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Abstract

OLAP and object data models represent different logical
concepts and structures, and therefore separate database
systems with different query languages were developed
based on these models. We show in this paper that it is
desirable and possible to combine these models to repre-
sent realistic modeling requirements. We define in this pa-
per an OLAP-Object data model that combines the main
characteristics of OLAP and Object data models in order to
represent their functionalities in a common framework. We
use three different types of object classes: primitive, regu-
lar and composite. In the OLAP-Object data model, prim-
itive and regular classes which represent object structures
can be used for form composite classes that represent OLAP
structures. We define a query language that uses path struc-
tures to facilitate data navigation and data manipulation.
The proposed language uses the concept of an anchor. An
anchor is an object class (primitive, regular or composite)
that is selected as a starting node from which paths struc-
tures can be formed to express queries. The power of the
proposed query language is illustrated through numerous
examples. The syntax and semantics of the proposed lan-
guage are developed.

1. Introduction

The OLAP data model [9] was introduced in order to
manage multidimensional summary databases. The con-
ventional object data model represents mainly object, at-
tributes, and associations between objects. These two
data models have been used to build different specialized
database systems: OLAP-based systems for the multidi-
mensional data and mostly relational systems for Object-
based data. The design of the object-based data uses one of
the familiar object-attribute-association models (such as the
Entity-Relationship model, the Unified Modeling Language
(UML) or similar Object models).
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These systems present to user with different query lan-
guages and user interfaces. We argue in this paper that this
separation of concepts is unnecessary and limiting. It is
desirable and possible to combine the logical structures of
these models and devise a single coherent query language
for the combined model.

The OLAP data model, which is also referred to as the
Statistical Data Model [19] consists of three basic con-
structs:

1. Dimensions, where each can consist of a multi-level
classification hierarchy;

2. A multidimensional object, also referred to as a “cross-
product” object;

3. Summary attributes, where each is associated with the
multidimensional object.

For example, a database for “average-income by city, race,
and sex”, can be modeled in an OLAP data model, where
the dimensions are City, Race, and Sex, the multidimen-
sional object is the cross-product (City)×(Race)×(Sex),
and the summary attribute is the “average-income”. If, in
addition, cities were organized by counties, and counties
organized into states, a “classification hierarchy” (also re-
ferred to as “category hierarchy”) City → County →
State can be associated with the City dimension. City,
Region, and Country are referred to as category attributes.
Summarization over the classification hierarchy can also be
specified, such as “average-income” for counties and states.

Various representations of these concepts were proposed,
including the graphical representation of Statistical Models
[7], Multidimensional OLAP, or MOLAP [1] [10], Rela-
tional OLAP, or ROLAP [2] [3], and Data Cubes [4] [12]
[14]. However, in many applications the elements of the
dimensions as well as the elements of the classification hi-
erarchies can be objects in their own right, such as cities
and states in the example above. In such cases, these ob-
jects can have their own attributes (e.g. the mayor of a city,
or the governor of a state). Furthermore, such objects may
be associated with other objects (such as the hospitals in
a city). This obviates the need to have concepts from the
OLAP modeling domain to be combined with an object-
attribute-association model.



1.1. Contribution

In this paper, we define an OLAP-Object data model that
permits a uniform definition of concepts, and achieves the
functionalities from both domains. Specifically,

• We classify three different object classes: primitive,
regular and composite. We investigate well-formed
composite objects and we study their summarization
semantics.

• In addition to the conventional associations between
object classes, we define a summarizable association
that facilitates the specification of classification hierar-
chy structures.

• We define a query language which uses the path con-
cept in order to facilitate data navigation and data ma-
nipulation. An important concept of the proposed lan-
guage is an anchor. It allows us to fix dynamically
an object class (primitive, regular or composite) as the
origin of paths over the OLAP-Object data model for
expressing queries.

• We investigate the power of the proposed query lan-
guage through multiple query examples.

1.2. Related work

The desire to bridge the gap between OLAP and object
data models has recently motivated several studies. One ap-
proach taken by some authors was to extend object database
systems to support summary querying. For instance, in [12],
the CUBE operator, which is an n-dimensional generaliza-
tion of GROUP BY in SQL is introduced. This operator
computes the aggregations over all subspaces defined by
different combinations of category attributes. In [8], an ex-
tension of the relational algebra and the SQL syntax is pro-
posed in order to overcome the imitation of SQL to answer
queries involving repeated grouping and aggregation over
the same groups. In [15], the authors proposed a model for
data warehouses with star/snowflake schema which extends
the relational data model of SQL to express queries involv-
ing dimension hierarchies. Another approach is to develop
a new query language for OLAP (e.g., Multi-Dimensional
eXpressions- MDX) and translate SQL to that new language
and vice versa.

The approaches mentioned above are based on extending
an existing language. In our work, we address this issue by
considering constructs that support both object and OLAP
data structures in a single common framework, in order to
answer queries that are formulated jointly over both do-
mains. We propose a composite OLAP-Object data model
in order to achieve the desired functionality and semantics
of both domains, and define a query language over this data
model.

Combined queries over OLAP and object database sys-
tems were addressed previously, in [17] and [13] in the con-
text of federating databases. The connection between these
databases is achieved through links or functions that map

categories in an OLAP database to the corresponding enti-
ties in a separate object database. A summary query lan-
guage, called SumQL for querying an OLAP data is de-
fined. The language was based on the SQL language that
was augmented with constructs such as measure, dimen-
sions with hierarchies, and automatic aggregation (auto-
matic application of a pre-specified aggregation function,
such as SUM). In contrast, the composite data model pre-
sented in this paper, can support multiple OLAP databases
and uses a common data model framework to represent con-
structs in both domains (primitive, regular and composite
objects). Consequently, our proposed query language can
be applied uniformly to both OLAP and Object data con-
structs.

A similar approach, but from system point of view that
was introduced in order to remove the gap between OLAP
and current database management systems (DBMSs) is pre-
sented in [11]. A list of shortcomings of the current DBMS
for OLAP systems is presented, which includes the inade-
quacy of the relational model, the current client/server ar-
chitecture and the problem of the correct implementation of
summarizability [16] with the GROUP BY statement. The
solutions to bridge this gap are defined on top of a com-
mercial OLAP engine and the requirements for an analytic
query language to close the gap are defined. The foundation
of such a query language is an extension of XQuery with
explicit grouping constructs to support aggregation queries
as discussed in [5]. Our data model is defined from a log-
ical modeling point of view using well-formed composite
objects and the semantic of summarization over composite
objects. The foundation of the proposed query language is
based on three basic data model constructs, the concept of
an anchor, and path expressions originating from the anchor.

The paper is structured as follows. The next section de-
scribes the basic constructs of the OLAP-Object data model,
and introduces a graphical representation of the model. Sec-
tion 3 discusses well-formed composite object classes, and
defines the summarization semantics. Section 4 discusses
the application of paths to the OLAP-Object data model.
Section 5 proposes a query language, and investigates the
relative power through multiple query examples. Section 6
compares the proposed query language with ODMG’s Ob-
ject Query Language, OQL [6]. Section 7 concludes.

2. Constructs and Graphical Representation

In this section, we first give the basic constructs of the
composite OLAP-object data model and then, we present
its graphical representation.

2.1. Constructs

We start with the well-known basic concepts of an
object-attribute-association model, and then introduce addi-
tional concepts for supporting the semantics of OLAP data.
The basic concepts include:

• Object Class - represents a set of individual objects,
each having a globally unique identifier. An object



class has a label (name). An object class must have
at least one attribute. Such a class is called a regular
object class.

• Attribute - a property associated with an object class.
Each individual object in that class determines the at-
tribute value associated with it. Therefore, there is a
functional dependency of the attribute on the object
class. An attribute has a label (name).

• Association - a way of pairing objects from two object
classes. An association has a pair of cardinalities: one-
to-one, one-to-many, many-to-many. An association
has a label (name).

For instance, let us consider two regular object classes,
called Student, and Course. The attributes of the first class
are Name and Age, while the attributes of Course are Name
and Start-date. An association between these classes is en-
rolls.
In addition to the above concepts, we need to have several
concepts that will allow OLAP structures to be represented
in the data model. The first is a primitive object class (such
as “race” or “sex”) that can be used for defining dimensions
in the OLAP model. The second is a composite object class
that supports the concept of a cross-product or data cube.
We also need the concept of an association with special
properties, called a summarizable association which is used
for defining classification hierarchies. We define these next:

• Primitive object class - an object class that represents
a finite enumerated set of values. The values represent
the identifiers of the individual objects in the class. A
primitive object class has a label (name).

• Composite object class - an object class defined over
two or more component object classes, where each in-
dividual composite object has a new identity which is
independent of the identities of the component objects.
The identifier of the composite object is composed of
the identifiers of the component object classes. A com-
posite object class must have at least one attribute. A
composite object class has a label (name).

• Summarizable association - we make a distinction be-
tween a simple association and a summarizable asso-
ciation. A summarizable association must be one-to-
many and must pass the test of completeness and non-
overlap of objects as described in [16]. Example of
summarizable associations are is-in between City and
State, or offer between Course and Department. We
expand on the summarization semantics in Section 3.

• Classification Hierarchy - an ordered list of object
classes of a similar type organized by levels that are
related by summarizable associations. The mapping
from a lower (more detailed) level of objects to a
higher (more aggregate) level is specified by a clas-
sification function. This introduces a hierarchical rela-
tionship between pairs of object classes and the struc-
ture is referred to as classification hierarchy. The oper-
ation that implements the summarization from a lower

(higher) level to a higher (lower) is called roll-up (drill-
down).

For instance, let us consider “average-income by city,
race, and sex” mentioned in the previous section. This
can be modeled as a composite object class named Income
where City, Race, and Sex are component object classes.
City is a regular object class and its attributes are Name and
Mayor, while Race, and Sex are primitive object classes.
City is a category of the classification hierarchy City →
State → Counry. The attribute of the composite object
class is average-income.

2.2. Graphical Representation

The representation of object classes and relationships
are based on nodes and arcs. Specifically, primitive and
regular object classes are represented by a simple node
(©), whereas a composite object class is represented by a
“circled-X” (

⊗
) node.

In the graphical representation, each component class is
connected to the composite class by a dashed line. Each
node contains a label that indicates the name of the class it
represents, and the attributes are shown in italic text next to
the node. See example in Figure 1.

To represent a simple relationship (or a simple associa-
tion) between two object classes, a simple labeled directed
arc is used. The directed label indicates the name of rela-
tionship and is represented in italic text with lowercase let-
ters. The directionality of the label is chosen according to
the meaning of the label. For example, a project can “have”
people, or people can “work-in” a project, which are rep-
resented with opposite label directionality. Note that, the
model allows for inverse labels, but we do not show these
in the graphical representation. A classification relationship
(or a summarizable association) between two object classes
is illustrated by a directed bold arc.

Example 1 In Figures 1 and 2 graphical representations for
an Object schema and an OLAP schema are illustrated, re-
spectively. In our composite OLAP-Object model it is pos-
sible to combine the two types of schemas in a straight-
forward manner since they are based on the same under-
lying constructs. Examples of combined schemas are pro-
vided in the next sections.

3. Characteristics of Composite Object Classes

3.1. Well-Formed Composite Object
Classes

Generally, composite object classes are based on the idea
of representing many-to-many relationships between pairs
of component object classes as classes in their own right.
For instance, let us consider the relationship enrolls be-
tween Student and Course, which associates students and
the courses they attend (see Figure 3-(A)). If enrolls is not
defined by any attributes then in the database schema design
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Figure 2. Example of a composite object class

it can be represented by a binary many-to-many relation-
ship. However if the relationship has an attribute associated
with it, then a composite object is used. For instance, if
Grade is associated with enrolls, then we need to use a com-
posite object class, named Enrollment and define it over the
original object classes, i.e. Student, and Course (see Fig-
ure 3-(B)). Thus, a composite object class without any at-
tribute is equivalent to a simple many-to-many association
between the component object classes.

Similarly, ternary and higher degree relationships are
captured by well-formed composite object classes as fol-
lows.

Definition 3.1 A composite object class is well-formed if
and only if between any pair of its component classes there
is no functional dependency.

Explanation: Let us consider a composite object class de-
fined by three object classes named X, Y, and Z. Suppose

Course Student

(A)

enrolls
n n

Grade

Course Student

Enrollment

(B)

Figure 3. Example of a binary many-to-many rela-
tionship (A) and a composite object class (B)
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Course Student

Enrollment

(B)

Department1n
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Course Student

Enrollment

Department

1

n

Figure 4. Example of a non well-formed (A) and a
well-formed composite object class (B)

that a functional dependency exists between at least one pair
of object classes, say X and Y. Thus for each instance of X
there are n instances of Y. This dependency represents the
binary one-to-many relationship between X and Y, which
defines a partial order on instances X and Y. Therefore,
these two component classes are related by a hierarchical
relationship. This contradicts the definition of a compos-
ite object that has an identity which is independent of the
identities of the component objects.

For instance, the schema of the composite object shown
in Figure 4-(A) is not well-formed. As stated in Definition
3.1, there is a functional dependency between Course and
Department. The well-formed composite object is shown
in Figure 4-(B).



3.2. Summarization Semantics

Composite objects must satisfy the conditions of sum-
marizability discussed in [16]. These conditions are: a)
disjointness of objects in the dimension hierarchies. This
implies that instances of category attributes in dimensions
form disjoint subsets of the elements of each level; b) com-
pleteness is a condition that means that all the categories
of each dimension exist, and every category is assigned to
some category in the level above it in the hierarchy; c) cor-
rect use of measures is a conditions that states that each
summary attribute must be associated with a aggregation
function (COUNT, SUM, MIN, MAX, and AVERAGE),
and only that function can be applied to it.

Definition 3.2 Performing summarization over summary
attributes associated with composite objects have certain
semantic behavior. Therefore, queries expressed over com-
posite object classes satisfy the following semantic condi-
tions:

1. if a dimension (or component object class) is not spec-
ified, then the summarization must take place over all
values of its individual objects.

2. if a set of values of a certain dimension is specified,
then the restriction must take place over this set only
and the remaining object values are not included. In
the result of query, the composite object contains only
this set of objects for this dimension.

3. if a single or a range of values of a certain dimension
is specified, then the summary attribute of the compos-
ite object must be evaluated over this single/range of
values.

4. if no dimension is specified, then summarization must
take place over all values of the dimensions. This cor-
responds to obtaining only a single value for the sum-
mary attribute (grand-total).

5. if a dimension is specified at a higher (lower) level of
the classification hierarchy with respect to the level of
the object class, which is a component of the composite
class , then the summary attribute must be aggregated
(dis-aggregated) to the desired level through roll-up
(drill-down) operation.

Example 2 Consider Figure 2, and the query “Find city and
population in the 20÷40 age-groups”. Sex is not specified,
then according to the Definition 3.2-(1) it is summarized.
Since a sequence of values (i.e. 20÷40) for Age is specified,
condition (2) of the definition above is applied. If instead,
the query also specified a condition for Sex, e.g. getting
the population for females, then according to Definition 3.2-
(3), the value male of Sex is not included and the result
contains only Population of female by city and age in the
20 ÷ 40 range. If the query specifies “population of the
20 ÷ 40 age-groups”, then according to Definition 3.2-(3),
Population should be aggregated over values of Age from

20 to 40. If only total population of demographic group
is specified, then Age, Sex, and City are summarized to
obtain a single total population value (see Definition 3.2-
(4)). Finally, if the query specifies “population by region”,
then according to Definition 3.2-(5), Population should be
aggregated from City to Region level by roll-up operation.

4. Paths over the OLAP-Object Data Model

A path expression is defined from a starting object class
toward the object class to be accessed in a query without
having to express explicit join conditions. It is possible
to associate with the same path, one or more predicate
conditions. For instance, let us consider Figure 1, and the
query “students who are enrolled in the Mathematics course
offered by the Electrical Engineering department”. If we
insist on writing this query as a single path expression, it
will require an expression as follows:

Student.Course:Name=”Mathematics”.Department:Name=
”Electrical Engineering”

We find the above notation cumbersome, and not easily
extendible to queries with additional predicate conditions
that can cause forks in the path expressions. Instead,
in our query language we support multiple simple path
expressions, where each path expression consists of only
a single predicate. It is expressed by a sequence of object
classes, which are separated by dot notation. The sequence
ends up with a colon, after which a predicate is expressed
in order to restrict the objects selected. Thus, a query with
multiple predicate conditions is split up into a conjunction
of several simple paths. Accordingly, the previous query is
expressed as follows:

Student.Course:Name=”Mathematics” AND Stu-
dent.Course.Department:Name= ”Electrical Engineering”

We allow multiple values of an attribute to be specified in
a single path. For instance, if the query is “students who
are enrolled in courses Mathematics and Logic”, the path is
defined as follows:

Student.Course:(Name=”Mathematics” AND Name=”Logic”)

A path can be usually expressed as a simple dot notation.
However, in the case that more than one relationship hold
between two objects, then only one relationship should be
specified. For instance, suppose that the object Student
is related to Course by an additional relationship, named
audits. To specify students who are enrolled in the mathe-
matics course (rather than audits the class), the relationship
enrolls should be specified between Student and Course in
the path expression. We use the notation of specifying the
selected relationship in parenthesis as shown below:

Student(enrolls)Course:Name=”Mathematics”



If a path goes through a composite object class that does not
involve any attribute of this class, then it has the same struc-
ture as having only regular classes. For instance, suppose
that in Figure 4-(B) an object class named City is related to
Student by a lives relationship. The query: “Find Cities of
students who are enrolled in a Computer Science course” is
expressed as shown below.

City.Student.Enrollment.Course:Name=”Computer Science”

Note that this query does not specify the Grade attribute.
Queries that specify attributes of composite objects have a
different structure, which will be discussed in the next sec-
tion, after the concept of an anchor is introduced.

5. The Query Language

An important feature of the proposed query language is
an anchor. It allows us to select an object class (primitive,
regular or composite) as the query focus. We call this class
the anchor-class. The path condition expressions can be
formulated starting from the anchor-object class using paths
over the OLAP-Object data model described in Section 4.
In expressing the desired output, the results of a query also
refer to the anchor-class and are obtained based on the eval-
uation of the condition expressions. The general form of a
query over OLAP-Object data model is given below.

OLAP-Object query::=
ANCHOR <anchor-class>
FROM <anchor-class-composite>
CONDITION <conditional-expressions>
OUTPUT <anchor-path-items>

The ANCHOR clause contains either one composite ob-
ject class or one or more primitive and regular classes. In
the latter case, the (primitive or regular) classes belong to
a composite object class, which should be specified in the
FROM clause. In this case, the ANCHOR clause specifies
the dimensions of the composite object for which the sum-
mary attributes are to be computed according to semantics
introduced in Section 3.2. The CONDITION clause con-
tains simple and path conditional expressions, according to
the structure discussed in Section 4. Finally, the OUTPUT
clause specifies the desired results based on the evaluation
of the conditional expressions or the application of aggre-
gate functions on summary attributes. We use the notation,
“*” and “ID” to represent all attributes and instances of a
given class, respectively.

The formal syntax and semantics are given in [18]. A
summary of the main clauses is given below.

<query-item> ::= <anchor-statement><from-statement>
<conditions-statement> <output-statement>

Condition

Path condition

AND/OR

Output

..........

Output

...
...

...ANCHOR

Figure 5. Illustration of Object query

<anchor-statement> ::= ANCHOR <simple-class>
{’,’ <simple-class>} | <composite class>
<simple-class>::= <primitive class> | <regular class>
| <regular class> ISA <regular class>

<from-statement>::=FROM <composite class>

<conditions-statement>::=CONDITION
<conditions> | <path-conditions> | <null>

<output-statement>::=OUTPUT <anchor-paths>
{’;’ <anchor-paths>}

In the next subsections, we first illustrate how to ex-
press queries that are purely object-based and queries that
are OLAP-based. We then show how we can express com-
bined OLAP-Object queries without splitting queries into
multiple steps. In the last subsection, we discuss composite-
composite queries. They are composite queries, in which
the evaluation of the conditional expressions depends on
a second composite query. We illustrate the power of the
proposed query language through multiple query examples.
Note that the queries expressed over primitive object classes
(e.g., Sex) refer to their domain values (e.g., Female, Male).

5.1. Object Queries

In this case, the anchor is a regular class and the con-
ditional expressions are formulated either on anchor or on
regular classes at the end of paths (see Figure 5). In the
output clause the result can be the anchor class itself, its
attributes, or attributes of paths emanating from the anchor.
In the following, some examples of queries formulated on
regular classes shown in Figure 1 are given.

Query 1: Find students who are enrolled in Mathematic and
Logic courses given by lecturers of the Electrical Engineer-
ing department.

ANCHOR Student

CONDITION Student.Course: (Name= ”Mathematics”

AND Name=”Logic”)

AND Student.Course.Lecturer.Department: Name

= ”Electrical Engineering”

OUTPUT Student:*
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Figure 6. Illustration of Composite query

Explanation: Student is the anchor class. Since no spe-
cific property is requested from the query, all attributes of
Student are provided.

If in the query above, instead of “students”, we wish to
get “number of students” then in the OUTPUT clause Stu-
dent:COUNT is specified. Similarly, Student:AVG(Age) can
be specified if “average age of students” is desired.

Query 2: Get name and birthday of students and addresses
of departments for students that take courses in at least one
department.

ANCHOR Student

CONDITION Student.Course.Department: NOT NULL

OUTPUT Student:(Name, Birthday);

Student.Course.Department: Address

Explanation: The quantifier some is expressed by NOT
NULL in the conditional expression. The output paths are
constructed starting from the anchor class Student.

5.2. Composite Queries

We classify two types of composite queries depending
on whether the conditions are expressed on the summary
attribute or not. They are labeled as Type I and Type II
in Figure 6. Queries of Type I have condition expressions
that are defined on dimensions, and specify the summary
attribute in the output. The opposite occurs for queries of
Type II.

The following query examples are formulated on the
schema of the OLAP database shown in Figure 2.

Query 3: Find population by region and age for demo-
graphic groups of females in 20 ÷ 40 age-groups, and re-
strict the result to regions in the USA only.

ANCHOR Region, Age

FROM Demographic Group

CONDITION Age EQ {20,40}
AND Region.Country:Name=”USA”

AND Sex=”Female”

OUTPUT [Region, Age](Demographic Group): Population

Explanation: This is a Type I query. Region and
Age are anchor classes. They are two dimensions of
Demographic Group, which is specified in the FROM
clause. In this query, the tuples are restricted to a range
of values on dimension Age, and the dimension Sex is re-
stricted to “Female”. The summary attribute Population is
aggregated from City to Region by the roll-up operator. The
output is only for regions in the USA.

Query 4: Find regions in the USA with a female population
> 10M for females between 20 ÷ 40.

ANCHOR Region

FROM Demographic Group

CONDITION Age BETWEEN {20,40}
AND Region.Country:Name=”USA”

AND [Region](Demographic Group):Population > 10M

OUTPUT Region:Name

Explanation: The values of Age is restricted to a range, and
specified by the BETWEEN operator in the CONDITION
clause. This differs from the previous query because the
summary attribute should be aggregated over this range. If
the query above would request instead the total population
over all the regions selected, then in the OUTPUT clause
[Region](Demographic Group): SUM(Population) has to be
specified.

An example ofType II composite query is illustrated next.

Query 5: Find regions where the female population is >
100000 and output the population per city in these regions.

ANCHOR Region

FROM Demographic Group

CONDITION Sex=”Female”

AND [Region](Demographic Group):Population > 10000

OUTPUT Region.City: Population

5.3. Composite-Object Queries

We illustrate in this section queries that involve both ob-
ject and OLAP Constructs. We refer to the schema shown
in Figure 7.

Query 6: Find the name of governors of states where the
average income per state is > 20000.

ANCHOR State

FROM Demographic Group

CONDITION [State](Demographic Group):Average-Income> 20000

OUTPUT State.Governor:Name
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Figure 7. Example of composite-object class

Explanation: This query specifies as output an object class
from the Object construct. The conditional expression
is defined over the Demographic Group from the OLAP
construct, which implies the summary attribute Average-
Income should be rolled up from City to Region.

Query 7: Find the N.of Beds in maternity wards of cities
where the female population between 20 ÷ 40 years old is
> 1500.

ANCHOR City

FROM Demographic Group

CONDITION Age BETWEEN {20 40}
AND Sex=”Female”

AND [City](Demographic Group): Population > 1500

AND City.Health-Center.Ward:Name=”Maternity”

OUTPUT City.Health-Center.Ward:N.ofBed

Explanation: This is similar to the previous query but the
conditional expressions are defined on both constructs.

5.4. Composite-Composite Queries

These queries are subdivided into query-subquery. The
subquery is resolved first and the result is used to give the
final answer. The query examples that are given below refer
to Figure 8.
Query 8: Get the consumption of wine in cities by sex
where sales exceed $10000 in 2001.

Query1 ANCHOR City

FROM Sales

CONDITION Year=”2001”

AND [City](Sales):Amount> 10000

OUTPUT [City](Sales):Amount

Consumption

Age

Quantity

Sex City

Region

Country

Wine
Type

Sales

#of Bottles, Amount

Year

is-in

is-in

Figure 8. Example of composite-composite classes

ANCHOR City, Sex

FROM Consumption

CONDITION Year=”2001” AND City IN Query1

OUTPUT [City,Sex](Consumption):Quantity

Explanation: Query 1 is formulated on the composite object
Sales. Then, the consumption of wine is calculated for each
city retrieved from Query 1.

Query 9: Find sales of red wine in USA regions, where the
wine consumption of males in 2003 is ≥ 300 gallon.

Query1 ANCHOR Region

FROM Consumption

CONDITION Year=”2003” AND Region.Country=”USA”

AND Sex=”Male”

AND [Region](Consumption):Quantity ≥ 300

OUTPUT [Region](Consumption):Quantity

ANCHOR Region

FROM Sales

CONDITION Region IN Query1

AND Year=”2003”

AND Wine Type=”Red”

OUTPUT [Region](Sales):(#ofBottles, Amount)

The explanation of this query is straightforward.

5.5. Back reference and multiple references

Let us consider queries which express condition caused
by ellipsis in natural language (e.g., their, its, etc.). This



class of queries can be answered by a specialized version
of paths discussed in Section 4, called back reference path.
Let us consider Figure 9, and ask the following query.

Query 10: Give the name of books for which the authors
live in the same city as a borrower.

To answer this query, city of author should be matched
with city of borrower. For a correct formulation of the
query, we should retrieve books from the first expression
such that on these books the second expression can be eval-
uated. A solution to this is to create a reference for Book as
follows:

ANCHOR Book

FROM Loan

CONDITION Book(x).Author.City:Name=

Name(City.Borrower.Book(x))

OUTPUT Book:Name

Note that the relationship between Borrower and Book
is Loan. Back reference is useful to model self-reference,
where a class is related to itself by an association. For in-
stance, a class called Person could be related to itself by the
relationship Friend. The query

Query 11: Find people who have at least one friend with
the same first name, and return full name of person and his
friend.

is easily formulated as follows:

ANCHOR Person

CONDITION Person(x):First-Name=

First-Name(Person(y)(friend)Person(x))

OUTPUT Person(x):(First-Name,Last-Name);

Person(y):(First-Name,Last-Name)

The query language can also support isa relationship
construct, since the isa relationship is not considered a “dis-
tinct” association between regular object classes. In other
words, if a class Oi is a specialization of class Oj and is
invoked by a query, then the query is evaluated on Oj .

For instance, let us consider Graduate Student to be
a subclass of Student in Figure 1. Suppose that a query
requests the name of graduate students enrolled in a Math-
ematics course. The effective anchor-class is Student, and
the query is expressed as follows:

ANCHOR Graduate student ISA Student

CONDITION Student.Course: Name=”Mathematics”

OUTPUT Student:Name

6. Comparison with OQL

OQL is an object-based language version of SQL de-
signed for the Object Data Management Group (ODMG)
object model. It uses SQL-like syntax (SELECT, FROM,
WHERE) [6]. In order to access data, all queries start from
a named object class and navigate through dot notation “.”

Loan

Borrower Book

Type of Loan

Name
N.of Loan

Name, 
Address

AuthorCity

lives

lives

writes

Date

Month

Year

Figure 9. Example of composite-object class

to reach other objects through relationship paths. Path ex-
pressions are used to access any attribute of an object, and
dot notation is applied only to a single object and not to a
collection of objects. When a collection of objects is ref-
erenced in OQL queries, iterator variables in the FROM
clause are used. For instance, note the variable “s” in the
FROM clause of the query “Find the titles of courses taken
by Smith” as shown below:

SELECT s.Courses.Title

FROM s in Student

WHERE s.name=”Smith”

In contrast, our query structure refers to the collection
of objects in the object class and the association between
object classes is achieved through the dot notation paths.

The above query in our query language is expressed as
follows:

ANCHOR Student

CONDITION Student:Name=”Smith”

OUTPUT Student.Courses:Title

In the ANCHOR clause of the proposed query language,
similar to the FROM clause of OQL, for every object class
an extent (not the class name) is declared, which is used
to refer to the current collection of all objects of that class.
Unlike OQL, in our proposed query language, all queries
start from an object class declared in the ANCHOR clause,
and consequently, path expressions refer to a collection of
objects.

Aggregation operations in OQL, similar to SQL, are pro-
vided by GROUP BY clause. This provides explicit refer-
ence to the collection of objects within each group or par-
tition. The HAVING clause is used to filter the partitioned
sets (that is select only some of the groups based on group



conditions). In contrast, in our query language we take ad-
vantage of the semantics of a composite object and classifi-
cation hierarchies to infer aggregation. Specifically, aggre-
gation is inferred over dimensions not included in the query.
For example, given a composite object representing popu-
lation by state, race and age, the query get population by
state infers summarization over all values of race and sex.
Similarly, if states are organized by region as a classifica-
tion hierarchy, then the query get population by region will
imply aggregation over states because the classification hi-
erarchy semantics are part of our data model.

Consider query 5 as an illustration of the power of our
query language to express OLAP queries. This query is ex-
pressed in OQL as follows:

SELECT STRUCT (rname, r.City.Population)

FROM r in

{ SELECT STRUCT (region.Name, pop:SUM(c.Population))

FROM c in CITY}
GROUP BY c.Name}

WHERE region.DemographicGroup.Sex=”Female”

AND region.Population >10000

In our query language, the formulation of this query (see
Query 5) is simple and intuitively clear because our query
language is designed to use the summarization semantics
discussed in Section 3.2. In particular, the roll-up operator
is applied automatically to the dimension City of composite
class DemographicGroup in order to obtain Population by
the higher level Region.

The above query in OQL invokes only one dimension.
Complex queries which involve aggregation of multiple di-
mensions are tedious and require the query to be expressed
in multiple steps. In general, it is well-recognized that the
GROUP BY and HAVING clauses (used in SQL and OQL)
are not efficient to answer OLAP queries [15]. For this rea-
son, several proposals were made to enhance the capability
of SQL with some features of OLAP models such as di-
mension hierarchies (see [15], [8]). The query language
proposed in this paper overcome these limitations and al-
lows to perform complex operations through the data model
structures that include summarization semantics.

7. Conclusions

In this paper, we propose a data model that combines
the characteristics of the OLAP and the Object data mod-
els in order to represent their functionalities in a common
framework. This is achieved by defining only three basic
object classes: primitive, regular and composite. In addi-
tion to the conventional associations between object classes,
the model includes a summarizable association that facili-
tates the specification of classification hierarchy structures.
Based on these concepts and well-formed semantics, we de-
fine a query language, which uses the anchor concept to
enable declarative, non-procedural, query formulation over
the combined OLAP-Object databases. The power of the
proposed query language is illustrated with multiple query
examples. A possible direction for future research is to

apply the proposed data model and query language in the
framework of XML data representation.
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