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Abstract 
Typically, large scientific datasets (order of tera-

bytes) are generated at large computational centers, 
and stored on mass storage systems.  However, large 
subsets of the data need to be moved to facilities 
available to application scientists for analysis.  File 
replication of thousands of files is a tedious, error 
prone, but extremely important task in scientific 
applications.  The automation of the file replication 
task requires automatic space acquisition and reuse, 
and monitoring the progress of staging thousands of 
files from the source mass storage system, transfer-
ring them over the network, archiving them at the 
target mass storage system or disk systems, and 
recovering from transient system failures. We have 
developed a robust replication system, called 
DataMover, which is now in regular use in High-
Energy-Physics and Climate modeling experiments. 
Only a single command is necessary to request multi-
file replication or the replication of an entire 
directory.  A web-based tool was developed to 
dynamically monitor the progress of the multi-file 
replication process. 

1.  Introduction 
Modern supercomputer systems have ushered a 

new era of scientific exploration.  High granularity 
simulations of scientific phenomena are now 
possible, exposing details never possible to observe 
before.  The increase in precision has brought about a 
tremendous increase in the amount of data generated. 
For example, currently a single Community Climate 
System Model (CCSM) simulation at a resolution of 
280 km for each side of a simulation cell over 100 
years generates about 0.75 TBs.  The increase of 
resolution to 70 km along with 3 times higher 
resolution in time points, and better chemistry in the 
model is predicted to increase the amount of data by 
a factor of 100-1000.  Measurements, using high-
precision, more sensitive devices, such as devices 
mounted on satellites, are now producing terabytes of 
data, and are expected to grow.  Experiments, such as 

high energy physics (HEP) experiments, are already 
producing hundreds of terabytes of data.  Future HEP 
experiments, such as ATLAS, scheduled to be 
launched in 2006, are predicted to generate many 
petabytes of data.  We describe in this paper one of 
the problems that arises from dealing with this large 
volume of data – massive data movement over wide-
area networks. 

The scientific exploration process typically con-
sists of two phases: data generation and data analysis.  
In the data generation phase, large volumes of data 
are generated at supercomputer centers or collected 
by experiments, and stored on large mass storage 
systems (MSSs) that archive data on robotic tape 
systems.  Future MSSs may not have robotic tape 
storage, but they will still exist.  It is predicted that 
the next generation of storage devices will consist of 
thousands of disks (disk farms) each holding a few 
terabytes of data.  The MSSs will continue to be the 
primary storage facilities of these huge datasets, and 
will require routine maintenance.  In the data analysis 
phase, large subsets of the data need to be moved to 
an analysis environment, which can be a small cluster 
at some university.  This process of moving hundreds 
of gigabyes to a few terabytes to the scientist for 
analysis turns out to be one of the more tedious, time 
consuming tasks that wastes the scientist’s time.  
Why is this seemingly simple, boring task so 
difficult?  Why aren’t there simple solutions avail-
able? 

One of the most common practices for moving 
large data volumes consisting of thousands of files is 
to write a simple script that reads each file in turn 
from the source storage system, issues an FTP (File 
Transfer Protocol) request to transfer the file, and 
repeats till all the files are moved.  The problem with 
this approach is that the script has to run for hours, 
and invariably something goes wrong: the mass 
storage system may have a transient failure or a 
scheduled maintenance, the network may have a 
transient failure, power failures may disrupt opera-
tions, etc.  Thus, the script has to be monitored, the 
failures discovered, the files already moved need to 
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be checked for their integrity, and the process 
resumed from the point where it failed. 

Another problem is the efficiency of the process.  
Using simple FTP for large volume of data is very 
inefficient, because FTP servers are set to break each 
transfer into small blocks (called windows) of about 
2-10 Kbytes.  This introduces too much overhead, 
and therefore larger window sizes (in the order of 1-
10 Mbytes) need to be used.  Also, one can set an 
FTP session to support multiple parallel streams to 
increase throughput.  But, most users do not know the 
details of dealing with such efficiency issues.  In 
addition, getting more than one file concurrently 
from a mass storage system requires writing a multi-
threaded program – again too complex for most 
scientists.  Thus, the transfer process takes longer 
than necessary even if the network capacity is high. 

To complicate matters for the scientists, they have 
to deal with security issues, as well as firewalls set in 
front of the various sites.  Here again, they need to 
get help from administrators before they can even 
proceed to transfer files. 

What is needed is a utility that has the following 
features: (1) a simple way to invoke the file transfer, 
similar to a “remote copy in recursive mode” in unix 
(rcp –r) from a directory in one site to a directory in 
another site; (2) because the transfer may take many 
hours, this utility needs to be asynchronous; that is, 
after the call is made and accepted, the user can quit; 
(3) there needs to be a guarantee that the transfer will 
succeed even when transient failures of the systems 
and the network are involved; and (4) there needs to 
be a dynamic update on the state of the transfer 
available to the user in order to monitor the progress. 

Achieving a solution to this problem is a difficult 
task, especially having to deal with a variety of file 
systems and mass storage systems.  However, in 
trying to address this problem, we realized that we 
can take advantage of software components we 
developed for a Grid middleware project, called 
Storage Resource Managers (SRMs) [1, 2].  These 
components were developed for the purpose of 
supporting access to storage systems on the Grid, but 
could readily be applied to this difficut problem.  An 
SRM is a software module placed in the vicinity of a 
storage system; that is, on a machine that is on the 
same local area network.  Since these modules are 
designed to access mass storage systems as well as 
disk systems, we could build a component that 
communicates with SRMs to make multi-file transfer 
requests.  This component, that we call the Data-
Mover1, was designed to respond to the requirements 
given to us by scientists in several domain areas.  The 
                                                 
1 The name DataMover was proposed by the NCAR scientists 

main requirement was that entire directories or 
subdirectories can be moved in a single command, 
using a simple command-line interface.  The 
advantage of using SRMs is that they all use the same 
interface (protocol) to communicate with each other 
regardless of the type of storage system they access.  
A key point of this paper is to demonstrate the power 
of using SRMs to easily solve the difficult problem of 
robust file replication of thousands of files.  We note 
that simply using an efficient file transfer service 
does not address dynamic space allocation or 
recovery from failures. 

In the remainder of the paper we describe the 
design of the DataMover, its deployment in a couple 
of application domains for routine production use, 
and the experience in using this capability.  One of 
the more interesting items learned was that by 
analyzing the logs with a visual tool it is possible to 
identify where the bottlenecks of the system are.  We 
start by describing the functionality of SRMs in 
section 2.  In section 3, we present the DataMover 
interaction with SRMs, and the series of actions that 
take place for each file being transferred.  In section 4 
we describe a file monitoring tool that was developed 
to track the progress of lengthy multi-file transfers.  
In section 5, we describe our experience and analysis 
of bottlenecks from the logs.  We conclude in section 
6. 

2. Storage Resource Managers 
Storage Resource Managers (SRMs) are Grid 

middleware components whose function is to provide 
dynamic space allocation and file management on 
shared storage components on the Grid.  They are 
designed to provide effective sharing of files, by 
monitoring the activity of shared files, and making 
dynamic decisions on which files to replace when 
space is needed.  

Managing shared storage resources on the Grid is 
a necessary and complex task because of the diversity 
of the storage resources.  Storage resources can vary 
in complexity: a single disk under a UNIX file 
system, large sets of disk caches or disk RAIDs, or 
mass storage systems (such as HPSS) that provide 
access to data on robotic tape systems.  Making such 
resources sharable through Grid middleware 
technology requires that these systems are exposed 
through a uniform interface.  Thus, requesting space 
from any of these systems should look the same to a 
client.  We have shown that through international 
collaboration of achieving agreements on such 
common interfaces, various storage systems can 
interoperate.  Most notably, SRMs have been built 
for several mass storage systems both in the US 
(HPSS at multiple sites, Enstore at Fermilab, 
JASMine at Jefferson Lab, MSS at NCAR) and in 
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Europe (Castor at CERN, SE at Rutherford Lab), and 
shown to interoperate smoothly.  Furthermore, 
several SRMs were built for disk systems as well, 
and they interoperate with SRMs for mass storage 
systems.  This approach of standardizing on the 
functionality and the interfaces of SRMs is the 
backbone to the interoperation of shared storage 
systems on the Grid.  It allows multiple groups to 
implement their own SRMs and thus make the 
underlying storage system viewed as a Grid service. 

A practical problem of managing shared resources 
is that files are deposited in such systems and often 
not removed.  This tends to clog and make storage 
systems ineffective.  The problem is that the system 
administrators do not know which files can be safely 
removed.  For this reason, SRMs have been designed 
to associate a lifetime with files that have temporary 
use.  Accordingly, SRMs support the “pinning” of 
files for the duration of a lifetime, as well as “releas-
ing” files as explicit requests.  Lifetime is a mecha-
nism for the SRMs to reuse space that is not actively 
in use. 

Another aspect of SRM functionality came from 
the desire to simplify the Grid client’s interaction 
with storage systems.  For example, it is a lot simpler 
for an application client to request one thousand files 
in a single request from an SRM regardless of their 
location on the Grid, rather than having to get each 
file from it source location.  SRMs have been 
designed to provide a service of accepting multi-file 
requests, queuing each file request, getting the files 
from the source locations (using a file transport 
service such as GridFTP) based on space availability, 

and streaming the files to the client.  If files are found 
locally, they are pinned for a certain lifetime.  SRMs 
can therefore share files between clients, making 
storage usage more effective, and avoiding unneces-
sary file transfers over the Grid.  We note that SRMs 
use GridFTP [3] from the Globus project [4] for 
invoking file transfers.  This choice provides a way 
of dealing with Security, since GridFTP support GSI 
(Grid Security Infrastructure) authentication, and also 
used large windows (1 MB) and multiple streams for 
more efficient file transfer.  However, the SRM APIs 
have been designed to support any transfer protocol 
by negotiation between the client and the server [see 
2].  The interface to the SRMs can be through a web 
service or other programming language APIs (such as 
a c-API or a java-API). 

It is the feature of accepting a multi-file request, 
and getting the files as storage permits, that makes 
SRMs so useful to the DataMover.  SRM that are 
placed in front of storage systems mange their own 
space, where files are temporarily placed.  As files 
are “released”, the SRM can use the space to get 
additional files, effectively streaming the files 
through the disk cache to the destination.  To 
illustrate this capability, we describe in Figure 1, an 
SRM which is placed in front of a mass storage 
system, such as HPSS [5].  This type of SRM, which 
we refer to as a Hierarchical Resource Manager 
(HRM), manages a disk cache of its own, and 
interacts with HPSS to stage and archive files.  In 
Figure 1 we show a series of interactions that occur 
between a client and an HRM server placed in front 
of HPSS. 

 
Figure 1: steps of getting a file transferred from the MSS to the client’s disk using an HRM 
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It is important to go through the steps of this 
interaction, since this is what the DataMover take 
advantage of.  Given a multi-file request (say 1000 
files) the following steps take place: 

1. The client allocates space on its disk.  
Say, enough space for 50 files. 

2. The client sends a request (referred to in 
the figure as srmGet) to HRM for these 
50 files. 

3. The HRM server queues the request, and 
allocates space on its own disk.  For ex-
ample, suppose that this is limited to hold 
only 10 files. 

4. The HRM sends 10 concurrent staging 
requests to HPSS for the 10 files.  The 
level of concurrency is limited by HPSS 
and can be smaller or higher than 10. 

5. As soon as a file that is staged the HRM 
pins the file and sends a notice to the cli-
ent that this file is ready for transfer.  
Thus, multiple such notifications can be 
sent concurrently. 

6. The client issues a file transfer call 
(GridFTP) to pull the file.  Multiple file 
transfer requests may be active concur-
rently 

7. When the transfer completes, the client 
send a notice to the HRM that it is fin-
ished and “releases” the file. 

8. The HRM releases the pin and makes the 
space available for further transfers.  It 
can reuse this space to stage additional 
files. 

9. The client consumes the file (i.e. passes it 
to the client), and releases the space on its 
disk.  

This protocol is necessary in order to insure that 
files are not removed prematurely, and that space can 
be released as soon as the file occupying it is 
unpinned.    

As soon as the client’s space is released, the client 
can send additional srmGet requests to the HRM.  
This has the effect of streaming multiple files 
concurrently from the source HPSS to the target disk.  
This process repeats until all 1000 files in the original 
request have been transferred.  We note that if the 
client pre-allocates space for all 1000 files, it can 
issue a single request for all 1000 files to the HRM.  
The HRM would have queued the 1000 files, and 

proceed to stage them as fast as the HPSS system will 
permit.   

The SRMs use URLs (Uniform Record Locators) 
to refer to files they request or manage.  For example, 
the URL “srm://hpss.lbl.gov:3003/tmp/fileX” 
represents a file fileX in the directory tmp of the 
machine hpss.lbl.gov and managed by the SRM.  The 
SRM is on port 3003.  Note that the protocol “srm” is 
used to specify that file access is managed by an 
SRM.  After the file is staged, the SRM returns a 
“transfer URL” to the client.  The transfer URL 
contains the location of the file, and the protocol to 
be used for transfer.  For example, if the SRM stages 
the file to its disk space into location /home/xyz/ on 
its machine cs.lbl.gov, and chooses to use GridFTP as 
the transfer protocol, then the transfer URL is: 
“gridftp://cs.lbl.gov:4004/home/xyz/fileX”.  This 
provides the client all the necessary information to 
issue the GridFTP transfer request. 

There are several robustness features that our 
implementation of an HRM provides: 

1. After a file is staged, the HRM checks for 
a successful completion code, but in ad-
dition it compares the size of the file on 
its disk cache to the number of bytes 
staged.  If they don’t match, it removes 
the file and re-issues the stage request. 

2. If the transfer from HPSS is interrupted 
for any reason (such as the system 
brought down for maintenance), the 
HRM removes the partial file and re-
issues the transfer request repeatedly until 
the HPSS system recovers. 

3. If for some reason the client stops getting 
the files (for example, because of a net-
work failure), the HRM disk space will 
eventually fill, and the HRM will wait 
until files are read and released. 

These monitoring and recovery features are essen-
tial for the successful completion of a multi-file 
request.  In the next section, we describe how the 
DataMover uses two SRM to achieve robust multi-
file replication between two or more storage systems. 

 

3.  The DataMover 
The DataMover is an asynchronous client program 

that is designed to interface to two SRMs, a source 
SRM and a target SRM.  In the example discussed 
next, we use two HRMs: one developed to work with 
HPSS, called HRM-HPSS, and one that adapts the 
HRM-HPSS to work with a legacy mass storage 
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system at NCAR (National Center for Atmospheric 
Research), called HRM-MSS, making it accessible 
from the Grid.  In Figure 3, we show how the 

DataMover interacts with these two HRMs.  In the 
figure we describe a request to replicate an entire 
directory that could contain thousands of files. 
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Figure 2: The use of two HRMs to achieve data replication between 

two incompatible mass storage systems. 

Before space allocation and file transfer can take 
place, the DataMover interacts with the HRMs to 
generate equivalent directories.  First it gets the entire 
directory structure from the source HRM for NCAR-
MSS (step 1 in the figure).  If the source MSS cannot 
provide this information in a single command, the 
HRM interacts with it recursively to obtain this 
information.  It then sends a request to the target 
HRM-HPSS to create such a directory (step 2 in the 
figure).  Here again the SRM usually needs to 
interact with the MSS repeatedly to build a multi-
level directory.  Then the DataMover constructs a 
multi-file request to move files from matching source 
to target locations in the corresponding directory 
structures (step 3 in the figure).  At this point the 
DataMover can quit since the HRMs take over.  They 
negotiate space and files transfer requests according 
to the detailed protocol described in section 2 (we 
show this in the figure as steps 4 and 5 without going 
into the detailed protocol). 

By this design we achieved all the requirements 
we set up to achieve: 

1. The DataMover is asynchronous – as 
soon as the multi-file request is con-
structed it quits. 

2. Robustness is achieved by the inherent 
robustness of the HRMs when they stage 
files at the source and archive files at the 
target.   

3. An additional robustness feature is pro-
vided by the target HRM when request-
ing file transfers over the network.  The 
HRM monitors such pull transfers and re-
issues the file transfer request if the trans-
fer fails. 

4. Concurrency is achieved at all stages: 
when staging files from the source MSS, 
when transferring files over the network, 
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and when archiving files at the target 
MSS. 

5. File transfer efficiency is achieved by us-
ing GridFTP or any other file transfer 
protocol that uses large windows and 
multiple streams. 

In addition, since the HRMs are adapted specifi-
cally to the MSS, we were able to overcome security 
concerns.  The files are read securely to the HRM 
disk internally to the site, and moved between the 
HRMs’ disk caches using secure GridFTP.  We were 
also able to overcome firewall issues by having the 
HRM behind the firewall initiate the file transfers 
(push mode) when necessary. 

We have described above a DataMover between 
two HRMs.  However, the DataMover have been 
designed to work in other situations as well.  First, 
they can work with any SRM, including SRMs 
designed for disk storage only, called DRMs (Disk 
Resource Managers).  Thus, for example, if a client 
DRM exists at the scientist’s site, the scientist can 
request the DataMover to move files from one or 
more remote SRMs.  Furthermore, we also imple-
mented a DataMover that will move files directly to 
the user’s disk space, but in this case the responsibil-
ity of space allocation and file removal fall on the 
user.  In some cases that may be desirable, since it is 
not necessary to install as DRM at the client’s site, 
and the client prefers to manage the space and file 
usage.  Finally, we emphasize that a request to get 
multiple files to a target site can be made from many 
source sites, since the URLs contain information 
about the source sites.   

 

4.  The File Monitoring Tool 
Monitoring the state of complex transfers is re-

quires dynamic updating of the file transfer progress.  
Since the target SRM is the agent that issues the 
transfer request, and is monitoring the transfers for 
failures, we extended the SRM functionality so it 
communicates to a file monitoring tool (FMT) server 
daemon this information dynamically.  We have also 
developed an FMT web-based client that requests 
updated information from the FMT server.  The 
information comes in two forms.  First, a summary 

that shows how many files transferred so far, total 
bytes, and any failures that have occurred including 
requests to files that do not exist, or sites that do not 
respond.  Second, we have developed a graphical tool 
to show the progress visually.  This is shown in 
Figure 3.  It can be invoked from any web-tool at any 
time to check the progress of the multi-file replica-
tion request. 

Figure 3 shows the graphical interface that indi-
cates files already transferred (in green to the left), 
and files in the process of being transferred (in blue 
to the right).  When touching a file on the screen, the 
bottom part of the display shows the source and 
target sites (as URLs), the file size, and the average 
file transfer rate.  There is also a bar that shows the 
percent of total size transfer so far.  After the entire 
transfer completes, a summary is displayed on 
successful transfers, as well as average transfer rate 
for the entire request.  This tool is used routinely to 
monitor progress of massive file replications.   

5.  File tracking and bottlenecks 
Our experience with large transfer was that end-

to-end transfer rates varied in ways that we could not 
explain. We embarked on analyzing logs to under-
stand where the bottlenecks were.  We observed that 
we need to track what happens to each file over time.  
There are several events that need to be tracked: 
when the request for the file was made, when did 
staging started and ended, when did transfer over the 
network started and ended, and when did archiving 
started and ended.  We found that a particular 
technique, used in Netlogger [6] offers an effective 
methodology for visualizing the sources of bottle-
necks. This visualization method is shown in Figure 
4.  The horizontal access represents time, and the 
vertical access has points on it representing events of 
file tracking.  A connected line represents the events 
for a particular file.  Figure 4 shows the tracking of a 
real run of archiving files from a disk cache into a 
mass storage system using HRM.  Thus, the events 
are: Space Reserved (at the HRM’s disk cache), 
GridFTP start, GridFTP end, Archive start, Archive 
end.  We chose to display only every 10th file so as 
not to clog the display. 
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Figure 3: dynamic tracking of file movement 

 

 
Figure 4: File tracking helps identify bottlenecks; archiving was the bottleneck 
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All the files moved were of the same size, except 
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syste

Lawrence Berkeley National Laboratory (LBNL at 

Figure 5: file tracking shows reco ery from transient failures 

 

one (13  from the left) that was a very small file, and 
therefore was archived earlier.  The interesting 
property to observe is that the lines between 
“GridFTP end” and “Archive start” are more slanted; 
that is this step took more time.  The implication is 
that files were left in the HRM’s cache for a long 
time before they were submitted for archiving.  The 
explanation for that is that archiving at the MSS was 
slower than the rest of the process, including 
movement over the network.  In general, one can 
observe that the event in front of an overly slanted 
lines causes the bottleneck. 

These logs can also be used to track transient 
m failures and proper recovery by the SRMs.  

Figure 5 shows the entire run of moving 318 files 
(total of 45 GBs) from Brookhaven National 
Laboratory (BNL at the east coast of the US), to 

the west coast of the US).  There were two HPSS 
systems involved, one at each site.  As can be seen 
from the tracking graphs, shortly after the beginning 
of the file replication process, the source system at 
BNL was not available for quite a long time.  Perhaps 
it went down for maintenance.  The DataMover 
system recovered and continued.  This was followed 
by a system failure at the target site at LBNL, where 
files were archived.  Then, there was another shorter 
transient failure at the source system.  In spite of 
these failures the data replication process completed 
successfully, which proves the robustness of this 
system.  Another thing that can be observed from this 
figure is that the overly slanted lines occur just before 
“gridFTP start”, which implies that the network was 
the bottleneck for this run. 

 

 
 
v
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The above shows that information from the logs 
can

 application scientists from vari-
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st important lesson is that it is very 
eco

 lesson is that by achieving an agreement 
on

ust-
ne
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cientists on identifying the 
ataMover software.  Most 

hel

 be used to identify bottlenecks and to improve 
the system’s resource usage.  Often, one of the 
hardest things to predict is where to provide addi-
tional resources, such as getting more disk cache, 
more tape drives, improve the network, etc.  This 
methodology can help in such decisions. 

6.  Conclusions 
In our work with
s domains, we hear various stories on their 

perception of what are difficult data management 
problems.  We were most surprised to hear that one 
of the most time-consuming, annoying, disruptive 
aspects of their work was massive file replication.  
After analyzing the problem, we concluded that it is 
indeed a difficult problem, one that requires effi-
ciency gains as well as absolute robustness.  The task 
could be difficult, but we have realized that technol-
ogy being developed for the Grid in the area of 
Storage Resource Management can be used effec-
tively to solve this problem.  There are a few lessons 
we have learned. 

Perhaps the mo
nomical to build complex systems by using 

existing robust software modules – the building block 
approach.  This is a well known truism, but we did 
not expect this to help for the problem at hand.  
However, even though the SRM software modules 
were developed for Grid storage management, not for 
managing file replication, the functionality of 
supporting multi-file requests for clients by SRMs 
could be applied to the file replication task.  Further-
more, the SRM itself uses another service, the 
GridFTP, to achieve secure and efficient file transfer.  
By using this basic file transfer service and addition-
ally providing concurrent staging, transfer and 
archiving, more efficient use of the systems could be 
achieved. 

A second
 the functionality of the SRM service, and 

developing a standard API, it is possible for incom-
patible systems to interact using compatible inter-
faces.  This in itself is an obvious principle, but it was 
rewarding to see how well it works by placing SRMs 
in front of various file and mass storage systems. 

A third lesson is that although achieving rob
ss in the face of multiple system failures is quite 

difficult, placing the right monitors and recovery 
mechanisms in the critical paths can achieve this 
goal.  Since failures occur only during small percent-
age of the time, the recovery does not have to be 
efficient.  In the case of file staging, transfer, and 
archiving failures, it is sufficient to re-issue the 

file recovery are not necessary. 

It is worth noting that this problem is also very 
important to the business world.  It has been ad-
dressed by industry for speci

rpose of protecting important data.  For example, 
the Symmetric Remote Data Facility (SRDF) form 
EMC, provides remote data replication between on-
line storage systems [7].  Such solutions are usually 
associated with a specific product and do not support 
interoperability between diverse storage systems, and 
especially between mass storage systems. 

The system we have developed has been in daily 
use by one High Energy Physics project, and in 
frequent use by a Climate Modeling pro

dular design permitted incremental scaling of the 
products to support transfer requests robustly for 
thousands of files, and hundreds of gigabytes of data 
replication in a single request. 
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