
Impact of Admission and Cache Replacement Policies
on Response Times of Jobs on Data Grids

Ekow Otoo, Doron Rotem and Arie Shoshani
Lawrence Berkeley National Laboratory

1 Cyclotron Road, MS: 50B-3238
University of California

Berkeley, CA 94720

Abstract

Caching techniques have been used widely to improve
the performance gaps of storage hierarchies in computing
systems. Little is known about the impact of policies on the
response times of jobs that access and process very large
files in data grids particularly when data and computations
on the data have to be co-located on the same host. In data
intensive applications that access large data files over wide
area network environment, such as data-grids, the combi-
nation of policies for job servicing (or scheduling), caching
and cache replacement can significantly impact the perfor-
mance of grid jobs. We present some preliminary results of
a simulation study that combines an admission policy with a
cache replacement policy when servicing jobs submitted to
a storage resource manager. The results show that, in com-
parison to a first come first serve policy, the response times
of jobs are significantly improved, for practical limits of disk
cache sizes, when the jobs that are back-logged to access
the same files are taken into consideration in scheduling
the next file to be retrieved into the disk cache. Not only
are the response times of jobs improved, but also the metric
measures for caching policies, such as the hit ratio and the
average cost per retrieval, are improved irrespective of the
cache replacement policy.

1 Introduction

Communities of research scientists are increasingly us-
ing data grids [6, 4] as the environment for managing the
massive datasets that result from scientific experiments and
observations. Examples of such communities include col-
laborators in the Particle Physics Data Grid (PPDG) [8],
the Grid Physics Network (GriPhyN) [5], the Earth Science
Grid (ESG) [7], and a host of others. In data intensive ap-
plications that subsequently access a large number of very

large data files over these wide area network, there is the
need to implement strategies that significantly improve the
data access performance under different workloads. Tech-
niques for enhancing and optimizing data accesses concern
good file request scheduling, caching (or data staging), data
replication, cache and replica replacement. Caching tech-
niques, in particular, have been used generally to improve
the performance of storage hierarchies in computing sys-
tems. In the grid environment, specialized middle-ware ser-
vices such as storage resource manager(SRM) [16] and stor-
age resource brokers(SRB) [14], provide the intermediary
services of caching or staging files required by jobs.

A storage resource manager runs on a host, or a cluster
of machines, that receives jobs requests submitted to a data
grid. The job requests generally are for a large number of
files. Each file can be very large (of the order of a few to
tens of gigabyte), and typically reside either in some mass
storage or in some tertiary storage system. Consequently
an SRM maintains a large capacity disk cache, of the order
of hundreds of gigabyte to a terabyte, for retaining those
files that are retrieved into its disk cache so that the same
file can be shared by multiple jobs. For an SRM host that
consists of a cluster of machines the disk cache may be dis-
tributed over independent disks of the cluster nodes. The
use of a storage resource manager is analogous to the use
of a proxy-server and/or a reverse proxy in web-caching ex-
cept that SRMs deal with very large data files. In particular
a large number of file requests may be batched in one job.
As a result, SRMs contend with file accesses that incur sig-
nificantly long delays in accessing and processing files over
wide area networks.

The general problem posed, from the perspective of
data management, ignoring fault tolerant issues, concerns
the development of a suite of policies and their combina-
tions thereof, that optimize the transparent access to multi-
terabyte or even multi-petabyte of distributed datasets in
data-intensive grid computing. Our concern here is solely

from the view point of the service rendered by a host of a
storage resource manager, storage resource broker (SRB),
or even a storage area network (SAN). In the sequel we
would refer only to SRMs although the results are equally
applicable to SRBs and SANs.

1.1 Job Servicing Model of an SRM

A job that arrives at an SRM’s host makes requests for
hundreds or thousands of files that it processes either one
at a time or in groups referred to as “file bundles.” The
one-at-time processing may be done either in some order or
arbitrarily. By processing, we mean an execution of a task
such as an analysis program that takes its input data from the
files stored in the local disk cache. The task execution may
simply involve transferring either the entire file or a subset
of the file (e.g., the result of query), to the originating host
of the job. A “file bundle” is a set of files that must all be
in cache to be processed at the same time.

In general an SRM queues the jobs and later makes de-
cisions as to which job needs to be serviced next and which
file, from the batch of files of the selected job, must be re-
trieved into or transfered from the disk cache. If a requested
file happens to be in the cache, the SRM may choose to re-
tain it (i.e., “pin” the file) in its cache until after the job that
requested it releases it, in which case the file is “unpinned.”
The decision of selecting the next job to be processed is
governed by a rule termed “the service policy.” The deci-
sion of which file to retrieve into the disk cache is governed
by rule termed the “file caching policy.” When a decision is
made to cache a file it may have to determine which of the
files currently in the cache must be evicted to create space
for the incoming one. This latter decision is also governed
by the rule termed the “cache replacement policy.” The
“service policy” and “caching policy” are often combined
and referred to as the “admission policy.” Other related
rules, or policies may define a limit on the number of file
requests that may be processed concurrently for the same
job or the amount of cache space that is allowed to be taken
up by files of the same job.

Research studies conducted so far on grid job execu-
tion have only addressed job scheduling (or task assign-
ment) problem with the view to balance the load over avail-
able distributed resources in a manner that satisfies the re-
source requirements of each job [1, 15]. The problem is
well known to be analytically intractable and consequently,
studies conducted so far have been predominantly with sim-
ulations [1, 3, 10, 15]. We follow similar methodology in
our work. We concern ourselves only with the impact of
the interactions of job admission policies and disk cache re-
placement policies on job response times. We restrict the
problem to a simplified model of job execution where the
order of processing of the files of a job is immaterial. When

a file is cached, all jobs in the queue, at the time the se-
lection criteria was evaluated, are immediately allowed to
process the file. A job can process concurrently, as many
files as it finds in the cache.

1.2 The File Admission and Caching Replacement
Problem

Consider job arrivals to a queue Qa of an SRM, where
each job Ji, makes a request for a set of files to be processed
independently of one another, J i = {fi,1, fi,2, . . . , fi,l}.
The storage resource manager, maintains a disk cache of
capacity C and retrieves into its cache a file fc according to
some admission policy. The decision to cache fc is based
on the content of Qa at the time a decision is made.

When a file fc is read into the disk cache, all the jobs that
require the file at the time the selection criterion was evalu-
ated, invoke tasks to process the file. A task denoted by T i,j

is identified by a combined key of the job identifier J i and
the requested file identifierfj . A job is removed from the
queue Qa only after all its file requests have been serviced.

Assuming that the jobs J1, J2, . . . , JM are currently
in the queue Qa and the cache C contains the files
f1, f2, . . . , fN . An admission policy gives the order of ser-
vicing jobs in Qa, which in turn implies a decision as to
which files must be loaded next into the cache. A naive ad-
mission policy simply serves the jobs in the order of arrival
in the queue, choosing arbitrarily, a file from the set of pend-
ing file requests of the job at the front of the arrival queue.
The problem is to find an admission policy that minimizes
the average response time of jobs subject to some fairness
criteria or user specified constraints. Possible fairness crite-
ria include defining:

• the maximum time a request can wait in the queue be-
fore all its file requests are completely serviced.

• the maximum idle time for a job. A job is considered
to be idle if it is not processing any of its requested
files.

• the maximum number of files each jobs is allowed to
process concurrently.

The fairness criteria may be quantified, at any instant in
time, by some value assignment v(Ji) for each job Ji. The
assigned value may be perceived also as a time varying pri-
ority value for the job.

The metrics for measuring the performance of any spe-
cific service configuration of an SRM include the “average
response time” of a job, average queue length of the ar-
rival queue. In addition we examine the “hit-ratio” and the
average cost per file retrieval” of the cache replacement
policies. These are formerly defined in section 2. The re-
sults reported in this paper are only for the “average re-
sponse time”, the average cost per file retrieval” and the

“hit-ratio” for an admission policy we refer to as “Opt-
CacheLoad” when combined with the least recently used
(LRU), cache replacement policy.

1.3 Main Results and Contributions

We focus on a variant of the above problem and then con-
sider a development of an admission policy that we com-
bine with a detailed cache replacement policy for storage
resource managers. The main results of this paper are that:

1. An efficient admission policy can be achieved, for a
defined dynamically varying value v(J i) for each job
Ji. The admission policy is termed the OptCacheLoad
policy. We show that OptCacheLoad is analogous to
the Budgeted Maximum Coverage Problem introduced
by Khuller et al. [9].

2. Based on the mapping of OptCacheLoad admission
policy to the Budgeted Maximum Coverage Problem,
we conclude that the admission policy gives a result
that is within a factor of 1 − 1/e of the optimal.

3. We present an accurate and detailed framework for
evaluating cache replacement policy using finite state
machine (FSM), with conditional transitions.

4. Using an FSM model for a combined LRU cache
replacement algorithm and OptCacheLoad admission
policy, we show that the response times of grid jobs
serviced at an SRM are considerable improved com-
pared to a combination of a simple first come first serve
(FCFS) admission policy with LRU cache replacement
policy. These results are obtained for both synthetic
and real workloads. The real workload is obtained
from the log of file accesses made to a mass storage
system.

5. The use of an admission policy also improves the hit-
ratio and the average cost per retrieval of cache re-
placement policies.

The result of this work has applications in a number of
areas. First, the result can be integrated as a policy ad-
visory module in the implementations of storage resource
managers and storage area networks. Such a policy mod-
ule, either as an SRM component or directly in coordination
with mass storage systems, provides optimization strategy
in the use of data grids. The major benefits to be gained are
in reduced network traffic, reduced average response times
for file requests and optimal resource allocation to meet de-
fined response and deadline objectives under specified lo-
cal resource management autonomy with little or no global
control.

The rest of the paper is organized as follows. We de-
scribe the service model of an SRM in section 2. In sec-
tion 3 we present the theoretical foundation of the OptCach-
eLoad admission policy. Our framework for simulating
cache replacement policies is discussed in section 4. Our
experimental setup is discussed in section 5 and we present
the results of our preliminary studies in section 6. We con-
clude in section 7 where we also give some directions for
future work.

2 Job Service Model of a Storage Resource
Manager

Distributed scientific applications often require access to
large amounts of data of the order of hundreds of terabytes
to tens of petabytes. The envisioned model of managing
and accessing the data is through what is currently referred
to as data grids where the data repositories are maintained
in mass storage systems and are accessed from different lo-
cations by large communities of scientists. The term data
grid was first used to define a project funded by the Eu-
ropean Union that aims at enabling access to geographi-
cally distributed computing and storage facilities belonging
to different institutions. It has since been used to imply any
distributed network infrastructure of storage resources and
repositories of huge amounts of data coming from scientific
experiments in primarily three different disciplines: High
Energy Physics, Biology and Earth Observation Systems.
The idea is to support scientific explorations that require
intensive computations and analyses of large-scale shared
databases across widely distributed scientific communities.

2.1 Servicing of File Requests

The service scenario in a data grid for a typical applica-
tion is as follows. Grid jobs make requests for a large num-
ber of files that reside on a network of distributed tertiary
storage systems or mass storage systems. An example of
such systems is the IBM’s high performance storage system
(HPSS) or a storage area network (SAN). The file requests
in a job can be for hundreds or thousands of files at the same
time. To improve the access performance of the data grid,
a middleware component generally referred to as a storage
resource manager (SRM) [16], is used to facilitates the shar-
ing of the distributed data and storage resources. An SRM
maintains a large capacity disk for caching files of varying
sizes that are read from or written to Mass Storage Systems
(MSS). Just as mass storage systems form a distributed net-
work of storage resources, SRM’s form a network of disk
resources for staging files accessed by grid jobs. An SRM
generally queues the jobs and subsequently makes decisions
as to which job has to be serviced next and which file from
the requests of the selected job, must be retrieved into or

transferred from the disk cache. In general, under a work-
load of shared accesses and high locality of reference, the
optimal use of a data grid in data intensive application de-
pends heavily on the policies for data replication, caching,
file request forwarding, cache replacement and local servic-
ing (or scheduling) of file requests. We distinguish between
data replication and caching. In replication, the information
that a file has been staged in a particular disk resource is im-
mediately communicated to some replica management ser-
vice so that all other storage resource managers can become
aware of this. In caching, only the local storage resource is
aware of the presence of the file in its disk cache.

2.2 Job Service Policies

We investigate and define a suite of policies that can
be selectively combined to enhance or optimize the perfor-
mance of data accesses in data grids. The various classes of
policies of concern are:

Service Policies: The rules that govern the decision for se-
lecting the job whose file request is to be processed
next. These are typically defined within the local con-
straining policies such as, how much disk space a job
can use, the number of simultaneous files a job is al-
lowed to process, etc.

Caching Policies: The rules governing the selection of
which file, amongst the list of files of the selected job,
must be retrieved into the disk cache.

Caching Replacement Policies: The rules that govern the
selection of a file to be evicted from the cache when
space is needed.

Replication Policy: The rules that govern when, where
and which file to replicate in a multi-tier distributed
storage environment. This may use some defined con-
straint on how many replicas and which replicas may
be used.

Just as in database management systems, where opti-
mal query processing requires that issues related to, query
rewrite, data buffering (or caching), indexing, etc., must be
addressed so must corresponding related problems of op-
timal file accesses in data grids be addressed to achieve a
respectable level of performance in data intensive applica-
tions. The problems we address are those arising from large
scale data accesses in data grids and may be perceived as the
relative counterparts of data access problems in distributed
database management system.

2.3 Performance Metrics

The performance of admission policies, which may be
referred to also as schedules, is measured by the response

times of jobs, the average queue length of waiting jobs and
sometimes the “makespan” of the schedule. Cache replace-
ment algorithms are key to the implementation of a good
caching system. Not only should this be evaluated in an al-
most negligible time relative to the time it takes to cache
an object, but it should optimize, in some sense, some mea-
sure of a performance metric. Cache replacement policies
are typically designed to optimize the hit ratio usually by
retaining in the cache either the most frequently referenced
objects or the most recently referenced objects. The former
effectively evicts the least frequently used object (i.e., the
LFU-policy), the latter evicts the least recently used object
(i.e., the LRU-policy). Both policies are predicated on the
assumption that a reference stream has a high degree of lo-
cality of reference.

Since the goal of caching is to improve the overall per-
formance of jobs serviced by an SRM, we will consider, as
our measures for comparisons between different alternative
admission policies, the response times, the average cost per
file retrieval and the hit ratio of the cache replacement algo-
rithms.

Average response time of a job: The response time of a
job is the time between the last service completion time
of the file requests of the job and the arrival time of the
job. Suppose a workload contains N distinct jobs. Let
the job i have a response Ti, then the average response
time time denoted by T̄ is defined by T̄ = 1/N

∑
i Ti.

Average Cost Per Reference (ACPR): This metric mea-
sures the effectiveness of a caching policy by the av-
erage response time per reference. It takes into con-
sideration the total delay in caching files of varying
sizes, the varying source delays and the varying trans-
fer times. Suppose for a given workload of a set of
R file references, a subset R′ ⊆ R of the files are
retrieved. Each file i ∈ R′, that is retrieved, is done
at a cost ci(t), where the cost is measured in time
units and is given simply by total time it takes to com-
pletely read the file into the disk cache. The aver-
age cost per retrieval, denoted by c̄ is then defined as
c̄ = 1/|R|∑i∈R′ ci(t). Consequently an optimal re-
placement algorithm based on ACPR, implicitly min-
imizes the response times of file requests. This is a
more practical measure for the effectiveness of a cache
replacement algorithm for SRMs on the grid.

Hit Ratio: This is given by the ratio of the number of ref-
erences that encounter cache hits to the total number
of file references. This assumes that all files are of the
same size and have the same access cost. This assump-
tion is unrealistic in the use of SRMs in data grids. The
files have varying sizes and have replicas at different
sources with different delays and transfer cost into an

SRM’s disk cache. It is easy to envisage a replacement
policy that favors only files of small sizes thereby re-
taining as many files in cache as possible and improv-
ing the hit ratio at the expense of high retrieval cost and
poor response time whenever large files are referenced.
Hit ratio only measures the effectiveness of the use of
a cache as the number of hits and does not reflect in
any way the effects of source and transfers delays of
the files. We include it in the measures considered in
this paper simply because it is a popular measure used
extensively in the literature on caching.

2.4 Related Works

The concept of data-grids and storage resource manage-
ment have only recently been given considerable research
attention as a result of the need to support large scale sci-
entific experiments - PPDG [8] and GriPhyN [5] - some of
which are expected to be operational in three to five years.
Storage resource management and some related component
prototypes are already in service [16, 14, 12]. These make
use of the Globus toolkit [13], that is becoming the de-facto
standard software for implementing grid services. These
systems still lack the fine tuning required for the optimal
operation of real systems. A close analogous environment
from which we leverage some experience is in web services.
For example, web-caching [2, 17], address similar cache re-
placement policies except that the scale of data sizes and
transfer delays considered are on a much smaller scale than
those in a data grid environment. This is one reason why
we introduced a different performance metric for caching in
the grid domain as opposed such simple metrics as hit-ratio
and byte hit-ratio. We discuss our machinery for evaluating
cache replacement policies in the next section.

3 Theoretical Foundation of Admission Poli-
cies

More formally, we are given a set of jobs J =
{J1, J2, . . . , JN}, that arrive independently into a queue
Qa, where each job Ji is associated with some value v(Ji),
a set of files F = {f1, f2, . . . , fM} where each file fj is of
size s(fj) and a cache C of size s(C). The value of a job
may measure its priority or the overall importance assigned
to the application it represents. Each job Ji, makes requests
for a subset Fi ⊆ F , of the files. A job Ji is removed
from the queue only after all the files it requested have been
serviced. An example of the jobs together with the set of
files being requested can be depicted as a bipartite graph as
shown in Figure 1.

For a subset G ⊆ F , we denote by s(G) the sum of the
sizes of files in G. We will show that our problem involves

6fs()=500

6f

5fs()=2004fs()=200

5f4f

3

j

3jv()
3j

2jv()
2j

1jv()
1j 4

fs()=500

3f

2fs()=500

2f

s()=10001f

1f

4jv()

Figure 1. A bipartite graph depiction of a set
of jobs and their file requests.

solving the optimization problem, we call OptCacheLoad
which stands for “Optimal Cache Loading.”

OptCacheLoad: Find a subset of files G ⊆ F , which when
loaded into the cache C, (s(G) ≤ s(C)), maximizes
the total value of jobs served by the files in G.

It turns out that OptCacheLoad is equivalent to the Bud-
geted Maximum Coverage problem introduced by Khuller
et al. [9] that is defined as follows:

Budgeted Maximum Coverage Problem: Given a col-
lection S of sets with associated costs defined over a
domain of weighted elements, and a budget L, find a
subset S′ ⊆ S such that the total cost of sets in S ′ does
not exceed L, and the total weight of elements covered
by S ′ is maximized.

The analogy between the two problems is as follows.
The sets in S are our jobs, i.e. J ≡ S, the budget L
corresponds to s(C), the available size of our cache C.
The weighted elements correspond to our files with weights
equivalent to the file sizes s(fj). The total cost corresponds
to the total value of jobs. In [9] it is shown that this problem
is NP-hard even for the special case of this problem, where
each set has a unit cost. However efficient approximation
algorithms were developed in [9], and shown to produce a
result bounded from the optimal algorithm by a factor of
1 − 1/e.

We adopt the following greedy algorithm from [1] for
our purposes. Assuming the cache C already contains some
files, we can start servicing jobs in Qa that need these files.
The problem is to find an optimal set of files to be loaded
next. Intuitively, the benefit of loading a specific file into
the cache is proportional to the total value of additional jobs
that can be serviced by loading the file but inversely propor-
tional to the size of the file. Let J ′(fi) be the set of addi-
tional jobs that can be serviced by loading file f i into the
cache C. We define for each file fi its relative value, v′(fi),

where v′(fi) =
∑

r∈J ′(fi)
v(r)/s(fi). We note that v′(fi)

changes dynamically with the contents of the cache. The
algorithm for admitting a set of files to be loaded into the
cache when some cache space of size s(C) becomes avail-
able is given below.

Algorithm 1: The OptCacheLoad Algorithm for Admit-
ting a set of files

Data: A set of jobs J ; a set of all files requested by
J ; a cache C with available free space s(C)
and a value function v(Ji) expressed for each
Ji ∈ J .

Result: A set of files G, that when loaded into the
cache maximizes

∑
fi∈G(

∑
r∈J ′(fi)

v(r)).

Initialization;
/* ρ keeps track of size of unused cache space; Js

keeps track jobs served; G keeps track of loaded files.
*/
/* Note that F \ G is the set of unloaded files */
ρ ← s(C) ;
Js ← φ ;
G ← φ ;
while ρ �= 0 ∧ F \ G �= φ do

Order the files fi ∈ F \G in non-increasing order
of v′(fi) ;
fj ← the first file in this ordering that fits in the
cache if one can be found ;
if found(fj) then

Load the file fj into the cache ;
ρ ← ρ−s(fj); // Update available cache size
Js ← Js ∪ J ′(fj); // update the set of re-
quests that can be serviced
G ← G ∪ fj ; // update the set of loaded files

else
break;

end
end

The value v(Ji), of a job can be seen as a quantitative
measure of fairness for the jobs and can be defined in a
number of different ways. For our purpose and in the ex-
periments conducted in the simulations of this paper, we
define v(Ji) simply by the difference in time between the
current time and the last recorded time that a file request
for a job was made. A large value for v(Ji) indicates that
the job has been idle for a long time and should be given a
higher priority.

4 The Simulation Framework of Cache Re-
placement Policies

We note that cache replacement policies have been stud-
ied extensively in the literature. These appear in data

transfers between computing system’s memory hierarchy,
database buffer management and in web-caching. Cache
replacement models for these situations assume that the re-
quest to cache an object is always serviced immediately and
once the object is cached, the service on the object is car-
ried out instantaneous. We have not encountered any com-
parative studies of replacement policies that address long
retrieval and processing delays, where the file must be held
or pinned in cache for a considerable long time while it is
being processed. Almost all models of cache replacement
assume instantaneous references to the files, or the cached
objects. In the comparative studies of cache replacement
policies, in virtual memory, database buffering and web-
caching, the object or file references in the workload are
serviced strictly in the order of occurrence of the references.
Further more the models not only assume that the references
made to a cached object is instantaneous but that some file
can always be selected for eviction. As a result the literature
gives us very simplistic simulation models for the compara-
tive studies of cache replacement policies. Such models are
inappropriate in the data grid. We develop and implement
an appropriate simulation model that takes into account the
inherent delays in locating the file, transferring the file into
the cache and holding the file in the cache while it is pro-
cessed. The sizes of the files we deal with impose these
long delays. We capture these in the general setup of our
simulation framework.

Figure 2 shows the organization of the information re-
quired to simulate the disk cache. There are three data
structures for holding the information about the disk cache:
a search structure T1 to hold information about referenced
and active files; a data structure T2 for organizing the in-
formation on files that are available for eviction, and a third
data structure V1 to hold the files that are pinned in cache.

A search tree T1: This is a balanced binary search tree us-
ing the file identifier fi. The nodes of T1 hold infor-
mation of all referenced files that are considered to be
active. In particular, the nodes hold pointers to the lo-
cations of elements that are either in the structure T2 or
in the vector V1. A status indicator specifies whether
the file is considered to be in T2 or V1. In addition
T1 holds information of the history of references made
since the first reference that caused a node to be created
for the file.

A data structure T2: The elements in the data structure T2

hold information about files that are in cache but not
pinned. The algorithm for cache replacement is evalu-
ated on the non-empty data structure T2. We choose an
efficient implementation of T2 according to the cache
replacement algorithm being considered. For example,
T2 will be implemented as a vector when considering
random replacement and it will be implemented as a

priority queue data structure when considering least
recently used (LRU), least frequently used (LFU) and
greedy dual size (GDS).

The Vector V1: The entries in the vector V1 hold informa-
tion for files that are the cache and pinned. A file is
pinned in cache either because some space have been
reserved for it and is in the process of being cached or it
is cached and one or more tasks are processing it. Note
that due to the sizes of the files, there is a time delay
between the initiation and completion of a file caching
operation. In particular, an element in V1 maintains a
count of the number of pins placed on the correspond-
ing file of that element. Each time a task completes, it
decrements the pin count by one and whenever the pin
count becomes zero, the entry is removed and the ap-
propriate node, corresponding to the file, inserted into
T2.

Organization of the Cache Information

T2

T1: Tree of Referenced
 Files in Memory

V1: Vector of Cached
 and/or Pinned Files

Cached but Unpinned Files

Figure 2. The Organization of Information to
Simulate File Caching in an SRM

Finish

Events Priority Queue

Queue
T5: Events

Start
File
Admission

Job
Arrivals

T4: Files

T3: Jobs

Waiting Files/Jobs

Figure 3. A Simulation Model of an SRM at a
Local Host

A file that is referenced, cached, processed and eventu-
ally evicted from the cache is considered to undergo some
state changes. The information about the state of a file is

maintained in the nodes of T1. A file that is referenced
can be in one of five possible states. The various states
of a file are: Not-In-Memory or Not-Referenced (S0), In-
Memory-But-Not-In-Cache (S1), In-Cache-But-Not-Pinned
(S2), Space-Reserved-But-Not-Cached (S3) and In-Cache-
And-Pinned (S4). The table 1 shows an Exit State (S5)
which is equivalent to S0. Since we need to retain some
history of the references made to a file even when it is not
in cache the memory resident search structure T1, continues
to maintain the relevant node of an evicted file. However,
the memory resident information in T1 does not grow in-
definitely. At periodic times, say every 5 days (this is de-
termined by the job arrival rate of the workload), the nodes
corresponding to all files that have not been referenced in
the last five days are cleared. A special event, Clear-Aged-
file (E5), when it occurs, causes the nodes of all such files
to be deleted. Any future reference to a file, whose node has
been cleared, would reinsert a new node entry and initiate a
new accumulation of historical information.

The events affecting the state changes of the files are
caused by the actions of the tasks that are invoked by the
jobs. Figure 3 illustrates some of the details of the simu-
lation framework used in processing jobs at an SRM host.
Jobs that arrive at a host are maintained in the search struc-
ture T3. The files requested by the jobs are maintained in
a search structure T4. Besides other relevant information,
each node of T3 holds a list of identifiers of the files being
requested by the job. Similarly each node of T4 corresponds
to a unique file and maintains a list of the identifiers of all
the jobs requesting that file.

A file admission policy is used to select a file to be re-
trieved next. If the file selected to be admitted has no in-
formation in T1, an appropriate node is created and inserted
into T1. Upon making a decision on the file to be brought
into the disk cache, each of the jobs associated with the file
initiates a task token that is inserted into the event queue T5.
Each task token is uniquely identified by the pair of values
of the job and file identifiers and subjected to five distinct
events at different times. These events are: Start-Caching
(E0), End-Caching (E1), Start-Processing (E2) and End-
Processing (E3). The entire activities within this framework
are executed as a discrete event simulation. The activities
of the simulation may be summarized by the finite state ma-
chine, with conditional transitions, shown in Table 1. The
equivalent state transition diagram is given in figure 4.

Each entry in the table defines a function ψ{i,j} that is
evaluated and a possible state transition is made depend-
ing on the outcome of the evaluation. For example, if a
Start-Caching event occurs on a file that is in state S1, the
function ψ{1,1} is computed and a conditional transition is
made into state S3. ψ{1,1} involves reserving space in the
cache and then initiating a transfer operation to bring the
file into the disk cache. The evaluation of ψ{1,1} could trig-

Event Types on Files
E0 E1 E2 E3 E4 E5 E6

State Admit
File

Start
Caching

End
Caching

Start
Processing

End
processing

Cache
Eviction

Clear
Aged
Files

S0 Start: File Not
in Memory

ψ{0,0}() /
S1

S1 File in Mem-
ory but not
Cached

ψ{1,1}() /
Cond(S3)

ψ{1,6}() /
Cond(S5)

S2 File in Cache
but not Pinned

ψ{2,1}() /
S4

ψ{2,5}() /
Cond(S1)

S3 Space Re-
served but not
Cached

ψ{3,1}() /
S3

ψ{3,2}() /
Cond(S4)

S4 File in Cache
and Pinned

ψ{4,1}() /
S4

ψ{4,2}() /
S4

ψ{4,3}() /
S4

ψ{4,4}() /
Cond({S2 | S4})

S5 Exit: File
Removed
from Memory

Table 1. The Final State Machine with Conditional Transition of File Requested

S5

E0/φ

E5/φ

E1/φ

E1/(Hit)

φ

E3,
E4(With Pending Task)

E4(No PendingTask)/φ

φ/S3

E1/φ
E2

E1/(Hit)

E2/(Hit)

E6(No Pending Tasks)
/φ

Admission

Start

Exited

S4

/{φ| (Hit)}Wait(t)δ

S2

S1S0

Figure 4. A Finite State Machine Diagram with
Conditional Transitions

ger an event of type E5 to evict some files from the cache
until enough free space becomes available. After space is
reserved the file moves into state S3. The task token is rein-
serted into the event queue T5 after setting its next event
type to End-Caching and its next event time to the time that
the file caching completes. If no space can be reserved, the
file request may be discarded. However, if we ensure that
the admission policy guarantees that there would be free
space available before the file is admitted then, no file re-
quest can be discarded.

The FSM above represents only the model of one site.
Such FSMs may be configured into a multi-tier network to
represent a multi-tier network of SRM sites. We expand

to single site framework to multi-tier networks where file
replication decisions may also be made and request can be
forwarded to other sites in our future work.

5 Experimental Setup

We conducted some experiments to determine the im-
pact of the OptCacheLoad admission policy on the response
times of jobs submitted at an SRM host. The assumption
here is that the tasks executed by the jobs are I/O-bound jobs
as opposed to CPU-bound (or compute intensive) jobs. We
conducted performance tests using the simulation frame-
work to evaluate cache replacement policies. Our imple-
mentation is a straight forward translation of the FSM, with
conditional transitions, to a C++ code. Since our focus here
is on the impact of the admission policy, we consider this
in conjunction only with the LRU cache replacement pol-
icy. Results of extensive comparisons of different cache re-
placement policies only using the same simulation frame-
work for realistic workloads are discussed in [11]. When a
file is cached, the tasks of a job process the file at a rate of
10 MBytes per second.

5.1 Workload Characteristics

We subjected the simulation model to two types of work-
loads in our experiments: a real workload and a synthetic
workload. The real workload is the log of about 6 months of

file accesses to the Jasmine mass storage system at the Jef-
ferson National Accelerator Facility (JNAF). The file sizes
ranged from about 500 KBytes to about 6 GBytes per file.
The jobs of file requests contain batched requests for 1 to
about 1000 files per job. There is however very low locality
of file references. By locality of reference we mean the oc-
currence of references for the same file in jobs that are close
to each other in the workload. For the synthetic workload,
we extracted statistics of the real workload, such as the aver-
age file size, the job inter-arrival times, etc., and generated
a workload based on Poisson job arrivals but with a high
locality of reference. For both the JNAF workload and the
synthetic workload, the file accesses were read-only.

5.2 Simulation Runs

The simulation runs were carried out on a Redhat Linux
machine with 512 MBytes of memory. We evaluated the
performance metrics of the average response time per job,
the average cost per retrieval of a file and the hit ratio for
LRU under two alternative configurations. The first config-
uration executes the workloads by applying the OptCach-
eLoad admission policy to select the set of files to be ad-
mitted. The second configuration executes the workloads
according to a FCFS admission policy. For each configu-
ration and for each workload a number of runs were done
with cache sizes varying from 200 Gigabytes to about 3 Ter-
abytes. For each run and for each cache size, we applied a
variance reduction method by averaging the statistics that
we compute independently for 5 to 7 segments of the work-
load. The results of the experimental runs are discussed
next.

6 Preliminary Results

Figures 5a and 5b show the graphs of the response times
for the synthetic and JNAF workloads respectively that were
obtained from servicing jobs using the simulation frame-
work of an SRM. For the synthetic workload, 500 GBytes of
disk cache size corresponds to about 0.5% of the data pro-
cessed and 800 GBytes of cache size corresponds to about
1.0%. In the JNAF workload, 1 Terabyte of disk cache size
corresponds to about 0.65% of the data processed and 2
Terabytes of a cache size corresponds to about 1.3% of the
data processed. Clearly for most practical disk cache sizes
s(C) ≤ 1 Terabyte, there is a very significant gain in re-
sponse time when OptCacheLoad admission policy is used.

In [11], we defined the average cost per retrieval as the
appropriate measure for the performance evaluation of disk
cache replacement policies in a data grid. It is noteworthy,
from the graphs of figures 5c and 5d, that not only does
the use of the OptCacheLoad admission policy improve the
response time of jobs but the average cost per retrieval is

also improved for any practical limit of cache sizes. From
figures 5e and 5f, we observe similar improvements for the
hit-ratios when OptCacheLoad admission policy is used. In
fact the same relatively results are obtained for other cache
replacement policies. Due to space limitation we do not
report these.

7 Conclusion and Future Work

Unlike page caching in virtual memory management
or page buffering in data base management systems, file
caching onto disks is not relatively instantaneous. We have
developed and implemented a simulation framework for in-
vestigating both file scheduling and cache replacement poli-
cies that may be used to govern I/O-bound job execution on
data grids. Using this simulation model of an SRM host,
we have demonstrated that a good admission policy, that
takes into account the file requests of the waiting jobs, sig-
nificantly improves the average response time of a job, the
average cost per retrieval and the hit ratio of the cache.

The results reported in this paper are only preliminary
results of an ongoing work to implement realistic simulation
model of SRMs and subsequently a network of SRMs that
are deployed in data grids. Future work extensions of our
current research include:

• The characterization of workloads of file accesses to
different mass storage systems. These concern the logs
of data accesses to mass storage systems used in differ-
ent scientific collaborations.

• An implementation of a Policy Advisory Module
(PAM), including the ability to configure different
policy options, that can be integrated with deployed
SRMs.

• The use of a storage resource manager emulator to
extensively study the performance of data accesses
of real workloads, under various combinations of ad-
mission, caching, cache replacement, replication, and
replica replacement policies.

• An emulator for multi-tier adaptive file caching and
replication in data grids.

0

50000

100000

150000

200000

250000

0 0.5 1 1.5 2 2.5 3 3.5

A
v
g
.

R
e
s
p
o
n
s
e

T
i
m
e

(
s
e
c
)

Cache Size as Percentage of Data Size Processed

(a) Avg. Response Time for LRU - Synthetic Workload

With OptCacheLoad Policy
With FCFS Policy

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

0 0.5 1 1.5 2 2.5 3 3.5

A
v
e
r
a
g
e

R
e
s
p
o
n
s
e

(
s
e
c
)

Cache Size as Percentage of Data Size Processed

(b) Avg. Response Time for LRU - JNAF Workload

With OptCacheLoad Policy
With FCFS Policy

123

124

125

126

127

128

129

130

131

132

0 0.5 1 1.5 2 2.5 3 3.5

A
v
e
r
a
g
e

R
e
t
r
i
e
v
a
l

C
o
s
t

(
i
n

s
e
c
s
)

Cache Size as Percentage of Data Size Processed

(c) Avg. Retrv. Cost Per Ref. for LRU - Synthetic Workload

With OptCacheLoad Policy
With FCFS Policy

320

340

360

380

400

420

440

460

0 0.5 1 1.5 2 2.5 3 3.5

A
v
g
.

R
e
t
r
i
e
v
a
l

C
o
s
t

(
i
n

s
e
c
s
)

Cache Size as Percentage of Data Size Processed

(d) Avg. Retrv. Cost Per Ref. for LRU - JNAF Workload

With OptCacheLoad Policy
With FCFS Policy

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 0.5 1 1.5 2 2.5 3 3.5

H
i
t

R
a
t
i
o

Cache Size as Percentage of Data Size Processed

(e) Hit Ratio for for LRU - Synthetic Workload

With OptCacheLoad Policy
With FCFS Policy

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0 0.5 1 1.5 2 2.5 3 3.5

H
i
t

R
a
t
i
o

Cache Size as Percentage of Data Size Processed

(f) Hit Ratio for LRU - JNAF Workload

With OptCacheLoad Policy
With FCFS Policy

Figure 5. Effect of OptCacheLoad on Jobs Serviced at an SRM using LRU Cache Replacement Algorithm

References

[1] K. Aida, A. Tekefusa, H. Nakada, S. Matsuoka,
S. Sekiguchi, and U. Nagashima. Performance evaluation
model for scheduling in global computing systems. Int’l. J.
of High Perform. Comput. Appl., 14(3):268–279, 2000.

[2] P. Cao and S. Irani. Cost-aware WWW proxy caching al-
gorithms. In USENIX Symposium on Internet Technologies
and Systems, 1997.

[3] H. Casanova. SIMGRID: A toolkit for the simulation of ap-
plication scheduling. In Proc. of the First IEEE/ACM Int’l.
Symp. on Cluster Comput. and the Grid (CCGrid 2001),
2001.

[4] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and
S. Tuecke. The data grid: Towards an architecture for
the distributed management and analysis of large scientific
datasets. J. Network and Computer Applications, 23(3):187
– 200, 2000.

[5] GriPhyN: The Grid Physics Network Collaboration.
http://www.phys.ufl.edu/ avery/griphyn/.

[6] I. Foster and C. Kesselman, editors. The GRID: Blueprint for
a New Computing Infrastructure. Morgan Kaufmann Publ.,
San Fracisco, 1999.

[7] ESG: The earth science grid.
http://www.scd.ucar.edu/css/esg/.

[8] PPDG: The particle physics data grid. http://www.ppdg.net/.
[9] S. Khuller, A. Moss, and J. S. Naor. The budgeted max-

imum coverage problem. Information Processing Letters,
70(1):39–45, 1999.

[10] H. Lamehamedi, Z. Shentu, B. Szymanski, and E. Deel-
man. Simulation of dynamic data replication strategies in
data grids, June 2002.

[11] E. J. Otoo and A. Shoshani. Accurate modeling of cache
replacement policies in a data grid. In 11th NASA Goddard
Conf. on Mass Storage Syst. and Tech. / 20th IEEE Symp.
on Mass Storage Syst., San Diego, California, April 7 - 10
2003.

[12] GDMP: grid data mirroring package. http://project-
gdmp.web.cern.ch/project-gdmp/.

[13] The globus project. http://www.globus.org/.
[14] A. Rajasekar, M. Wan, and R. Moore. Mysrb & srb - com-

ponents of a data grid. In The 11th Int’l. Symp. on High Perf.
Distrib. Comput. (HPDC-11), Edinburgh, Scotland, Jul. 24
- 26 2002.

[15] K. Ranganathan and I. T. Foster. Decoupling computation
and data scheduling in distributed data-intensive applica-
tions. In Proc. of 11th IEEE Int’l. Symp. on High Per-
form. Distrib. Comput. (HPDC-11), Edinburgh, Scotland,
July 2002.

[16] A. Shoshani, A. Sim, and J. Gu. Storage resource managers:
Middleware components for grid storage. In 10th NASA
Goddard Conference on Mass Storage Syst. and Tech., Apr.
15 - 18 2002.

[17] J. Wang. A survey of web caching schemes for the internet.
In ACM SIGCOMM’99, Cambridge, Massachusetts, Aug.
1999.

