P , AT C′

Q , At,L
Q ) consists of

the following steps: 1a) generating the full cross product obtained by the drill-down
operation; 1b) summarizing over the common and non-common dimensions in the
result of part 1a.

Step 1a (drill-down):

M̂P (AC
P , AT C′

P , AT C′

P , AC
Q, AC

Q, AT C′

Q , At,L
Q ) =

MP (AC
P , AC

P , AT C′

P , AT C′

P , At,H
P )

MQ(AC
Q, AC

Q, AT C′

Q , AT C′

Q , At,L
Q )

∑
AC

Q
,AT C′

Q

MQ(AC
Q, AC

Q, AT C′
Q , AT C′

Q , At,H
P )

where the term in the denominator is obtained using roll-up as follows:

MQ(AC
Q, AC

Q, AT C′

Q , AT C′

Q , At,H
P ) = RAt,L

Q
→At,H

P

(
MQ(AC

Q, AC
Q, AT C′

Q , AT C′

Q , At,L
Q )

)

Step 1b (summarization):

∑
AC

Q
,AC

P
,AC

Q

M̂P (AC
P , AT C′

P , AT C′

P , AC
Q, AC

Q, AT C′

Q , At,L
Q ) = M̂P (AT C′

P , AT C′

P , AT C′

Q , At,L
Q )

(6)

(ii) The estimation result of a joint query ˆ̂
MP (AT C′

P , AT C′

P , AT C′

Q , At,L
Q ) consists

of the following steps: 2a) pre-aggregating the non-common dimensions over the
source summary databases; 2b) applying the drill-down operation to the result of
step 2a; 2c) summarizing over the common dimensions on the result of step 2b.
Step 2a (pre-aggregation):

MP (AC
P , AT C′

P , AT C′

P , At,H
P ) =

∑
AC

P

MP (AC
P , AC

P , AT C′

P , AT C′

P , At,H
P )

MQ(AC
Q, AT C′

Q , AT C′

Q , At,L
Q ) =

∑
AC

Q

MQ(AC
Q, AC

Q, AT C′

Q , AT C′

Q , At,L
Q )

Step 2b (drill-down):

ˆ̂
MP (AT C′

P , AT C′

P , AC
Q, AT C′

Q , At,L
Q )

= MP (AC
P , AT C′

P , AT C′

P , At,H
P )

MQ(AC
Q, AT C′

Q , AT C′

Q , At,L
Q )

∑
AT C′

Q

MQ(AC
Q, AT C′

Q , AT C′
Q , At,H

P )

Step 2c (summarization):
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∑
AC

Q

ˆ̂
MP (AT C′

P , AT C′

P , AC
Q, AT C′

Q , At,L
Q ) = ˆ̂

MP (AT C′

P , AT C′

P , AT C′

Q , At,L
Q ) (7)

Theorem 5.2. Let MP (AC
P , AC

P , AT C′

P , AT C′

P , At,H
P ) and MQ(AC

Q, AC
Q, AT C′

Q , AT C′

Q ,

At,L
Q ) be source summary databases and At,L

Q → At,H
P . The estimators of tar-

get database M̂P (AT C′

P , AT C′

P , AT C′

Q , At,L
Q ) and ˆ̂

MP (AT C′

P , AT C′

P , AT C′

Q , At,L
Q ) give the

same results.

Proof. We present here the sketch of the proof. The formal proof is given in
the electronic appendix. In this proof, the drill-down operator is considered to be
a particular kind of a distribution operator. Similar to the proof of Theorem 5.1
this proof shows that M̂ is equivalent to ˆ̂

M through intermediate equations, which
commutes/associates/distributes with the other summation operators.

5.3 Applying the PP Method to Multiple Category Hierarchies

Consider the following example of two source summary databases: Population(Region,
Race,Month,Age) and Income(State,Race,Year,Sex). Suppose the target database is
Population(State,Year). We note that this requires drill-down the Population from
the Region level to the State level, and roll-up from the Month level to the Year
level. To achieve the desired result, it is possible to first pre-aggregate over the non-
common dimensions (excluding dimensions that belong to the same category hier-
archy) to get Population(Region,Race,Month) and Income(State,Race,Year). Then
we can roll-up from the Month level to the Year level to generate Population(Region,
Race,Year). Next, according to the PP method for disaggregation described in Sec-
tion 5.2, we use Population(Region,Race,Year) and Income(State,Race,Year) to get
P̂opulation(State,Race,Year), and finally aggregate over Race to get P̂opulation(State,
Year). Note that if we consider the target database Income(Region,Month) the op-
posite is necessary: roll-up from State to Region, and drill-down from Year to
Month.
From this example, the procedure for determining the steps to achieve maximum
pre-aggregation without loss in accuracy can be generalized. The procedure is as
follows:

(1) Determine if there are different dimensions in the source summary databases
that belong to the same category hierarchy. If there are none, perform the
method PP described in Section 3. Otherwise, proceed to Step 2. In the
example above, there are two such cases: State → Region, and Month → Year.
So we proceed to Step 2.

(2) Aggregate over the non-common dimensions. In this example, aggregate over
Age and Sex to form Population(Region,Race,Month) and Income(State,Race,Year).

(3) Examine the target measure and the target dimensions. In our example, the
target was Population(State,Year). Select the source database according to the
target measure. In the example above, we select Population(Region,Race,Month).

(4) Roll-up all possible dimensions according to the target dimensions. In this
example Month will be rolled up to generate Population(Region,Race,Year).
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(5) Roll-up all remaining (non-target) common dimensions that belong to the same
category hierarchy to the higher level in order to get matching levels. We do not
have such a case in this example, but if you add Profession and Professional-
category into the two source summary databases, correspondingly, then Profes-
sion should be rolled-up to Professional-category.

(6) Now, we have databases with either identical dimensions or dimensions that
belong to the same category hierarchy. Perform the dis-aggregation (drill-
down) according to the method in Section 5.2. In this example, this generates
P̂opulation(State,Race,Year).

(7) Finally, aggregate over the common (non-target) dimensions. In this example,
aggregating over Race generates the desired result Population(State,Year).

We note that in the above procedure whenever there is an opportunity to perform
aggregation over non-common dimensions and roll-up and/or drill-down operations,
they should be performed together to save the cost of generating the intermediate
databases.

6. FORMULAS FOR PERFORMANCE EVALUATION

In applying the PP method to numerous examples we noticed that the performance
gain can be several fold. Intuitively, one can expect that because in the PP method
we first reduce the dimensionality of the source summary databases before per-
forming the cross product. Yet, we would like to characterize more accurately the
computational cost estimation. In this section, we develop cost estimation formulas.

In order to estimate the performance of the various methods, we have to count
the number of primitive operations that each step takes. We start with estimating
the cost of generating an aggregation over a single database, and follow that with
the cost of generating a cross product of two databases. We then use these cost
formulas to express the total cost of the methods F, PP, and P. This is followed by
a theorem that states that the cost of the PP method is always lower than the cost
of the F method provided that the source databases have at least one non-common
dimension. We note that our analysis is based on an approximate cost model, and
accordingly the above stated results are based on this model.

6.1 The Cost of Generating an Aggregation

In the following Lemma we show that the upper bound of the number of primitive
operations (specifically, COUNT or SUM) required for aggregating over a single
multi-dimensional summary database is the same regardless of the number of di-
mensions we aggregate over.

Lemma 6.1. The upper bound of the number of primitive operations to aggregate
a multi-dimensional summary database to any number of dimensions is the product
of the cardinalities of the dimensions.

Proof. Consider a multi-dimensional summary database DBP defined as MP (A1
P ,

A2
P , . . . , An

P ), with cardinalities |A1
P |, |A2

P |, . . ., |An
P |. Suppose that we aggregate

over one dimension Ai
P . Then the number of cells that are generated in the output

is: |A1
P ||A2

P | . . . |Ai−1
P ||Ai+1

P | . . . |An
P |. The number of primitive operations required

to compute each cell (e.g., SUM) is |Ai
P | − 1; that is, the cardinality of Ai

P minus
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one operation. For example, if the cardinality is 10, then only 9 operations are
needed to generate the sum. Thus, the number of primitive operations is:

|A1
P ||A2

P | . . . |Ai−1
P |(|Ai

P | − 1)|Ai+1
P | . . . |An

P | (8)

It follows that the upper bound can be approximated to |AP | = |A1
P ||A2

P | . . . |An
P |.

This upper bound is very tight, especially when the dimension being aggregated
has a large cardinality.

Now, consider the case of aggregating over two dimensions Ai
P and Aj

P . The num-
ber of cells generated is: |A1

P ||A2
P | . . . |Ai−1

P ||Ai+1
P | . . . |Aj−1

P ||Aj+1
P | . . . |An

P |. The
number of operations to generate one cell is the number of elements to sum over
minus one: (|Ai

P ||Aj
P | − 1). Again, rounding off this term we get that the cost

estimation is again: |AP | = |A1
P ||A2

P | . . . |An
P |. It follows that the same expression

results when we consider three dimensions, etc. Thus, the upper bound of the
number of primitive operations is |AP | regardless of the level of aggregation (the
number of dimensions we aggregate over).

Lemma 6.2. The lower bound of the number of operations to aggregate a multi-
dimensional summary database over any number of dimensions is one half of the
product of the cardinalities of the dimensions. This lower bound occurs only in the
degenerate case where the aggregation is over a single dimension whose cardinality
is 2.

Proof. The proof follows directly from expression (8) in the proof of Lemma
6.1, for the case that only one dimension Ai

P is aggregated and |Ai
P | = 2.

Typically, aggregation occurs over more than one dimension and dimensions have
more than two values. Therefore, for all practical purposes we will assume the
upper bound in the rest of the paper.
If we use the notation of “common”, “non-common”, and “target” dimensions
to represent a database MP according to the syntax introduced in Section 2.4,
the product of the cardinalities of MP (AC

P , AC
P , AT C

P , AT C

P ) can be represented by

XP = XC
P XC

P XT C

P XT C

P , where the notation“X” represents a cardinality-product.
For instance, the total number of operations to generate any aggregation over the
summary database DBP = Population(State,Age,Race,Sex) is XP = 504, given
that the cardinality of the domain values of the dimensions State, Age, Race, Sex
are respectively: 9, 7, 4, 2. Suppose State is the non-common target dimension,
Age, Sex are the common dimensions, and Race is the non-common dimension, it
follows that XC

P = 14, and XC
P = 4, XT C

P = 1, and XT C

P = 9.

We denote the primitive operation cost (for either COUNT or SUM) as Cpo. There-

fore the cost of aggregations over the database MP (AC
P , AC

P , AT C

P , AT C

P ) is

Cpo(XC
P XC

P XT C

P XT C

P )

6.2 The Cost of Generating the Cross Product

The formula for calculating a cross product is Eq. 3, shown below, as discussed in
Section 3.
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... · 25

M̂P (AC
P , AC

P , AT C

P , AT C

P , AC
Q, AT C

Q )

= MP (AC
P , AC

P , AT C

P , AT C

P )
MQ(AC

Q, AC
Q, AT C

Q , AT C

Q )
∑

AC
Q

,AT C

Q

MQ(AC
Q, AC

Q, AT C

P , AT C

P )

To find out the cost of generating the cross product, the expression in the denom-
inator has to be evaluated. Note that this expression is a sub-cube that needs
to be calculated only once, but its elements are used multiple times in subse-
quent operations. That cost is simply the cost of aggregating over all the non-
common and target dimensions in MQ. From Lemma 6.1 it follows that this cost

is Cpo(XC
QXC

QXT C

Q XT C

Q ).

Now, for each of the cells in the cross product, it is necessary to perform one
multiply and one divide operation. We assume that the cost of divide and multiply
is about the same, and that it is usually larger than COUNT or SUM, by a factor
α ≥ 1. The number of cells in the cross product is: XC

P XC
P XT C

P XT C

P XC
QXT C

Q . Thus
the total cost for a cross product is:

Cpo(XC
QXC

QXT C

Q XT C

Q ) + 2αCpo(XC
P XC

P XT C

P XT C

P XC
QXT C

Q )

6.3 Cost Formulas for the Three Methods

We can now derive the cost formulas for methods F, PP, and P. For the F method the
total cost consists of the cost of generating the full cross product (shown in square
brackets) followed by a post-aggregation to the target dimensions. Specifically the
cost is:

[
Cpo(XC

QXC
QXT C

Q XT C

Q ) + 2αCpo(XC
P XC

P XT C

P XT C

P XC
QXT C

Q )
]

+Cpo(XC
P XC

P XT C

P XT C

P XC
QXT C

Q )
(9)

For the PP method, the total cost consists of first pre-aggregating each of the
source summary databases over the non-common dimensions, then generating the
cross product of the pre-aggregated databases, and then post-aggregating to the
target dimensions. Specifically, the cost is:

Cpo(XC
P XC

P XT C

P XT C

P ) + Cpo(XC
QXC

QXT C

Q XT C

Q )

+
[
Cpo(XC

QXT C

Q XT C

Q ) + 2αCpo(XC
P XT C

P XT C

P XT C

Q )
]

+ Cpo(XC
P XT C

P XT C

P XT C

Q )(10)

Note that in the PP method, generating the cross product and the post-aggregation,
the non-common dimensions are not in the expressions since they have been elimi-
nated in the pre-aggregation.

For the P method, the total cost consists of first pre-aggregating each of the
source summary databases over the common and non-common dimensions, and
then generating the cross product of the pre-aggregated databases. Specifically, the
cost is:
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Cpo(XC
P XC

P XT C

P XT C

P ) + Cpo(XC
QXC

QXT C

Q XT C

Q )

+
[
Cpo(XT C

Q XT C

Q ) + 2αCpo(XT C

P XT C

P XT C

Q )
] (11)

Note that generating the cross product in the P method, the common and non-
common dimensions are not in the expressions since they have been eliminated in
the pre-aggregation.

Using expression (9) and (10) we are now ready to state and prove the following
theorem.

6.4 Performance Domination of PP Method over F Method

Theorem 6.1. Let MP (AC
P , AC

P , AT C

P , AT C

P ) and MQ(AC
Q, AC

Q, AT C

Q , AT C

Q ) be source
summary databases that have at least one non-common dimension each, then ac-
cording to the approximate cost model defined previously in this section, using the
PP method is always less expensive computationally than using the F method.

Proof. The proof consists of comparing the computational cost of the PP and
F methods. We wish to show that:

Cpo(XC
QXC

QXT C

Q XT C

Q ) + Cpo(XC
P XC

P XT C

P XT C

P )

+
[
Cpo(XC

QXT C

Q XT C

Q ) + 2αCpo(XC
P XT C

P XT C

P XT C

Q )
]

+ Cpo(XC
P XT C

P XT C

P XT C

Q )

< Cpo(XC
QXC

QXT C

Q XT C

Q ) + 2αCpo(XC
P XC

P XT C

P XT C

P XT C

Q XC
QXT C

Q )

+Cpo(XC
P XC

P XT C

P XT C

P XC
QXT C

Q )

The first term in each side is the same and can be removed. Comparing the
last terms in each side in the above expression, which represent the cost of post-
aggregation, it is obvious that

Cpo(XC
P XT C

P XT C

P XT C

Q ) < Cpo(XC
P XC

P XT C

P XT C

P XC
QXT C

Q )

because XC
P XT C

P XT C

P XT C

Q is a subset of XC
P XC

P XT C

P XT C

P XC
QXT C

Q . Therefore, both
terms can be removed, and the inequality reduced to:

XC
P XC

P XT C

P XT C

P + XC
QXT C

Q XT C

Q + 2α(XC
P XT C

P XT C

P XT C

Q )

< 2α(XC
P XC

P XT C

P XT C

P XC
QXT C

Q )

This inequality can be written as follows:
(

1

2αXC
QXT C

Q

)
+

(
1

2αXC
P XT C

P XC
Q

)
+

(
1

XC
P XC

Q

)
< 1

Every dimension has, by definition, at least two category values. Also XT C

Q must

always exist because AT C

Q is the proxy dimension(s) (see Section 2.4). Since, we
have at least two terms in the denominators of the above expression, the first two
fractions must be less than or equal to 1

8α, and the last fraction must be less than
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or equal to 1
4 . Since α ≥ 1, the expression is always less than 1. Thus, if there is

at least one non-common dimension, using the PP method is always less expensive
computationally than using the F method.

Example 5 For illustrative purposes we assume that α = 2; that is, the cost of
a multiplication or a division is twice the cost of a sum. Let us consider the summary
databases Income(Age,Education, Sex) and Population(State, Age,Race, Sex) sh-
own in Tables I and II, which are used to generate the estimation for Încome(State).
For this example, we use the cardinalities 50, 10, 7, 2, 12 for the dimensions State,
Age, Race, Sex, and Education, respectively. In other words, we have:

XC
P = 20 XC

P = 12 XT C

P = 1 XT C

P = 1

XC
Q = 20 XC

Q = 7 XT C

Q = 1 XT C

Q = 50

Recall that in this example, only one target dimension exists: AT C

Q = {State},
AT C

Q =Ø, AT C

P = AT C

P =Ø, and therefore we use XT C

P = XT C

P = 1 and XT C

Q = 1 to
neutralize these terms. Applying the F method, the total cost is 427000Cpo, while
using the PP method, the total cost is 13240Cpo. In other words, the computational
cost of the PP method is less than the F method by a factor 32.25.

7. EVALUATION OF ACCURACY AND COST TRADE-OFFS

While we proved theoretically that there is a benefit of using the PP method rather
than the F method since they provide the same accuracy level, there is the practical
question of how much computation is saved by using the PP method. A second
practical question is how much better is the accuracy of the PP method relative to
using the P method, and what is the cost penalty for that. Put it another way, is
it worth paying the cost of the PP method over the P method to gain in accuracy?
We address these questions in this section. We evaluate first experimentally the
accuracy question to find which parameters the accuracy is sensitive to. Then, we
evaluate the cost benefit of using the PP method versus the F method, and the
cost penalty of using PP method vs. P method.

7.1 Accuracy Analysis

Intuitively, the accuracy of estimation is a function of the correlation between the
measures of the source summary databases, and also depends on the common di-
mensions between them. Therefore, there should be significant loss of accuracy if
we use the P method, because we pre-aggregate over common dimensions. However,
it is also reasonable to expect that if the cardinalities of the dimensions are small,
the difference in accuracy between the two methods will be small, because there is
less information to support the correlations. Thus, we selected example databases
that vary in these two parameters: the correlation level, and the cardinality level.

We used the following databases: Income(Age,Race), and Population(State,Age,
Race) to estimate Income(State). For the low cardinalities we used 9, 7, 2 for
State, Age, and Race, respectively. For the high cardinality we used 27, 15, and 7,
respectively.

We varied the correlation by changing the distribution of the measures (X and
Y ) over the common dimensions. In general, the closer the distribution patterns,

ACM Transactions on Database Systems, Vol. V, No. N, September 2006.



28 · ...

Table VII. Correlation and Average Relative Error

High cardinality of common dimensions Low cardinality of common dimensions

Corr. PP P Diff. PP P Diff.

0.85 0.199 0.602 0.402 0.147 0.176 0.028
0.7 0.325 0.887 0.562 0.256 0.281 0.025
0.55 0.424 1.043 0.619 0.329 0.343 0.014
0.4 0.441 1.281 0.840 0.351 0.358 0.006

the higher the correlation. We calculated correlation figures using the well-known
formula, where the measures are X and Y , and N is the total number of cells over
the common dimensions, as follows:

r = (1/(N − 1))
N∑

i=1

(
Xi −X

σX

)(
Yi − Y

σY

)

where X, Y are the mean for X and Y respectively, and σX =
√

(1/N)
∑N

i=1(Xi −X)2

is the standard deviation. Similarly, σY =
√

(1/N)
∑N

i=1(Yi − Y )2.
The results are shown in Table VII and are presented graphically in figures 2 and

3. Figure 2 shows that in the case of high cardinality, the difference between the
average relative error (ARE, represented as percent) of the PP method and the P
method is quite high for all correlation levels (40% or more). For example, for the
high correlation of 0.85, the ARE for the PP method is 19%, while for the P method
it is 60%. As expected, the error for higher correlations is lower. Interestingly, the
error difference grows as the correlation level gets lower.

In contrast, Figure 3 shows that in the case of low cardinality the difference
in accuracy is quite small (3% or less). This observation raises the question as
to whether it is worth paying the extra cost of using the PP method when the
cardinality is low. We address this question in the next section.

7.2 Cost Trade-offs

The cost formulas for the three methods, F, PP, and P were developed in Section
6. We recall that the cost formulas are:
for F method:

[
Cpo(XC

QXC
QXT C

Q XT C

Q ) + 2αCpo(XC
P XC

P XT C

P XT C

P XC
QXT C

Q )
]

+Cpo(XC
P XC

P XT C

P XT C

P XC
QXT C

Q )
(12)

for PP method:

Cpo(XC
P XC

P XT C

P XT C

P ) + Cpo(XC
QXC

QXT C

Q XT C

Q )

+
[
Cpo(XC

QXT C

Q XT C

Q ) + 2αCpo(XC
P XT C

P XT C

P XT C

Q )
]

+Cpo(XC
P XT C

P XT C

P XT C

Q ) (13)
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Fig. 2. ARE(%) in the case of high cardinality of dimensions
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for P method:
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+
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For evaluating the cost tradeoffs, we take the ratios (the gain) of the cost between
the methods when applied to the same source databases. From the cost formulas, it
is evident that the cost is dependent on the products of cardinalities of the common,
non-common, and the target dimensions. Since we cannot get closed form formulas
for the ratios, we evaluated the gains and generated multiple graphs to observe the
behavior of the gain when varying the cardinality of the dimensions. We note that
in the formulas, the cardinality measures represent the product of cardinalities for
each type of dimension. For example, the expression XC

P represents the product of
all common dimensions (if we have 3 dimensions with cardinalities of 2, 5, and 10,
then XC

P = 100). We will use below the terms “common cardinality-product”, “non-
common cardinality-product”, and “target cardinality-product” for the product of
each, correspondingly. The target cardinality-product refers to the product of the
cardinality of the common and non-common target dimensions.

We start with graphing the gain of the F method over the PP method. We
show two graphs. In Figure 4, we fix the common cardinality-product (=100) and
vary the non-common and target cardinalities (between 10 and 200). From this
graph, we observe that the gain increases super-linearly with the increase of the
cardinality-product of non-common dimensions. We also observe that the target
cardinality-product has a large effect on the gain, although the gain decreases as
the target cardinality-product increases.

In Figure 5, we fix the non-common cardinality-product (=100), and vary the
common and target cardinalities (between 10 and 200). Interestingly, the common
cardinality-product has no effect on the gain. This can be explained by observing
that XC

P = XC
Q can be factored out in both the F method and PP method expres-

sions, and thus have no effect when we take the ratio. We observe, again, that the
target cardinality-product has a large effect on the gain, but the gain decreases as
the target cardinality-product increases. We also observe that the gain figures are
very large, in the order of several 1000’s.

How can this very high gain be explained intuitively? We observe that the largest
term for the F method has 6 cardinality-product elements, while the largest term
for the PP method has only 4 cardinality-product elements. This is the reason that
pre-aggregating over the non-common dimensions is highly effective.

Next, we graph the gain of the PP method over the P method. In Figure 6, we
fix the common cardinality-product (=100) and vary the non-common and target
cardinalities (between 10 and 200). We observe that for low cardinalities the gain
is in the range of 10’s, but quickly goes down to single digit levels as the cardinality
increases even for high target cardinalities. In Figure 7, we fix the non-common
cardinality-product (=100), and vary the common and target cardinalities (between
10 and 200). Here again, we see a very small effect on the gain when varying the
common cardinality-product.

Why is the gain of the P method over the PP method relatively small compared
to the PP method over the F method case? In contrast to the previous case, we
observe that largest terms for the PP method as well as the P method have 4
cardinality-product elements, and thus the ratio is small.

7.3 Discussion

We can now respond to the two questions posed in the beginning of this section.
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Fig. 4. Gain of F method over PP method with fixed common cardinality-product

Fig. 5. Gain of F method over PP method with fixed non-common cardinality product

1) How much computation is saved by using the PP method rather than the F
method?

The experimental results show that the savings behave as a super-linear function
of the product of the non-common cardinalities. Furthermore, the gain increases
with the target cardinality-product, but in a sub-linear fashion. We note that it
is only necessary to have two non-common dimensions with cardinality of 10 each
to get a gain in the order of 100. Typical cardinalities can range from low (e.g.,
2 for sex), to quite high (e.g., 50 for states), or even 100’s (e.g., product types).
Thus, pre-aggregation over just a few non-common dimensions can achieve very
high gains.
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Fig. 6. Gain of PP method over P method with fixed common cardinality-product

Fig. 7. Gain of PP method over P method with fixed non-common cardinality-product

2) Is it worth paying the cost of the PP method to gain in accuracy?
The cost penalty for using the PP method relative to the P method is low for high

cardinality-product (order of 3 or less). Even for low cardinality-product the gain is
relatively low (order of a few 10’s). The main reason is that the pre-aggregation cost
in the P and PP methods dominates the total cost. Since the accuracy obtained
by the PP method is much higher than the P method for high cardinality-product
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of common dimensions, and the penalty is low, there is no doubt that in this
case PP method should be used. In the case of a low cardinality-product, where
the accuracy gain is low, it may not be worth performing the extra operations
even though the cost is relatively low. However, in some applications, even 3% in
accuracy is significant, and the moderate extra cost may still be worth even in these
cases.

8. EXTENDING THE QUERY ESTIMATION RESULTS TO MULTIPLE SOURCE
DATABASES

From a statistical analysis point of view, the most common estimation operation is
over two databases, where one is a database with a particular target measure (e.g.,
sales) using another database as a proxy database with another measure (e.g., in-
come). The advantage of using the PP method for the case of two databases has
been presented in previous sections. However, in some cases, the estimation may re-
quire the use of more than two databases. In practical situations the databases may
come from different sources (such as agencies responsible for economic activities,
population census, education, health, etc.) In such cases many of the dimensions
in the databases are non-common. In this section, we explore under what condi-
tions we can apply the PP method for performing estimation over more than two
databases. We start with an example to illustrate the concepts of using multiple
proxy databases.

Consider the following three summary databases:

DBA : Sales(State, Type of business)
DBB : Income(Race,Education, Age)
DBC : Population(County, Sex,Age)

Suppose that the desired target database is:

DBT = Sales(State, Sex,Race)

We will prove in this section the conditions under which we can apply the PP
method. In this particular example, our results will show that we can perform pre-
aggregation over the dimensions “Type of business”, “Education” (but not “Age”),
and also rolling-up over “County” to the “State” level in order to generate a
greatly reduced cross-product of Sales(State,Sex,Race,Age), and then summarize
over “Age”. As noted earlier, when pre-aggregation is applied even over a small
number of dimensions the saving in the computational complexity can be very large
if the cardinality of the dimensions is large. In this example, the “Type of business”
dimension has typically a very large cardinality, and on average, there are a large
number of counties for each state, and thus the savings can be several orders of
magnitude.

When using multiple proxy databases, the number of databases involved is typi-
cally small for the simple reason that the number of databases used cannot exceed
the number of dimensions desired in the target database. In the example above,
there are three dimensions requested in the target database, where the first (State)
is in the same hierarchy dimension of another database, the second (Sex) is only in
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one database, and the third (Race) is in another. Therefore, at most the number
of databases involved is equal to the number of dimensions in the target database.

8.1 The Order of Performing the Cross Product

Since we have more that one proxy database, the first question is in which order
to apply them in the estimation process. It turns out that, in general, the order of
applying the proxy database produces different results. Yet, we are interested in
finding out the conditions under which the results produced are the same regardless
of order. We prove in this section that under a condition that we refer to as “Proxy-
Non-Commonality” (PNC) condition the order of applying the proxy databases can
be arbitrary. Given several source databases, one of the databases is chosen as a
primary database because its measure is requested in the query as a target measure.
Accordingly, the PNC condition can be stated as follows:

Definition 8.1. Given a primary database and two or more proxy databases,
the Proxy-Non-Commonality (PNC) condition requires that all the dimensions of
the proxy databases that are not in the primary database must be mutually exclu-
sive.

We show in this section that if the PNC condition holds, the same result is
obtained by applying the proxy databases in any order. To illustrate this point
consider the example shown in the introductory part of Section 8. The “Sales”
database A is the primary database. The dimension-level “County” in database C
is in the same dimension (Geographical area) as the dimension-level “State” in the
primary database A. Thus, we are only concerned with the remaining dimensions
in the databases B and C, and whether they are mutually exclusive:

DBB : Income(Race, Education, Age)
DBC : Population(Sex, Age)

As can be seen, this example does not fulfill the PNC condition because “Age” is
common to both databases. Therefore, the order of applying the proxy databases
matters.

Now, consider the following variation on this example, where database A has the
target measure:

DBA : Sales(State, Type of business)
DBB : Income(State, Race,Education, Age)
DBC : Population(County, Sex, Marital status)

To evaluate the PNC condition, we do not consider “State” in database B and
“County” in database C. As can be seen below the non-commonality PNC condition
is met in the remaining dimensions of databases B and C.

DBB : Income(Race, Education,Age)
DBC : Population(Sex, Marital status)

What can be done in case that the PNC condition does not hold? Obviously
some order has to be chosen. We will show in the next sections the condition under
which the PP method gives the same result as the F method, given a particular
order of applying the proxy databases. As will be seen, unlike the PNC condition,
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this condition allows partially or fully common dimensions to exist, but states that
pre-aggregation can be performed only over the mutually exclusive, non-common
dimensions. Further, unless the PNC condition holds, different results can be ob-
tained depending on the order of applying the proxy databases.

The question of which order of the proxy databases to select in order to get the
most accurate result is an open question that depends on the statistical distributions
of the measures involved over the dimensions. We believe that the choice depends
on the correlations between the measures, but we have no proof for this. In the
example above, if the correlation between Sales and Income is statistically high, it
suggests that it is better to evaluate in the order (Sales (Income (Population))),
i.e., get Income using Population as proxy first, and then get Sales using the result
Income in the previous step as a proxy next. We consider this problem a challenge
for future work.

We prove in the next theorem that if the PNC condition holds, the same result
will be produced regardless of the order of applying the proxy Databases.

Theorem 8.1. Given a primary database and two or more proxy databases, if
the dimensions of the proxy databases that are not in the primary database are
mutually exclusive (i.e. the PNC condition holds), then the estimated result is
invariant under any order of applying the proxy databases.

Proof. We present here the sketch of the proof. The formal proof is given
in the electronic appendix. The proof is based on a specific notation that splits
the dimensions of the proxy databases DBQi into the dimensions that are com-
mon and the dimensions that are non-common with the primary database DBP .
They are represented by ACP

Qi
and ACP

Qi
, respectively. According to this notation,

MP (AC
P , AC

P ) and MQ1(A
CP

Q1
, ACP

Q1
), . . ., MQn(ACP

Qn
, ACP

Qn
) are the source summary

databases, where AC
P =

⋃
i ACP

Qi
, and AC

P 6= ACP

Qi where 0 < i ≤ n. Then, the PNC

condition is expressed as ACP

Qi
∩ACP

Qj
= Ø where 0 < i, j ≤ n and i 6= j.

Given a particular order of the proxy databases, we show in the appendix that
applying the F method yields:

M̂P [F](AC
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P , ACP

Q1
, . . . , ACP

Qn
)

=
MP (AC
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P )

(
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As can be observed, any permutation of the order of applying the proxy databases
provide the same result under the PNC condition and therefore can be represented
as a closed form formula as follows:

ACM Transactions on Database Systems, Vol. V, No. N, September 2006.



36 · ...

M̂P [F](AC
P , AC

P , ACP

Q1
, . . . , ACP

Qn
) =
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) (15)

8.2 Conditions for the PP Method to Preserve Accuracy

The next question to address is whether the partial pre-aggregation (method PP)
can be applied in the case of multiple proxy databases. The problem can be posed
as follows: given a target query and a pre-determined evaluation order over multiple
proxy databases for generating the full cross product (method F), under what con-
ditions can the PP method be applied and produce results with the same accuracy?
We prove in Theorem 8.2 that a sufficient condition is to apply pre-aggregation to
non-common dimensions (dimensions that appear in a single database only) and
are not required as primary dimensions. In the example above “Type of business”,
and “Education level” are such dimensions. We also prove that the above definition
of non-common dimensions is also a necessary condition. This is achieved by using
a counter example in Theorem 8.3. In order to prove this theorem, we use the
notations introduced in the following definition.

Definition 8.2. Let MP (AC
P , AC

P , AT C

P , AT C

P ) and MQ1(A
C
Q1

, AC
Q1

, AT C

Q1
, AT C

Q1
),

. . . ,MQn(AC
Qn

, AC
Qn

, AT C

Qn
, AT C

Qn
) be source summary databases, which are selected

by a pre-determined evaluation order for estimating the target summary database
MP (AT C

P , AT C

P , AT C

Q1
. . . , AT C

Qn
). The notations AC

P = A
CQ1
P ∪ A

CQ2
P ∪ . . . ∪ A

CQn

P

and AC
Qi

= ACP

Qi
∪ A

CQ1
Qi
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CQi−1
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∪ A
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Qi
indicate common

dimensions between any combination of the source databases, where A
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A
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, and 0 < i, j ≤ n, i 6= j. Similarly, AT C
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∪ . . . ∪ AT CQn

Q1
indicate common

target dimensions, where AT
CQi

P = AT CP
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, AT

CQj
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= AT

CQi
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.

Theorem 8.2. Given a primary database, and given a particular order of apply-
ing two or more proxy databases, the estimated target database using the PP method
over non-common dimensions where each non-common dimension is defined as a
dimension that exists in a single source database only is as accurate as the target
database generated using the F method.

Proof. We present here the sketch of the proof. The formal proof is given
in the electronic appendix. Using the definition of the source summary databases
according to Definition 8.2, the proof is by induction. In the first step we show
that the estimation result of applying method PP is the same as applying method
F (i.e. F⇔PP) for the case of two databases: the primary database MP , and the
first proxy database MQ1 . Then we assume that M̂P [F]i ⇔ M̂P [PP]i is true for
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Table VIII. Income(Education)

Income

Education

High School 8776533572
Bachelor or higher degree 10026459420

Table IX. Population(State,Age)

Population State

Age AL CA FL NV MO NJ TX VA WA

< 25 1761 3765 2040 1225 3885 1316 6634 3566 2967
25÷ 34 2070 3017 2830 2026 3004 2355 7451 5735 3559
35÷ 44 4468 5781 3698 3518 2781 2465 14995 10694 4235
45÷ 54 13742 20368 9528 3855 4192 3168 26280 8181 7310
55÷ 64 3186 16498 9981 2947 2701 3100 17010 8412 8387
65÷ 74 3756 11544 6921 2297 2346 2435 13624 7130 4856
≥ 75 2256 5611 6751 1824 1323 2298 8595 4472 3156

step i, where the i-th proxy database was applied, and show that for step i + 1,
where the i + 1-th proxy database is applied, M̂P [F]i+1 ⇔ M̂P [PP]i+1.

Given the above result, the question arises as to whether pre-aggregating over
dimensions that are common to some but not all databases (which we refer to as
“partially-common dimensions” below) can possibly yield the same accuracy. This
question was not relevant in the case of two databases, but in the case of three or
more databases, some dimensions can only be partially common. We show next
that aggregating over “partially-common dimensions” does not yield, in general,
the same accuracy, thus justifying our choice of defining a non-common dimension
as appearing in a single database only.

Theorem 8.3. It is necessary to pre-aggregate only over the non-common di-
mensions of the source summary databases in order to get the same accuracy as the
full cross product.

Proof. We only need to show by counter example that the result obtained by
pre-aggregating over a partially-common dimension is different from the result of
the full cross product method. The counter example is presented next.

Let us consider three source summary databases: Income(Education), Popula-
tion(State,Age), and Households(Age,Sex) shown in Tables VIII, IX, and X, re-
spectively. They are used to estimate the target database Income(State,Sex).

We Apply the PP method in two cases: 1) by pre-aggregating over dimensions
that appear only in a single database first (in this case, over “education” only), and
2) by pre-aggregating over partially-common dimensions as well (in this case, over
“education” as well as over “age”). The results are reported in Table XI.
The above two cases give different results, thus, proving the theorem.
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Table X. Households(Age,Sex)

Income Sex

Age Male Female

< 25 13846 13313
25÷34 15398 16649
35÷44 26322 26313
45÷54 52837 43787
55÷64 36795 35427
65÷74 29572 25337
≥ 75 19535 16751

Table XI. Încome(State,Sex)

PP Pre-agg. on part.-common dimensions

States Male Female Male Female

Alabama 834363165 745134358 825273249 754224275
California 1771737462 1594864001 1759018983 1607582481
Florida 1107615752 1003285433 1102926882 1007974303
Nevada 464448543 430089380 467388019 427149905
Missouri 528817262 494147427 534489848 488474840
New Jersey 449768600 416707569 452726005 413750165
Texas 2500902918 2281679471 2498856280 2283726109
Virginia 1260416488 1176152726 1273085498 1163483716
Washington 906324518 836537918 910629946 832232490

8.3 The Cost of Generating the Cross Product for Multiple Proxy Databases

As discussed above, if the PNC condition is met, the order of performing the cross
product is arbitrary. Furthermore, the closed form formula shown in Eq. (15) can
be used in order to compute the result. However, if the PNC condition is not met
the computational cost may vary with the order of applying the proxy databases,
since the intermediate results may vary in the number of cells they have depending
on the order chosen.

To illustrate this point, consider again the example above where the three databases
are: Income(Education,Age), Population(Education,Race), Households(Age,State,
Race) and the target measure is Income. Note that the PNC condition is not met,
because Race appears in the two proxy databases and is not a dimension in the
primary database Income.

Our goal is to generate the cross product from which the target database will
be generated after all the pre-aggregation steps take place according to the PP
method. To illustrate the generation of the cross product, suppose that the target
database we wish to obtain is Income(State,Education,Age,Race). Each successive
intermediate result adds dimensions to the cross product. For example, apply-
ing the linear indirect estimation method on Income(Education,Age) over Popula-
tion(Education,Race), will generate the intermediate result Încome(Education,Age,
Race). Thus, the dimension Race was added to the cross product.
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The linear indirect estimation method for the intermediate steps is provided
below by applying the PP method and using the notation introduced in Definition
8.2:

M̂P [PP]i+1(AC
i+1, A

T C

i+1, A
T C

i+1) =

M̂P [PP]i(AC
i , AT C

i , AT C

i )
MQi+1 (AC

Qi+1
,AT C

Qi+1
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Qi+1
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Qi+1

,...,A
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Qi+1
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Qi+1
,...,AT
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Qi+1
,AT C

Qi+1
)

(16)

where 0 < i ≤ n, AC
i+1 = AC

i ∪ AC
Qi+1

, and AT C

i+1 = AT C
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, AT C

i+1 = AT C

(i) ∪
AT C
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.

Accordingly, the cost formula for the PP method provided in Section 7, but
discarding the pre-aggregation and post-aggregation cost is:

[
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Since we are generating the entire full cross product (after performing pre-
aggregation over all non-common dimensions) all the dimensions are target di-
mensions, and the above formula reduces to:

[
Cpo(XT C

Qi+1
XT C

Qi+1
) + 2αCpo(XT C

i+1X
T C

i+1)
]

(17)

It consists of two components: the cost of summarizing over the added dimen-
sions for the denominator expression, and the cost of calculating the cells. Thus,
it is obvious that it is advantageous to generate as few cells as possible in the
intermediate steps. We illustrate this using the example above.

Suppose that the cardinalities of the dimensions are 2, 5, 7, 50 for Education,
Age, Race, State, correspondingly. We have two choices of generating the result,
as shown below. We will calculate the number of cells that we need to compute in
each case.
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Choice 1: Apply linear indirect estimation method on Income over Population, and
then over Households. The number of cells in Income is 2x5 = 10. The first step
generates Încome(Education, Age, Race).

The result will have 10x7 = 70 cells. According to formula (17), (where for
simplicity we assume that α = 1) the cost of the first component is 14, and the
second component is 2x70 = 140. The total cost for the first step is therefore:
14+140. The number of cells generated by the second step is 70x50 = 3500.

Using the cost formula, one can similarly show that the cost for the second step
is: 1750 + 2x3500 =1750 +7000. The total cost for choice 1 is therefore: 14 + 140
+ 1750 + 7000 = 8904.
Choice 2: Apply linear indirect estimation method on Income over Households, and
then over Population. The first step generates 10 x 350 = 3500 cells, and the second
generates 3500 cells. Similar to the above use of the cost formula, we get the cost
for step 1: 1750 + 2 x 3500, and for step 2: 14 + 2x3500. The total cost is: 1750
+ 7000 + 14 + 7000 = 15764.

The difference of 6860 between the two choices represents a 77% increase in
cost over the least expensive choice. It stems from the cost of computing the
cross product of the intermediate steps which depends on the order of selecting the
proxy databases. Thus, in order to minimize the cost, the proxy databases should
be ordered according to the cardinality-product of the dimensions that are added
to the intermediate cross products, from lowest to highest.

To summarize, the procedure for using the PP method over multiple databases
can be described as follows.

Procedure 8.1. Given a desired target measure and a set of databases

(1) Check that each database has at least one dimension that is requested in the
target database. If this condition does not hold, eliminate those databases;

(2) Check that the dimensions of the remaining databases meet the PNC condi-
tions. If so, the closed form formula given in Eq. (15) (see Section 8) can
be used in Step 5. Otherwise, since the order for the most accurate result is
unknown, the choice of order can be made to minimize the computation cost
according to the cardinality-products of the intermediate steps, from lowest to
highest.

(3) Aggregate/disaggregate all dimension hierarchy levels (i.e., roll-up or drill-
down) according to the target dimensions;

(4) Pre-aggregate all non-common dimensions;
(5) Generate the cross product of all pre-aggregated databases;
(6) Summarize over non-target dimensions.

As was the case for two databases, we note that in the above procedure whenever
there is an opportunity to perform aggregation over non-common dimensions and
roll-up and/or drill-down operations, they should be performed together to save
the cost of generating the intermediate databases.

9. CONCLUSIONS

In this paper, we proposed an efficient method, called the Partial Pre-aggregation
method, for estimating the results of a joint query over two source databases us-
ACM Transactions on Database Systems, Vol. V, No. N, September 2006.
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ing linear indirect estimation. The proposed method is based on partitioning the
dimensions of the source databases into “common”, “non-common”, and “target”
dimensions. By summarizing over the non-common dimensions first, we reduce the
computational and space complexity. We proved that the Partial Pre-aggregation
method generates results that are as accurate as the Full cross product method
commonly used for statistical estimation. Furthermore, we developed computa-
tional cost formulas and showed that the PP method can be more efficient by a
large factor. Also, we proved formally that “partial pre-aggregation” can be applied
together with operations over category hierarchies of dimensions, and developed a
procedure for performing “roll-up” and “drill-down” operations with the partial
pre-aggregation method to minimize computational costs. In addition, the main
results of applying the PP method for two databases were extended to the case of
three or more databases.

Using the computational cost and a measure of accuracy, the Average Relative
Error, we derived experimental results showing the gain in accuracy of the partial
pre-aggregation method relative to full pre-aggregation (the method with the least
cost). We showed that the gain in accuracy can be very large, especially when the
cardinality-product of the dimensions is high, which is usually the case.

There are several open questions that we believe are important challenges for
future work. One is the question of how to select a primary database given that
there are multiple databases available with the same measure in order to get the
more accurate estimation results. Intuitively, it stands to reason that the one that
includes a larger number of the desired target measures is the better choice, but
this has to be proven either statistically or perhaps experimentally. Another open
problem is the choice of order in the case of multiple proxies in order to maximize
accuracy in the case that the condition that determines if the order is irrelevant
fails (called the PNC condition - see Section 8). We note that these problems are
independent of the use of the partial pre-aggregation method whose purpose is to
reduce the computational complexity. If these questions were answered the partial
pre-aggregation method can then be applied to the preferred choice of a primary
database and the order of applying the proxy databases.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.
The appendix contains the proofs of several theorems from the main body of this
article.
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