
DataMover: Robust Terabyte-Scale Multi-file Replication
over Wide-Area Networks

Alex Sim, Junmin Gu, Arie Shoshani, Vijaya Natarajan

Lawrence Berkeley National Laboratory

(asim, jgu, shoshani, vnatarajan)@lbl.gov

Abstract
Typically, large scientific datasets (order of tera-

bytes) are generated at large computational centers,
and stored on mass storage systems. However, large
subsets of the data need to be moved to facilities
available to application scientists for analysis. File
replication of thousands of files is a tedious, error
prone, but extremely important task in scientific
applications. The automation of the file replication
task requires automatic space acquisition and reuse,
and monitoring the progress of staging thousands of
files from the source mass storage system, transfer-
ring them over the network, archiving them at the
target mass storage system or disk systems, and
recovering from transient system failures. We have
developed a robust replication system, called
DataMover, which is now in regular use in High-
Energy-Physics and Climate modeling experiments.
Only a single command is necessary to request multi-
file replication or the replication of an entire
directory. A web-based tool was developed to
dynamically monitor the progress of the multi-file
replication process.

1. Introduction
Modern supercomputer systems have ushered a

new era of scientific exploration. High granularity
simulations of scientific phenomena are now
possible, exposing details never possible to observe
before. The increase in precision has brought about a
tremendous increase in the amount of data generated.
For example, currently a single Community Climate
System Model (CCSM) simulation at a resolution of
280 km for each side of a simulation cell over 100
years generates about 0.75 TBs. The increase of
resolution to 70 km along with 3 times higher
resolution in time points, and better chemistry in the
model is predicted to increase the amount of data by
a factor of 100-1000. Measurements, using high-
precision, more sensitive devices, such as devices
mounted on satellites, are now producing terabytes of
data, and are expected to grow. Experiments, such as

high energy physics (HEP) experiments, are already
producing hundreds of terabytes of data. Future HEP
experiments, such as ATLAS, scheduled to be
launched in 2006, are predicted to generate many
petabytes of data. We describe in this paper one of
the problems that arises from dealing with this large
volume of data – massive data movement over wide-
area networks.

The scientific exploration process typically con-
sists of two phases: data generation and data analysis.
In the data generation phase, large volumes of data
are generated at supercomputer centers or collected
by experiments, and stored on large mass storage
systems (MSSs) that archive data on robotic tape
systems. Future MSSs may not have robotic tape
storage, but they will still exist. It is predicted that
the next generation of storage devices will consist of
thousands of disks (disk farms) each holding a few
terabytes of data. The MSSs will continue to be the
primary storage facilities of these huge datasets, and
will require routine maintenance. In the data analysis
phase, large subsets of the data need to be moved to
an analysis environment, which can be a small cluster
at some university. This process of moving hundreds
of gigabyes to a few terabytes to the scientist for
analysis turns out to be one of the more tedious, time
consuming tasks that wastes the scientist’s time.
Why is this seemingly simple, boring task so
difficult? Why aren’t there simple solutions avail-
able?

One of the most common practices for moving
large data volumes consisting of thousands of files is
to write a simple script that reads each file in turn
from the source storage system, issues an FTP (File
Transfer Protocol) request to transfer the file, and
repeats till all the files are moved. The problem with
this approach is that the script has to run for hours,
and invariably something goes wrong: the mass
storage system may have a transient failure or a
scheduled maintenance, the network may have a
transient failure, power failures may disrupt opera-
tions, etc. Thus, the script has to be monitored, the
failures discovered, the files already moved need to

-1-

be checked for their integrity, and the process
resumed from the point where it failed.

Another problem is the efficiency of the process.
Using simple FTP for large volume of data is very
inefficient, because FTP servers are set to break each
transfer into small blocks (called windows) of about
2-10 Kbytes. This introduces too much overhead,
and therefore larger window sizes (in the order of 1-
10 Mbytes) need to be used. Also, one can set an
FTP session to support multiple parallel streams to
increase throughput. But, most users do not know the
details of dealing with such efficiency issues. In
addition, getting more than one file concurrently
from a mass storage system requires writing a multi-
threaded program – again too complex for most
scientists. Thus, the transfer process takes longer
than necessary even if the network capacity is high.

To complicate matters for the scientists, they have
to deal with security issues, as well as firewalls set in
front of the various sites. Here again, they need to
get help from administrators before they can even
proceed to transfer files.

What is needed is a utility that has the following
features: (1) a simple way to invoke the file transfer,
similar to a “remote copy in recursive mode” in unix
(rcp –r) from a directory in one site to a directory in
another site; (2) because the transfer may take many
hours, this utility needs to be asynchronous; that is,
after the call is made and accepted, the user can quit;
(3) there needs to be a guarantee that the transfer will
succeed even when transient failures of the systems
and the network are involved; and (4) there needs to
be a dynamic update on the state of the transfer
available to the user in order to monitor the progress.

Achieving a solution to this problem is a difficult
task, especially having to deal with a variety of file
systems and mass storage systems. However, in
trying to address this problem, we realized that we
can take advantage of software components we
developed for a Grid middleware project, called
Storage Resource Managers (SRMs) [1, 2]. These
components were developed for the purpose of
supporting access to storage systems on the Grid, but
could readily be applied to this difficut problem. An
SRM is a software module placed in the vicinity of a
storage system; that is, on a machine that is on the
same local area network. Since these modules are
designed to access mass storage systems as well as
disk systems, we could build a component that
communicates with SRMs to make multi-file transfer
requests. This component, that we call the Data-
Mover1, was designed to respond to the requirements
given to us by scientists in several domain areas. The

1 The name DataMover was proposed by the NCAR scientists

main requirement was that entire directories or
subdirectories can be moved in a single command,
using a simple command-line interface. The
advantage of using SRMs is that they all use the same
interface (protocol) to communicate with each other
regardless of the type of storage system they access.
A key point of this paper is to demonstrate the power
of using SRMs to easily solve the difficult problem of
robust file replication of thousands of files. We note
that simply using an efficient file transfer service
does not address dynamic space allocation or
recovery from failures.

In the remainder of the paper we describe the
design of the DataMover, its deployment in a couple
of application domains for routine production use,
and the experience in using this capability. One of
the more interesting items learned was that by
analyzing the logs with a visual tool it is possible to
identify where the bottlenecks of the system are. We
start by describing the functionality of SRMs in
section 2. In section 3, we present the DataMover
interaction with SRMs, and the series of actions that
take place for each file being transferred. In section 4
we describe a file monitoring tool that was developed
to track the progress of lengthy multi-file transfers.
In section 5, we describe our experience and analysis
of bottlenecks from the logs. We conclude in section
6.

2. Storage Resource Managers
Storage Resource Managers (SRMs) are Grid

middleware components whose function is to provide
dynamic space allocation and file management on
shared storage components on the Grid. They are
designed to provide effective sharing of files, by
monitoring the activity of shared files, and making
dynamic decisions on which files to replace when
space is needed.

Managing shared storage resources on the Grid is
a necessary and complex task because of the diversity
of the storage resources. Storage resources can vary
in complexity: a single disk under a UNIX file
system, large sets of disk caches or disk RAIDs, or
mass storage systems (such as HPSS) that provide
access to data on robotic tape systems. Making such
resources sharable through Grid middleware
technology requires that these systems are exposed
through a uniform interface. Thus, requesting space
from any of these systems should look the same to a
client. We have shown that through international
collaboration of achieving agreements on such
common interfaces, various storage systems can
interoperate. Most notably, SRMs have been built
for several mass storage systems both in the US
(HPSS at multiple sites, Enstore at Fermilab,
JASMine at Jefferson Lab, MSS at NCAR) and in

-2-

Europe (Castor at CERN, SE at Rutherford Lab), and
shown to interoperate smoothly. Furthermore,
several SRMs were built for disk systems as well,
and they interoperate with SRMs for mass storage
systems. This approach of standardizing on the
functionality and the interfaces of SRMs is the
backbone to the interoperation of shared storage
systems on the Grid. It allows multiple groups to
implement their own SRMs and thus make the
underlying storage system viewed as a Grid service.

A practical problem of managing shared resources
is that files are deposited in such systems and often
not removed. This tends to clog and make storage
systems ineffective. The problem is that the system
administrators do not know which files can be safely
removed. For this reason, SRMs have been designed
to associate a lifetime with files that have temporary
use. Accordingly, SRMs support the “pinning” of
files for the duration of a lifetime, as well as “releas-
ing” files as explicit requests. Lifetime is a mecha-
nism for the SRMs to reuse space that is not actively
in use.

Another aspect of SRM functionality came from
the desire to simplify the Grid client’s interaction
with storage systems. For example, it is a lot simpler
for an application client to request one thousand files
in a single request from an SRM regardless of their
location on the Grid, rather than having to get each
file from it source location. SRMs have been
designed to provide a service of accepting multi-file
requests, queuing each file request, getting the files
from the source locations (using a file transport
service such as GridFTP) based on space availability,

and streaming the files to the client. If files are found
locally, they are pinned for a certain lifetime. SRMs
can therefore share files between clients, making
storage usage more effective, and avoiding unneces-
sary file transfers over the Grid. We note that SRMs
use GridFTP [3] from the Globus project [4] for
invoking file transfers. This choice provides a way
of dealing with Security, since GridFTP support GSI
(Grid Security Infrastructure) authentication, and also
used large windows (1 MB) and multiple streams for
more efficient file transfer. However, the SRM APIs
have been designed to support any transfer protocol
by negotiation between the client and the server [see
2]. The interface to the SRMs can be through a web
service or other programming language APIs (such as
a c-API or a java-API).

It is the feature of accepting a multi-file request,
and getting the files as storage permits, that makes
SRMs so useful to the DataMover. SRM that are
placed in front of storage systems mange their own
space, where files are temporarily placed. As files
are “released”, the SRM can use the space to get
additional files, effectively streaming the files
through the disk cache to the destination. To
illustrate this capability, we describe in Figure 1, an
SRM which is placed in front of a mass storage
system, such as HPSS [5]. This type of SRM, which
we refer to as a Hierarchical Resource Manager
(HRM), manages a disk cache of its own, and
interacts with HPSS to stage and archive files. In
Figure 1 we show a series of interactions that occur
between a client and an HRM server placed in front
of HPSS.

Figure 1: steps of getting a file transferred from the MSS to the client’s disk using an HRM

srmGet (source URLs on HPSS)
22

GridFTP GET (pull mode)6 GridFTP GET (pull mode)66

File staged (HRM’s disk URL)
5

File staged (HRM’s disk URL)
55

1
Allocate
Space11

Allocate
Space 3

Allocate
Space 33

Allocate
Space 44

Stage and Pin
File

Transfer Complete (release pin)77

8
Release
Space 88

Release
Space9 Release

Space
99 Release

Space
Disk

Cache
Disk

Cache

ClientClient Server
HRM

-3-

It is important to go through the steps of this
interaction, since this is what the DataMover take
advantage of. Given a multi-file request (say 1000
files) the following steps take place:

1. The client allocates space on its disk.
Say, enough space for 50 files.

2. The client sends a request (referred to in
the figure as srmGet) to HRM for these
50 files.

3. The HRM server queues the request, and
allocates space on its own disk. For ex-
ample, suppose that this is limited to hold
only 10 files.

4. The HRM sends 10 concurrent staging
requests to HPSS for the 10 files. The
level of concurrency is limited by HPSS
and can be smaller or higher than 10.

5. As soon as a file that is staged the HRM
pins the file and sends a notice to the cli-
ent that this file is ready for transfer.
Thus, multiple such notifications can be
sent concurrently.

6. The client issues a file transfer call
(GridFTP) to pull the file. Multiple file
transfer requests may be active concur-
rently

7. When the transfer completes, the client
send a notice to the HRM that it is fin-
ished and “releases” the file.

8. The HRM releases the pin and makes the
space available for further transfers. It
can reuse this space to stage additional
files.

9. The client consumes the file (i.e. passes it
to the client), and releases the space on its
disk.

This protocol is necessary in order to insure that
files are not removed prematurely, and that space can
be released as soon as the file occupying it is
unpinned.

As soon as the client’s space is released, the client
can send additional srmGet requests to the HRM.
This has the effect of streaming multiple files
concurrently from the source HPSS to the target disk.
This process repeats until all 1000 files in the original
request have been transferred. We note that if the
client pre-allocates space for all 1000 files, it can
issue a single request for all 1000 files to the HRM.
The HRM would have queued the 1000 files, and

proceed to stage them as fast as the HPSS system will
permit.

The SRMs use URLs (Uniform Record Locators)
to refer to files they request or manage. For example,
the URL “srm://hpss.lbl.gov:3003/tmp/fileX”
represents a file fileX in the directory tmp of the
machine hpss.lbl.gov and managed by the SRM. The
SRM is on port 3003. Note that the protocol “srm” is
used to specify that file access is managed by an
SRM. After the file is staged, the SRM returns a
“transfer URL” to the client. The transfer URL
contains the location of the file, and the protocol to
be used for transfer. For example, if the SRM stages
the file to its disk space into location /home/xyz/ on
its machine cs.lbl.gov, and chooses to use GridFTP as
the transfer protocol, then the transfer URL is:
“gridftp://cs.lbl.gov:4004/home/xyz/fileX”. This
provides the client all the necessary information to
issue the GridFTP transfer request.

There are several robustness features that our
implementation of an HRM provides:

1. After a file is staged, the HRM checks for
a successful completion code, but in ad-
dition it compares the size of the file on
its disk cache to the number of bytes
staged. If they don’t match, it removes
the file and re-issues the stage request.

2. If the transfer from HPSS is interrupted
for any reason (such as the system
brought down for maintenance), the
HRM removes the partial file and re-
issues the transfer request repeatedly until
the HPSS system recovers.

3. If for some reason the client stops getting
the files (for example, because of a net-
work failure), the HRM disk space will
eventually fill, and the HRM will wait
until files are read and released.

These monitoring and recovery features are essen-
tial for the successful completion of a multi-file
request. In the next section, we describe how the
DataMover uses two SRM to achieve robust multi-
file replication between two or more storage systems.

3. The DataMover
The DataMover is an asynchronous client program

that is designed to interface to two SRMs, a source
SRM and a target SRM. In the example discussed
next, we use two HRMs: one developed to work with
HPSS, called HRM-HPSS, and one that adapts the
HRM-HPSS to work with a legacy mass storage

-4-

system at NCAR (National Center for Atmospheric
Research), called HRM-MSS, making it accessible
from the Grid. In Figure 3, we show how the

DataMover interacts with these two HRMs. In the
figure we describe a request to replicate an entire
directory that could contain thousands of files.

3) SRM-COPY
(thousands of files)

4) SRM-GET (one file at a time)

5) GridFTP GET (pull mode)

stage filesarchive files

Network transfer

1) Get Directory
structure and
its files

Anywhere

Disk
Cache

DataMover

HRM
(performs writes)

LBNL/
ORNL

Disk
Cache

HRM
(performs reads)

NCAR

NCAR-MSS

2) Create an
Equivalent
directory

3) SRM-COPY
(thousands of files)

4) SRM-GET (one file at a time)

5) GridFTP GET (pull mode)5) GridFTP GET (pull mode)

stage filesstage filesarchive filesarchive files

Network transferNetwork transfer

1) Get Directory
structure and
its files

Anywhere

Disk
Cache

DataMover

HRM
(performs writes)

LBNL/
ORNL

Disk
Cache

HRM
(performs reads)

NCAR

NCAR-MSS

Anywhere

Disk
Cache

DataMover

HRM
(performs writes)

LBNL/
ORNL

Disk
Cache

HRM
(performs reads)

NCAR

Anywhere

Disk
Cache
Disk

Cache

DataMover

HRM
(performs writes)

LBNL/
ORNL

Disk
Cache
Disk

Cache

HRM
(performs reads)

NCAR

NCAR-MSS

2) Create an
Equivalent
directory

Figure 2: The use of two HRMs to achieve data replication between

two incompatible mass storage systems.

Before space allocation and file transfer can take
place, the DataMover interacts with the HRMs to
generate equivalent directories. First it gets the entire
directory structure from the source HRM for NCAR-
MSS (step 1 in the figure). If the source MSS cannot
provide this information in a single command, the
HRM interacts with it recursively to obtain this
information. It then sends a request to the target
HRM-HPSS to create such a directory (step 2 in the
figure). Here again the SRM usually needs to
interact with the MSS repeatedly to build a multi-
level directory. Then the DataMover constructs a
multi-file request to move files from matching source
to target locations in the corresponding directory
structures (step 3 in the figure). At this point the
DataMover can quit since the HRMs take over. They
negotiate space and files transfer requests according
to the detailed protocol described in section 2 (we
show this in the figure as steps 4 and 5 without going
into the detailed protocol).

By this design we achieved all the requirements
we set up to achieve:

1. The DataMover is asynchronous – as
soon as the multi-file request is con-
structed it quits.

2. Robustness is achieved by the inherent
robustness of the HRMs when they stage
files at the source and archive files at the
target.

3. An additional robustness feature is pro-
vided by the target HRM when request-
ing file transfers over the network. The
HRM monitors such pull transfers and re-
issues the file transfer request if the trans-
fer fails.

4. Concurrency is achieved at all stages:
when staging files from the source MSS,
when transferring files over the network,

-5-

and when archiving files at the target
MSS.

5. File transfer efficiency is achieved by us-
ing GridFTP or any other file transfer
protocol that uses large windows and
multiple streams.

In addition, since the HRMs are adapted specifi-
cally to the MSS, we were able to overcome security
concerns. The files are read securely to the HRM
disk internally to the site, and moved between the
HRMs’ disk caches using secure GridFTP. We were
also able to overcome firewall issues by having the
HRM behind the firewall initiate the file transfers
(push mode) when necessary.

We have described above a DataMover between
two HRMs. However, the DataMover have been
designed to work in other situations as well. First,
they can work with any SRM, including SRMs
designed for disk storage only, called DRMs (Disk
Resource Managers). Thus, for example, if a client
DRM exists at the scientist’s site, the scientist can
request the DataMover to move files from one or
more remote SRMs. Furthermore, we also imple-
mented a DataMover that will move files directly to
the user’s disk space, but in this case the responsibil-
ity of space allocation and file removal fall on the
user. In some cases that may be desirable, since it is
not necessary to install as DRM at the client’s site,
and the client prefers to manage the space and file
usage. Finally, we emphasize that a request to get
multiple files to a target site can be made from many
source sites, since the URLs contain information
about the source sites.

4. The File Monitoring Tool
Monitoring the state of complex transfers is re-

quires dynamic updating of the file transfer progress.
Since the target SRM is the agent that issues the
transfer request, and is monitoring the transfers for
failures, we extended the SRM functionality so it
communicates to a file monitoring tool (FMT) server
daemon this information dynamically. We have also
developed an FMT web-based client that requests
updated information from the FMT server. The
information comes in two forms. First, a summary

that shows how many files transferred so far, total
bytes, and any failures that have occurred including
requests to files that do not exist, or sites that do not
respond. Second, we have developed a graphical tool
to show the progress visually. This is shown in
Figure 3. It can be invoked from any web-tool at any
time to check the progress of the multi-file replica-
tion request.

Figure 3 shows the graphical interface that indi-
cates files already transferred (in green to the left),
and files in the process of being transferred (in blue
to the right). When touching a file on the screen, the
bottom part of the display shows the source and
target sites (as URLs), the file size, and the average
file transfer rate. There is also a bar that shows the
percent of total size transfer so far. After the entire
transfer completes, a summary is displayed on
successful transfers, as well as average transfer rate
for the entire request. This tool is used routinely to
monitor progress of massive file replications.

5. File tracking and bottlenecks
Our experience with large transfer was that end-

to-end transfer rates varied in ways that we could not
explain. We embarked on analyzing logs to under-
stand where the bottlenecks were. We observed that
we need to track what happens to each file over time.
There are several events that need to be tracked:
when the request for the file was made, when did
staging started and ended, when did transfer over the
network started and ended, and when did archiving
started and ended. We found that a particular
technique, used in Netlogger [6] offers an effective
methodology for visualizing the sources of bottle-
necks. This visualization method is shown in Figure
4. The horizontal access represents time, and the
vertical access has points on it representing events of
file tracking. A connected line represents the events
for a particular file. Figure 4 shows the tracking of a
real run of archiving files from a disk cache into a
mass storage system using HRM. Thus, the events
are: Space Reserved (at the HRM’s disk cache),
GridFTP start, GridFTP end, Archive start, Archive
end. We chose to display only every 10th file so as
not to clog the display.

-6-

Figure 3: dynamic tracking of file movement

Figure 4: File tracking helps identify bottlenecks; archiving was the bottleneck

-7-

All the files moved were of the same size, except

th

syste

Lawrence Berkeley National Laboratory (LBNL at

Figure 5: file tracking shows reco ery from transient failures

one (13 from the left) that was a very small file, and
therefore was archived earlier. The interesting
property to observe is that the lines between
“GridFTP end” and “Archive start” are more slanted;
that is this step took more time. The implication is
that files were left in the HRM’s cache for a long
time before they were submitted for archiving. The
explanation for that is that archiving at the MSS was
slower than the rest of the process, including
movement over the network. In general, one can
observe that the event in front of an overly slanted
lines causes the bottleneck.

These logs can also be used to track transient
m failures and proper recovery by the SRMs.

Figure 5 shows the entire run of moving 318 files
(total of 45 GBs) from Brookhaven National
Laboratory (BNL at the east coast of the US), to

the west coast of the US). There were two HPSS
systems involved, one at each site. As can be seen
from the tracking graphs, shortly after the beginning
of the file replication process, the source system at
BNL was not available for quite a long time. Perhaps
it went down for maintenance. The DataMover
system recovered and continued. This was followed
by a system failure at the target site at LBNL, where
files were archived. Then, there was another shorter
transient failure at the source system. In spite of
these failures the data replication process completed
successfully, which proves the robustness of this
system. Another thing that can be observed from this
figure is that the overly slanted lines occur just before
“gridFTP start”, which implies that the network was
the bottleneck for this run.

v

-8-

The above shows that information from the logs
can

 application scientists from vari-
ou

st important lesson is that it is very
eco

 lesson is that by achieving an agreement
on

ust-
ne

request. More sophisticated mechanisms of partial

fic products for the
pu

ject. The
mo

the benefit of working
cientists on identifying the
ataMover software. Most

hel

 be used to identify bottlenecks and to improve
the system’s resource usage. Often, one of the
hardest things to predict is where to provide addi-
tional resources, such as getting more disk cache,
more tape drives, improve the network, etc. This
methodology can help in such decisions.

6. Conclusions
In our work with
s domains, we hear various stories on their

perception of what are difficult data management
problems. We were most surprised to hear that one
of the most time-consuming, annoying, disruptive
aspects of their work was massive file replication.
After analyzing the problem, we concluded that it is
indeed a difficult problem, one that requires effi-
ciency gains as well as absolute robustness. The task
could be difficult, but we have realized that technol-
ogy being developed for the Grid in the area of
Storage Resource Management can be used effec-
tively to solve this problem. There are a few lessons
we have learned.

Perhaps the mo
nomical to build complex systems by using

existing robust software modules – the building block
approach. This is a well known truism, but we did
not expect this to help for the problem at hand.
However, even though the SRM software modules
were developed for Grid storage management, not for
managing file replication, the functionality of
supporting multi-file requests for clients by SRMs
could be applied to the file replication task. Further-
more, the SRM itself uses another service, the
GridFTP, to achieve secure and efficient file transfer.
By using this basic file transfer service and addition-
ally providing concurrent staging, transfer and
archiving, more efficient use of the systems could be
achieved.

A second
 the functionality of the SRM service, and

developing a standard API, it is possible for incom-
patible systems to interact using compatible inter-
faces. This in itself is an obvious principle, but it was
rewarding to see how well it works by placing SRMs
in front of various file and mass storage systems.

A third lesson is that although achieving rob
ss in the face of multiple system failures is quite

difficult, placing the right monitors and recovery
mechanisms in the critical paths can achieve this
goal. Since failures occur only during small percent-
age of the time, the recovery does not have to be
efficient. In the case of file staging, transfer, and
archiving failures, it is sufficient to re-issue the

file recovery are not necessary.

It is worth noting that this problem is also very
important to the business world. It has been ad-
dressed by industry for speci

rpose of protecting important data. For example,
the Symmetric Remote Data Facility (SRDF) form
EMC, provides remote data replication between on-
line storage systems [7]. Such solutions are usually
associated with a specific product and do not support
interoperability between diverse storage systems, and
especially between mass storage systems.

The system we have developed has been in daily
use by one High Energy Physics project, and in
frequent use by a Climate Modeling pro

dular design permitted incremental scaling of the
products to support transfer requests robustly for
thousands of files, and hundreds of gigabytes of data
replication in a single request.

Acknowledgements
We gratefully acknowledge

with various application s
problems and using the D

pful were people from the STAR experiment,
including Doug Olson, Eric Hjort from LBNL, and
Jerome Lauret from BNL, as well as people from the
Climate Modeling community, including Mike
Whener from LBNL, Gary Strand and Adrianne
Middleton NCAR. This work was supported by the
Office of Energy Research, Office of Computational
and Technology Research, Division of Mathematical,
Information, and Computational Sciences, of the U.S.
Department of Energy under Contract No. DE-AC03-
76SF00098.

-9-

References
[1] Arie Shoshani, Alex Sim, Junmin Gu, Storage
Resource Managers: Middleware Components for
Grid Storage, Nineteenth IEEE Symposium on Mass
Storage Systems, 2002 (MSS '02).

[2] Arie Shoshani, Alexander Sim, and Junmin Gu,
Storage Resource Managers: Essential Components
for the Grid, in Grid Resource Management: State of
the Art and Future Trends, Edited by Jarek Nabrzy-
ski, Jennifer M. Schopf, Jan weglarz, Kluwer
Academic Publishers, 2003.

[3] W. Allcock, J. Bester, J. Bresnahan, A. Cherve-
nak, I. Foster, C. Kesselman, S. Meder, V. Nefedova,
D. Quesnel, and S. Tuecke. Data management and
transfer in high performance computational Grid

environments. Parallel Computing Journal,
28(5):749–771, 2002.

[4] The Globus Alliance, http://globus.org/.

[5] HPSS. High Performance Storage System,
http://www.sdsc.edu/HPSS, San Diego Supercom-
puter Center, La Jolla, CA, 1997.

[6] D. Gunter, B. Tierney, K. Jackson, J. Lee, M.
Stoufer, Dynamic Monitoring of High-Performance
Distributed Applications, Proceedings of the 11th
IEEE Symposium on High Performance Distributed
Computing, HPDC-11, July 2002

[7]
http://www.emc.com/products/networking/srdf.jsp

-10-

	Abstract

